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Abstract—The problem of sensor scheduling under resource
constraints in remote state estimation systems has been exten-
sively studied in the past. While many sophisticated scheduling
policies have been proposed, practically most wireless sensors
operate in the simple strictly periodic pattern for sampling and
packet transmission. In this paper, from an energy-efficiency
perspective that jointly considers remote estimation accuracy and
sensor energy consumption, we provide a rigorous explanation
that a strictly periodic sensor scheduling policy can arbitrarily
approximate the optimal energy-efficient policy. From this foun-
dation, we explicitly characterize the optimal periodic scheduling,
underscoring that: 1) There exists a unique strictly periodic
scheduling policy which is optimal among all periodic policies; 2)
An exact expression of the optimal period of the strictly periodic
policy is derived, which is solely dependent on the packet dropout
rate of the communication channel and the spectral radius of
the system matrix. Numerical results validate our theoretical
findings.

Index Terms—Sensor scheduling, energy efficiency, state esti-
mation, optimization, periodic scheduling.

I. INTRODUCTION

ITH the advancement of industrial manufacturing tech-

nology, remote state estimation systems have been
developed to achieve wireless connectivity, intelligence, and
convenient deployment capabilities, which in turn has spurred
the mass production of small wireless sensors. These sensors
are used for data collection and information transmission,
facilitating monitoring, feedback control, and decision making
[1]. Given the limited energy resources of the sensor node,
transmission scheduling of wireless sensors needs to be prop-
erly designed to guarantee remote estimation performance [2].
Within this context, the periodic scheduling policy for sensors
is widely utilized [3].

Since data packet transmission incurs energy consumption,
enhancing the system performance often leads to higher energy
usage; hence, it is generally improbable to achieve both perfor-
mance maximization and energy minimization simultaneously.
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Regarding the management of these conflicting objectives,
most research studies still prioritize one goal as the aim of
the optimization problem, while treating the other as a con-
straint. According to [4], the optimal solution for transmission
scheduling under hard energy constraints necessarily entails
the complete utilization of all available energy. Using all the
available energy results in a waste of resources, and additional
transmissions do not necessarily yield a linear performance
gain when the estimation error is close to convergence [5].
This undermines our primary objective of reducing energy
consumption, except when a smaller energy constraint is pre-
determined, which is typically dependent on expert experience.
If energy constraints are incorporated and weighted into the
objective function for optimization, the following limitations
can be observed: firstly, the physical significance of such
weighting is not yet clear, and secondly, the result of the
scheduling is highly contingent upon the selected weight
values, which does not allow for a precise definition of
whether the optimal system performance has been achieved
or the minimum energy consumption has been attained. It is
noticeable that the literature utilizing this method can only
assert that it results in relatively lower energy consumption,
without formally defining the relationship between energy con-
sumption and system performance. Thus, we aim to discover a
method that not only clearly achieves our energy-saving goals
but also ensures that the energy efficiency is optimized. To
this end, we introduce the concept of “energy efficiency”.
We leverage the concept of energy efficiency to the ratio of
system performance to consumed energy. It is an established
and recognized metric within the network communication
domain [6]. Energy efficiency can help improve overall system
performance while reducing energy consumption. Therefore,
in this paper, we target the theoretical optimal energy effi-
ciency of system performance and discuss the conditions and
theoretical solutions to obtain the optimal energy efficiency.
This paper considers the optimal sensor scheduling prob-
lem within a remote state estimation system over a random
Bernoulli packet-dropping channel. Our objective is to re-
alize a sensor scheduling policy that maximizes the energy
efficiency. Unlike previous studies that emphasized sensor
scheduling with energy constraints to improve system perfor-
mance, our work focuses on transmission scheduling policies
designed to maximize energy efficiency, which we believe is
innovative in the context of remote state estimation systems.
We begin by proving that periodic scheduling can arbitrarily
approximate any schedule over an infinite time horizon when
the objective function is the optimal energy efficiency, a
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conclusion that simplifies the problem and makes proposing an
offline scheduling policy possible. Subsequently, we provide
a rigorous proof that a strictly periodic schedule represents
the unique and optimal periodic policy solution for achieving
the maximum energy efficiency. This foundation enables us
to elaborate on the details of periodic scheduling strategies.
Building upon the strictly periodic scheduling policy, we
reformulate the problem and derive explicit solutions for
the periodic schedule duration, accommodating variations in
system parameters and packet drop rates. Consequently, we
present a comprehensive offline sensor scheduling framework
based on optimizing energy efficiency. The main contributions
of this paper are summarized as follows.

« We demonstrate that, with the optimization goal being
energy efficiency, a periodic scheduling scheme can ar-
bitrarily approximate any given schedule over an infinite
time horizon.

o We derive that the optimal periodic schedule for maxi-
mizing energy efficiency is strictly periodic and that such
a schedule exists uniquely.

« We theoretically provide an optimal strict period length,
and our simulations reveal that the system performance
is a concave function with respect to the period length.

The remainder of this paper is organized as follows. Section
IT shows the related works. Section III describes the system
model of remote state estimation and formulates the problem
of energy efficiency optimization. Section IV presents some
theoretical analysis and shows the optimality of the scheduling
policy. Section V provides the optimal period length. The
numerical results are presented in Section VI. Finally, Section
VII offers the conclusion.

Notations: Sets and matrices are represented by calligraphic
uppercase and regular uppercase letters, respectively, such as
X for sets and X for matrices. The n-dimensional Euclidean
space is denoted by R". For a matrix X, the trace, transpose,
and spectral radius are denoted by Tr(X), X', and p(X),
respectively. The expectation and probability of a random
variable are represented respectively by E[] and Pr(-).

II. RELATED WORK

Amidst the evolution of networks, energy efficiency consti-
tuted a fundamental prerequisite, characterized by an increase
in system performance per unit of energy consumed [7], [8]. In
[9], the energy efficiency of cloud computing services, whose
data centers were distributed and interconnected through cloud
networks was optimized. In [10], the transmission quality
of distributed sensor nodes was characterized by the energy
efficiency indicator. While the energy efficiency was com-
monly used in the field of network communications to balance
network system performance and energy consumption, its
application in the areas of control and estimation remained
limited.

Building on the interplay between energy consumption and
system performance, researchers investigated various schedul-
ing methodologies. Typically, these methods were divided into
offline and online cases. However, in this paper, we focus
more on the impact of constraints on our optimization ob-
jectives. Therefore, we classify the problem into two common

approaches: one where hard constraints are present and the
other where constraints are weighted into the optimization
objectives in the form of soft constraints. For the transmission
scheduling with hard energy constraints, a similar “periodic”
scheduling structure has been observed in throughput op-
timization problems [11]-[15]. In [11], an optimal sensor
scheduling policy based on high-low energy consumptions was
proposed to transmit data packets. It provided the first proof
that transmission scheduling under energy constraints tends to
periodic distribution. This is the basis for further work in [12]
which explained that under energy constraints, the difference
in interval lengths between transmission to the next trans-
mission in the optimal periodic scheduling policy is limited
to 0 or 1. In [13], [14], the periodic scheduling policy was
extended from a finite time horizon to an infinite time horizon,
proving that under the premise of energy hard constraints,
the periodic scheduling policy can infinitely approximate any
feasible policy.

The need to address sensor scheduling in the context of
energy constraints was spurred the development of various
modeling frameworks. In [16], the open-loop estimation sys-
tem was extended to closed-loop control systems, and a heuris-
tic algorithm was designed to study the suboptimal control
period intervals which tend to distribute uniformly. In [17], a
suboptimal, lightweight scheduling method was introduced to
tackle the challenge arising from invalid Gaussian assumptions
in the estimator due to stochastic event-triggering mechanisms.
Additionally, research on optimal scheduling policies was pre-
sented in [18] for energy-constrained environments involving
multiple sensors, and for multi-hop sensor networks in [19].
Learning-based online optimization methods, such as Markov
Decision Processes (MDP) and multi-agent reinforcement
learning, were also employed to formulate optimal policies
in [20] and [21].

For the transmission scheduling with energy weighted, simi-
lar problems were studied in [22]-[25]. In [22], an event-based
hybrid integer linear programming algorithm was proposed to
optimize the scheduling of weighted non-preemptive resources
under energy constraints. The work in [23] investigated how to
optimally schedule sensor transmissions with reduced energy
consumption using an MDP framework. In [25], the loss
in system performance caused by transmission power was
included in the optimization objective. Further, incorporating
energy as hard constraints and as soft constraints into the opti-
mization problem was compared in terms of optimality in [24].
Additionally, there were several feasible scheduling methods,
such as start scheduling and probability-based scheduling,
which involve incorporating scheduling variables as random
variables or using probabilistic constraints to achieve the
scheduling objectives. In [26]-[28], a series of transmission
scheduling methods based on probabilistic constraints and
probabilistic variable distributions were proposed. These meth-
ods leverage Bayesian learning to capture the uncertainty in the
transmission process and implement a range of near-optimal
scheduling approaches.

Existing researches on system performance scheduling were
made several progress in addressing the trade-offs between
performance and energy consumption. However, these meth-
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ods exhibited certain limitations. Hard constraints often led to
solutions that exhaust all available energy, which may be sub-
optimal in scenarios where energy efficiency was prioritized
over pure performance. Learning-based methods introduced
additional complexity, requiring extensive training or com-
putational resources. Furthermore, most studies focused on
maximizing performance under predefined energy constraints,
rather than directly optimizing energy efficiency as a primary
objective.

ITII. SYSTEM SETUP AND PROBLEM FORMULATION
In this paper, we discuss a remote estimation problem,
where the estimator generates state estimates based on the
received information from the sensor. The architecture of the
system is depicted in Fig. 1, and the primary components are
detailed in the following subsections.

T :ﬁz 0k i’k

Process —> Sensor 7 \g‘- - Estimator —>

Fig. 1: System architecture.

A. Process model

We consider the following discrete linear time-invariant
(LTT) process,

Tpy1 =Az, + wy, (1)
yr =Cxp + vg, 2

where xj, € R™ is the state of the dynamic process, y, € R"
is the corresponding sensor measurement, and wyg and vy
are mutually independent zero-mean Gaussian noises with
covariances () and R, respectively. We assume that the pair
(A,/Q) is stabilizable and the pair (A, C) is observable.

We assume that the sensor has sufficient storage and com-
putational capacity, which can effectively reduce the impact
of packet dropout during unreliable wireless communication
[29]. Upon obtaining the measurement ¥y, the sensor executes
a localized Kalman filter (KF) to calculate the minimum
mean square error (MMSE) estimate, denoted as &7 and its
corresponding error covariance P; [30], i.e.,

(i‘z’PIf) =KF (jjz—laplj—layk>7 (3)
here, the operator KF satisfies:
Ty -1 =AT_y,
Plf,k—l =AP, 1A'+ Q,
: : : -1
Ki =P, C'(CP;_,C"+%,)77,
2 =% k1 + Ki(yx — C2F 1),
By =(I = KpC) Py,
where 27 ,_; and P, _; are the a priori estimate and cor-
responding estimation error covariance, respectively. Z7 and
P} are the a posteriori estimate and corresponding estimation

error covariance, respectively. K7, is the filter gain, and [ is the
identity matrix. The Kalman filter operates recursively, starting

with 2§ = 0 and P§ = =. Since we assume that the initial
error covariance matrix = > 0, and (4,+/Q) is stabilizable
and (A, C) is observable, according to [31], P converges
exponentially to a steady state P. Without loss of generality,
we assume that the local Kalman filter operates in the steady
state, i.e., P§ = P,Vk > 1.

B. Communication and energy model

The sensor transmits its state estimates to the remote estima-
tor via an unreliable wireless channel. We model the packet-
dropping state of channel by a Bernoulli random process
pr = {0,1}, where p = Pr(u, = 1) denotes the probability
(with 0 < p < 1) of successful packet transmission'. The
binary variable 6;, determines whether transmission occurs at
time k, where 6, = 1 indicates transmission and 8, = 0,
otherwise.

The energy expended by the sensor node during operation
can be abstractly divided into two distinct parts [32]: the first
part corresponds to the energy consumed by the processing
circuitry, Eiproc, which is present regardless of data transmis-
sion, including the energy consumed for computational tasks,
such as executing a local Kalman filter or other estimation al-
gorithms; the second part accounts for the energy consumption
of the power amplifier in the transmitter, i, whose energy
consumption primarily hinges on the transmission energy per
bit, Ey;, and fluctuates with the size of the data packet. Given
that the data packet size is consistently set at b bits per
transmission, the energy model for the sensor’s transmission
is outlined as follows:

Ex + Eproc y
Eproc )

when 6, =1,

4)

Ek,sensor = .
otherwise.

Generally, the energy consumption by Ej. is negligible when
compared to the energy used for transmission [33], and given
that E,oc Temains a constant at all times, it is also a constant in
the overarching optimization problem. Therefore, we propose
to omit Ejc from our considerations.

C. Remote state estimation model

The remote estimator receives transmitted packets based on
the channel realization, i.e., £ = pr0x. The estimation error
covariance P, evolves as:

P, = P, if & = 1, 5)
h(Py—-1), otherwise,
where the Lyapunov operator h(:) is defined as h(X) =
AX A'+Q. According to [34, Lemma 3.1], the operator h¢(X)
increases monotonically with respect to ¢, e.g., if ¢; < o for
t1,te € N, then h'1 (X) < hi2(X).

Define the time elapsed since the last packet received by

the sensor at the current time step k, i.e.,

T = mtin{O <t <k:&-y =1} (6)

IThe proposed scheme assumes a Bernoulli random packet-dropping chan-
nel. For more complex channels, such as Rayleigh fading or time-varying
channels, additional considerations would be required to adapt the method,
which is left for the future work.
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Thus, the estimation error covariance of the remote estimator
can be compactly written as:

P, = k(D). (7)

D. Problem of interest

We focus on the sensor’s decisions 6, € {0, 1} whether the
sensor is scheduled to transmit a data packet at each time k.
We denote by 6 = {6, }7° an admissible scheduling policy and
by © the causal set of all admissible policies, respectively.

For a given 0, we define the average estimation error
covariance of the remote estimator as:

0=

1 N—-1
&~ 2 Te(P), (8)
k=0

and meanwhile, the average transmission energy of the sensor
is denoted by:

N—-1
. 1
Jo(0) = lim <> O E, ©)
k=0

where, Eix is assigned a unit value of 1 for the purpose of
subsequent analysis.

Our objective is to maximize the energy efficiency of the
system, reflecting our focus on sensor-energy savings while
taking system performance into account. In other words, our
goal is to maximize the ratio of system performance to energy
consumption. The system performance can be quantified by
the average estimation error covariance; the smaller J.(6),
the better the system performance. Therefore, we define the
system performance as the reciprocal of the average error
covariance J.(0) and aim to maximize the ratio of 1/.J,(0) to
J-(0). Clearly, this problem could be further simplified. We
define the objective function as:

J(0) = Je(0) - J.(0). (10)

Subsequently, we obtain an equivalent formulation for max-
imizing the system energy efficiency as Problem 1:

Problem 1.
min

) 7(6)-

1D

To directly capture the trade-off between system perfor-
mance and energy consumption, we design J(8), which avoids
the subjectivity of weight selection in weighted sum methods
and ensures that optimization focuses on energy efficiency.
Our focus has increasingly shifted towards the system im-
provements brought about by each unit of energy, rather than
solely achieving scheduling objectives without regard to en-
ergy consumption. Obviously, J,.(0) is energy-dependent—the
larger J,., the higher the energy consumption of the sensor,
and correspondingly, J.(0) should be smaller. In some cases,
we prefer not to expend excessive energy to maintain system
performance. Further, we normalize energy consumption per
transmission. Many researchers model energy consumption as
a constraining factor, ensuring that optimal policies are derived
within the bounds of a maximum energy limit [11], [12].
However, this approach may lead to an insufficient distribution
of energy at critical points due to the inherently discrete

nature of integer optimization problems. This motivates us to
construct the energy efficiency function as the optimization
objective. It is similar to some kind of diminishing returns,
due to each local estimate being stochastically equivalent
and statistically independent. As transmission frequency in-
creases, the additional information gained decreases. Marginal
performance gain approaches zero, but energy consumption
continues to increase linearly. This motivates us to construct
the energy efficiency function as the optimization objective.

IV. OPTIMALITY OF STRICTLY PERIODIC SCEHDULING

The solution space of Problem 1 is boundless, rendering the
optimal solution challenging to attain. Nevertheless, a periodic
scheduling policy has the ability to closely approximate any
other policies. Hence, our focus will be on the investigation
of periodic scheduling policies.

A. Periodic scheduling policy

The scheduling problem involves exploring a giant decision
space (2N decisions for a finite horizon N), making it com-
putationally intractable. We give the following lemma to show
that the problem is NP-hard.

Lemma 1. Problem 1 is NP-hard.

Proof. We prove the NP-hardness of the problem by reduction
from the Subset Sum problem (SP13 problem in [35]): give a
finite set R = r1,72,...,7N, size s(r,) € ZT,Vr, € R,n =
1,2,..., N, and positive integers B. The question is whether
there is a subset R’ C R such that the sum of the sizes of the
elements in R’ is exactly B satisfying >, _r, 7 = B.

For ease of exposition, we abuse the previously defined
notation and omit the time index k. For the reduction, we
first create a sequence of N decision steps, indexed by
n =1,2,...,N. At the n-th step, the sensor chooses either
0 =0or6d=1,ie, 0 =1 will be interpreted as “select the
integer r,”; 6 = 0 will be interpreted as “do not select 7,,”.
After the sense has made the choice, the holding time 7 either
resets to O with probability p (if & = 1) or else continues
incrementing 7 <— 7 + 1. The cost at each time step is given
by 6Tr (h7(P)). We will ensure that there is a large bonus
only if Y /7 =B.

We can keep track of the partial sums in a straightforward
way: at the n-th step, choosing = 1 indicates we are “adding
ry,”. To verify that the sum is exactly B, we embed a check at
the end of the NN steps: if the sum equals B, then we transition
with probability 1 to a special “bonus” regime. In the bonus
regime, we let 7 reset to 1 and allow enough time steps such
that 0Tr (h7(P)) from that bonus regime alone exceeds B,
provided that the policy has indeed formed the sum B. If the
sum is not B, then that reset never happens, keeping the total
below B.

Then, the mapping from the Subset Sum problem to our
optimal solution of Problem 1 is straightforward: we introduce
N decision steps and an end-of-horizon check, all definable
in time polynomial. As SP13 is NP-hard, Problem 1 is also
NP-hard, which proves the theorem. O
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Next, in practical applications, it is worthwhile to propose
a simple and effective scheduling policy that is less resource-
consuming. To address this challenge, we focus on periodic
scheduling policies. These policies significantly reduce the
decision space while preserving the ability to closely ap-
proximate optimal solutions, thus providing a computationally
efficient framework for analysis.

The periodic scheduling policy 8,,, represents a scheduling
policy that repeats itself with a fixed period. The subscript p
indicates periodicity. It is defined as follows:

6, = (0; :i =k mod T), (12)

where §p = 1 and 6; =0 or 1, Vi € {1,2,...,T — 1}. This
means that the transmission decision at time k depends on
the remainder when k is divided by the period T'. The period
T € Z, is finite. Denote by ©, the set of all admissible
periodic policies.

For a given periodic schedule 8, the scheduling period
is indicated by 7', and the number of transmissions in the
period is denoted by m, where m = ZZT 0; and m < T. Let
T = (t1,t9,...,1,,) indicate the time interval between each
sensor’s decision for transmission, i.e., Z:’;l t,, = T. Then
each policy 6, can be defined precisely as a function of ¢:

0,(T)=(0,...,0,1,0,...,0,...,1,0,...,0), (13)
N—— N—— N——
t1—1 times to—1 times tm—1 times

where t; — 1 is denoted by the number of 0’s after the ¢-th 1
in 0,. For example, given 7 = (1,2,3), we have 0,(7) =
(1,1,0,1,0,0).

After defining the periodic scheduling policy, we need to
explore its availability. The following theorem shows that
for any given arbitrary infinite time horizon schedule, there
exists a periodic schedule that can approximate it arbitrarily
closely. Therefore, our optimization objective can also be
approximated through periodic scheduling in terms of limits.

Theorem 1. For any feasible schedule 8 € ©, and any ¢ >
0, there exists a periodic schedule 8y, such that the infinite
horizon objective J(0) of 0 is approximated by 0,, with the
error bound |J(0) — J(6,)| < e.

Proof. We divide the main proof into three steps. To begin
with, we clarify that the initial error covariance poses no
impact on our intended objective function. Next, we introduce
the concept of limits and prove that there exists a scheduling
policy with a certain K such that for any time £ > K, our error
requirement ¢ is satisfied. Finally, by applying mathematical
induction, we show that the introduction of a periodic strategy
can also meet these requirements. Refer to Appendix A for
detailed steps. O

Such an approach allows us to only consider a relaxed
and simple periodic scheduling policy so as to arbitrarily
approximate the performance of the optimal solution, rather
than finding the optimal solution among all feasible schedules.
Consequently, we consider the following optimization problem
with periodic scheduling policy:

Problem 2.
min

Qi I (6p).

(14)

B. Problem reformulation

Notice that a coupling is formed between the error covari-
ance and energy consumption in Problem 2, which causes
difficulties in solving it. Thus, we first try to reformulate
Problem 2 to avoid the coupling relationship. Intuitively, we
could express the subject function of Problem 1 as:

N-1 N-1
J(0,) = lim — "0, x lim — > Tr(P)
N—o0 —o N—o00 o
(@m 1 = m
a .
—? ]\;gnoc N Z TI'(Pk) = ?Je(ap), (15)

where (a) holds by the Markov law of large numbers. Thus,
we can derive the following problem based on the periodic
policy.

Problem 3.
min (16)

m
0,c0, ?Je(ep)'

C. Optimal periodic scheduling policy

In this subsection, we theoretically examine the explicit
properties of the optimal periodic scheduling policy. To this
end, we require the following result from [12].

Lemma 2 ([12, Lemma 2]). For a fixed %
periodic policy to minimize J.(0,) satisfies:

the optimal

d1+u d2+u
dti— > ti|=0orl, (17)
i:dl i:dg

for any dy,d> € {1,2,..., m} and v € {0,1,...,m — 1}.

The next lemma describes that an optimal periodic schedul-
ing policy 8, always exists and that its scheduling period is
bounded.

Lemma 3 (Existence of the optimal periodic policy). The
optimal periodic scheduling policy 8, for Problem 2 always
exists, and its scheduling period is finite.

Proof. First, according to Lemma 2, for a fixed %, the
optimal value with respect to minimizing 7 J(6,) is also con-
strained within a specific range. Meanwhile, as % increases,
the transmission interval between packets decreases, which
means that the average 7, i.e., L%J, for each transmission
also decreases, thereby reducing the average error covariance
Je(0,). Therefore, the optimal periodic policy to minimize
7Je(0,) will be selected based on the variations in the value
of 7, employing a method akin to that described in Lemma 2.
That is, a finite range always exists within which the optimal

periodic policy to minimize 7%.J.(6,) can be found. O

Thanks to the stricter restrictions of Lemma 3, we have the
following elegant result on the optimal policy for Problem 3.
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Theorem 2. The optimal policy is strictly periodic, i.e.,

0 =0,,(T) = (1,0,0,-), (18)
T —1 times

where the period of the strictly periodic policy is T.
Proof. The detailed proof can be seen in Appendix B. O

Naturally, we can immediately derive the following corol-
lary to show the optimal policy choice in the fixed energy
efficiency case, i.e., m and T' are both constants.

Corollary 1. If m and T are both fixed, the period of optimal
energy-efficient policy is | % | + 1.

Proof. The proof is included in Appendix B, thus not repeated
here.

D. Stability condition

Next, it is essential to evaluate the stability condition of
the objective function J(6,,). The relevance of our results is
contingent upon them falling within the convergence limits.
In other words, the stability condition we propose refers to
the convergence of J(6,), with the convergence value being
bounded and reaching a deterministic value. Additionally, eval-
uating the stability condition helps narrow down the practical
range of our objective function. Following Theorem 2, .J(8,,)
can be reformulated as %Je(Osp). Therefore, according to [12,
Theorem 4], we obtain the following lemma,

Lemma 4. J(6,),) is stable if and only if

PP (A)(1—p) <L (19)

We demand that the packet dropout rate and the system
dynamics satisfy the above (19) to ensure that J(8) does not
diverge as T' — oo, guaranteeing the feasibility of Problem 3.
This stability condition also ensures that the proposed energy-
efficient scheduling policy is meaningful, as unstable objec-
tives would lead to impractical solutions [36]. Therefore, our
subsequent discussions will be based on (19) in Lemma 4.

Remark 1. In our work, the stability condition ensures that
system performance remains acceptable, thereby preventing
scenarios where extremely low energy consumption (i.e., a very
long scheduling period) leads to high energy efficiency but
poor performance.

V. THE OPTIMAL PERIOD LENGTH

In the preceding section, we have demonstrated that the
scheduling policy we propose exhibits strict periodicity. We
have also provided the stability conditions necessary for the
existence of the optimal periodic policy. Consequently, in this
section, we will consider only the optimal periodic policy
under stable conditions. We will first reformulate the model
before attempting to determine the exact optimal period length,
thereby solving this problem from a numerical perspective.

As shown in Fig. 2, Problem 3 is reformulated as Problem 4.

Problem 4.

min  J(T) = =J.

20
0:,€0,, T (20)

| 1,0,0,0,0,...

C b
g g

Py T times TrT T times Dh+2r Poo

1,0,0,0,0,... | 1,0,...

+ >

Fig. 2: Optimal periodic transmission policy.

where O, is denoted by the set of all admissible strictly
periodic policies. The policy 8, corresponds one-to-one with
the period 7', allowing the exchange between them in the
following analysis, i.e., J(0s,) £ J(T).

Before proceeding with further analysis, it is necessary to
establish that the optimal period 7' is unique.

Lemma 5 (Uniqueness of the optimal periodic policy). For
Problem 4, the optimal scheduling period T' is unique.

Proof. The proof can be found in Appendix C. O

Then we try to expand and simplify the objective function
f(T) in (20) by exploiting some Markovian properties that it
possesses, as direct computation is too complex. We have the
following proposition:

Proposition 1 (Objective function expansion). The objective
function (20) has the following expansion:

p - i
éﬁ Z(l —p)'Ir
i=0

+ %Z(l -p)'

(i+1)T—-1

2 A

T-2

S (T -1 k)T (AiT+’“Q (A’)iT+k)
k=0
» oo iT—1 .
sz )Y T (AkQ(A') ) .
i=1 k=0
21
Proof. The proof can be seen in Appendix D. O

Thus, we could derive the second major contribution of this
paper, that is, we obtain the optimal period length as follows:

Theorem 3. The optimal scheduling period satisfies:
1) If p(A) = 1:

s
T —
2) If p(A) < 1:

T = L(fi)_?) 1,1 23

= max 2ln(p(A)) + 1, . (23)

3) If p(A) > 1:

= min<max 7W(1 p) 2 B S <24 In(1 - p)
- { {L 2In(o() *”’1}’L (1) !
(24)

2Tr(Q)
F0<P< smipyriay

(22)
otherwise.
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where W () is the Lambert function.
Proof. The detailed proof can be found in Appendix E. [

Theorem 3 addresses the period length of the optimal
scheduling policy for various conditions of the spectral radius,

p(A).

Remark 2. By analyzing equations (22), (23), and (24), it
can be seen that at p(A) = 1, the optimal periodic length
is determined by the system error covariance @ and the
steady value of the estimate error covariance P. It is evident
that if Tr(Q) > 2Tr(P), then one should always choose
continuous data transmission to ensure the freshness and
stability of the data, this maintains both timely updates and
system stability. When p(A) < 1, as p(A) gets closer to 1,
the period approaches 1, despite experiencing packet dropouts
in every transmission in a probabilistic context. When the
provided spectral radius of the system results in near stability,
continuous transmission ensures optimal energy efficiency.
When p(A) > 1, we consider the following special condition:
For p = 1, the perfect solution that we have identified is
also a period equals to 1. This is because the state estimation
error covariance grows exponentially over time. In comparison
to the linear increase over time, to achieve energy efficiency
optimization, it is still preferable to continuously transmit data.

Meanwhile, when p(A) > 1, the system stability boundary
—In(1—p)

imposes an additional constraint LW .

VI. NUMERICAL SIMULATIONS

In this section, we illustrate the main results of the paper
through the following numerical simulations.

A. Optimal energy efficiency

We set the system parameters as:

A:<0.1 0.2) c=(1 2) Q:(8.3 8.3)

1.2 1
and R = 0.05. The steady value of the local Kalman filter is
0.3005 0.0029

0.0029 0.4429 )°
We compare the proposed strictly periodic policy under the

optimal energy efficiency with the scheduling policy proposed
in [12]. As a result, we employ the same parameters detailed
in [12] and measure the energy efficiency performance of our
calculated optimal scheduling policy compared to that of the
aforementioned model.

According to Theorem 3 described previously, the nu-
merically determined period of the optimal scheduling pol-
icy is 2. To better demonstrate the effect of simulations,
we define the energy efficiency at each time step &k as
1/Ji and the system performance at each time step k as
1/J¢. Specifically, Jj is given by -5 SF 0 Te(P) 52, 6;,
and Jop is L3V Te(P) YN, 0. Fig. 3(a) demon-
strates the performance of the optimal policy with
p = 0.7 compared to other policies such as 6#; =
(1,0,1,0,0,1,0,1,0,0,1,0) from [12], energy priority trans-
fer policy 6 = (1,1,1,1,1,0,0,0,0,0,0,0) and 65 =

calculated as P =

o
o

e
I
s

s =

System performance 1/J
o
N

o
w

Energy efficiency 1/J,

o

0
8000 10000 0 2000 4000 6000
Time

(b) System performance.

0
0 2000 4000 6000
Time

(a) Energy efficiency.

8000 10000

Fig. 3: Comparison between different policies (when p = 0.7).

(1,0,1,0,1,0,1,0,0,1,0,0) from [11]. For the scenario con-
sidered in this paper, our calculations confirm that only the
optimal policy 6, yields the best results. Meanwhile, Fig. 3(b)
depicts the correlation between our current policy and the
system performance. This indicates that since our policy
utilizes more energy per unit of time, it yields a substantial
improvement in the system performance.

— — 0,(T=1)
L12 12t 0,(T =3)
N 2 e 0,(T=4)
IS 1 s 1t — (T =2)
o o 1l
& 08 & 08}
L Q2
% 06 % 06
3 3
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Time Time
(a) Different arrival probabili- (b) Different periods.
ties.

Fig. 4: Energy efficiency under different parameters.

Then, we employ simulations to verify certain properties of
our optimal scheduling policy, such as its convergence. We
demonstrate the performance of our proposed optimal policy
under different arrival probabilities. With the transmission in-
terval fixed at T" = 2, it can be observed that when p = 0.1, the
policy does not satisfy the convergence condition. Fig. 4(a) de-
picts J;, under different arrival probabilities. It can be observed
that when p = 0.1, the convergence conditions of Lemma 4
are not satisfied, and Jj exhibits divergence. As the arrival
probability increases, the reliability of channel transmission
tends to stabilize, leading to improved system performance.
Next, we explore the impact of the length of a strict scheduling
period on energy efficiency, as shown in Fig. 4(b). The simula-
tion indicates that the system performance gradually improves
as the period approaches an optimal value and conversely
it decreases as the period deviates from the optimal period.
Considering the comparison with policies 01, 8, 3, the energy
consumption of our proposed optimal energy-efficiency policy
is higher than that of the three policies. To ensure fairness,
as the optimal policy construction method described in [12],
Fig. 6 is plotted given the energy constraints, demonstrating
that our proposed policy still guarantees optimal energy ef-
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ficiency under different energy constraints. The peak energy
efficiency at 6/12 can be attributed to the balance between
the number of transmissions and the resulting system perfor-
mance. At this ratio, the scheduling period achieves a near-
optimal trade-off, where the reduction in energy consumption
(fewer transmissions) does not significantly degrade estimation
performance. Beyond 6/12, increasing the transmission count
results in diminishing returns for system performance relative
to the additional energy expenditure, leading to a decline in
energy efficiency.

B. Examples: Extended Simulation Scenarios in Practice

To strengthen the findings, we expand the simulations
to include more diverse real-world scenarios, incorporating
different sensor types and dynamic communication conditions.
We first introduce several common sensor applications. Three
representative sensor types are considered: temperature mon-
itoring sensors, inertial measurement units, and air quality
sensors. Each sensor’s state-space dynamics and noise charac-
teristics are modeled based on real-world specifications. The
packet arrival rate of the communication channel is set as 0.7.

o Temperature monitoring sensor in industrial IoT with

system dynamics [37]: k41 = T + Wk, Yk = Tk + Vg
with Q = 0.01 and R = 0.05;
o Inertial measurement unit (IMU) for position tracking

with system dynamics [38]: zp41 = 0 Oil T +
0.005 . 0.2 0

[ 01 } Wk, Yp = [1 O} T + v with Q = {0 0.2]

and R =0.1.

« Air quality sensor in smart city’s application with system
dynamics [39]: 11 = 0.9 + wg, yx = T + vi With
Q@=05and R=1.

Fig. 5(a) illustrates the performance of the proposed schedul-
ing policy under these diverse scenarios. It demonstrates that
in the case of temperature and air quality sensors, which
have smaller variations and estimation errors, the energy
efficiency is relatively high. Conversely, for sensors like the
IMU, which are required to detect pose, the energy efficiency
is comparatively low.

40
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~ ===l -
; 30 —] air quality [ 3
> >
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S 20 2
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>
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& i
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0 2000 4000 6000 8000 10000 0.5 0.6 0.7 08 0.9
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(a) Different sensors.

Arrival rate

(b) Different probilities.
Fig. 5: Energy efficiency under different practical scenarios.
Then, we evaluate the performance of the proposed schedul-

ing framework under realistic communication environments,
we simulate various packet loss scenarios reflecting urban

networks, industrial IoT systems, and vehicular communi-
cation networks. The packet success arrival probability p is
adjusted to reflect the impact of varying packet success arrival
probabilities on energy efficiency as follows:

« Urban wireless networks with time-varying success prob-
abilities: typically fluctuating between a maximum trans-
mission success rate of 0.9 and a minimum rate of 0.7.

o Industrial IoT networks with bursty packet loss: normally
stable at 0.9, with sudden transitions to a high packet loss
probability state of p = 0.5.

o Vehicular networks with periodic channel variation: usu-
ally represented in a sinusoidal form, for example, p(k) =
0.7 + 0.2sin(27k/cr) with channel period cr.

We find that for practical communication systems, the
packet reception rate primarily falls within the range of 0.5
to 0.9. We choose to use the performance characterization at
an iteration count of 10,000 as a benchmark, and by employing
the dynamic system parameters proposed in Section VLA, we
simulate the mean value of the energy efficiency variation
within this range. As can be seen in Fig. 5(b), with the
increase of p, the system’s energy efficiency improves. This
indicates that regardless of the communication channel, as long
as the channel quality improves, the energy efficiency will
undoubtedly enhance.

C. Monte Carlo Study

The aforementioned simulations demonstrate the variations
in optimal energy efficiency from a time-domain perspective.
Next, using the Monte Carlo method, we will examine the in-
terrelationships between successful transmission rates, system
performance, energy-efficiency ratio, and optimal scheduling
period on an average scale.

n
o

Optimal energy efficiency

3

Optimal period length
(9] 5
Stability boundary

Energy efficiency 1/J,
— Stability boundary -

0
212 412 612 812 1012 1212 0 0.2 0.4 0.6 0.8 1
Energy/period Probability of successful transmission

Fig. 6: Comparison of energy Fig. 7: Correlation between

efficiency across different en- the optimal scheduling period

ergy states. and the probability of success-
ful transmission across vary-
ing values of p(A).

We analyze how the optimal scheduling period varies with
successful packet transmission rates between 0 and 1 for cases
where p(A) < 1 and p(A) > 1, as shown in Fig. 7. When
p(A) < 1, the optimal scheduling period gradually decreases
with increasing probability. In contrast, when p(A) > 1, it
increases.

Moreover, Fig. 8(a) depicts the relationship between the
spectral radius of the system matrix, p(A), and the optimal
scheduling period for a packet transmission rate of p = 0.7.
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Fig. 8: Evalution of optimal period length 7" under different
p(A).

The optimal period length exhibits a monotonically increasing
trend when p(A) < 1 and a monotonically decreasing trend
when p(A) > 1. At first glance, this appears counterintuitive;
however, from an energy efficiency perspective, constant trans-
mission can avoid the linear accumulation of system noise
in cases of rapid system convergence, while during system
divergence it can prevent the exponential accumulation of error
covariance.

Furthermore, Fig. 8(b) sketches the graph for a packet
transmission rate of p = 0.2, where the optimal policy with
p(A) = 1 is not to refrain from sending but to always send
off with a period of 1. Besides, we observe that whenever
p(A) > 1 and stability conditions are met, the optimal energy
efficiency consistently favors a sending period of 1.

D. Discussions

To enable practical deployment of the proposed periodic
scheduling policy, we integrate it into different layers of the
communication protocol stack, depending on the system’s
requirements and constraints. Generally, the proposed schedul-
ing strategy is integrated at the application layer. At this
layer, the policy can access system-specific data, such as state
estimates and system parameters, making it well-suited for
high-level decision-making. It can be embedded in application-
layer protocols like Constrained Application Protocol (CoAP)
for 10T devices, dynamically adjusting transmission schedules
by signaling the medium access control (MAC) layer based on
state estimation or other metrics. For example, in a temperature
monitoring system, the policy embedded in the CoAP client
could calculate the dynamic system parameter and steady
error covariance to obtain transmission frequency during stable
conditions. At the MAC layer, which controls access to the
communication medium, this policy is ideal for implementing
real-time scheduling decisions. It can modify transmission
schedules directly in the MAC layer queue and interact with
energy-efficient protocols like IEEE 802.15.4 (ZigBee). In
an industrial IoT system with heterogeneous sensors, for
instance, a smart manufacturing setup with sensors monitoring
temperature, vibration, and machine health, these sensors have
different computational capabilities and energy budgets. We
could apply the following integration strategies, such as: in
the application layer, the temperature sensors use a CoAP-
based application layer to schedule transmissions dynamically,

while the vibration sensors utilize MAC-level scheduling in
IEEE 802.15.4 to prioritize critical event data during ma-
chine faults. Further, the machine health sensors leverage a
cross-layer framework combining real-time channel conditions
(physical layer) with fault-criticality metrics (application layer)
to optimize transmission schedules.

The proposed policy lays a foundation for further improve-
ments on system energy efficiency by co-designing more
aspects. For example:

o Cross-layer optimization: Our current approach is that
the scheduling decisions 6 are based on the trade-off
between energy efficiency and estimation accuracy, with
the packet success arrival probability p from the physical
layer influencing the periodic schedule. We can consider
introducing real-time feedback from the MAC and physi-
cal layers into the optimization problem. For instance: 1)
The success probability p can be dynamically adjusted
based on real-time channel conditions (e.g., signal-to-
noise ratio (SNR) or interference levels). 2) MAC-layer
parameters, such as queue state or contention window
size, are incorporated to ensure that scheduling decisions
adapt to medium access constraints. Furthermore, the
periodic schedule provides a deterministic transmission
pattern that simplifies resource allocation at the MAC
layer, such as contention window adjustments or slot
assignments. At the physical layer, the predictable pe-
riodic schedule allows for pre-allocation of resources,
such as power or bandwidth, avoiding the need for real-
time computations. Thus, the optimization problem would
include dynamic variables reflecting channel conditions
and MAC-layer feedback, leading to a time-varying peri-
odic schedule. Meanwhile, the conclusions on the derived
optimal periodic policy would be extended to include its
robustness under dynamic channel conditions and MAC-
layer constraints.

« Virtualization technologies: Software-defined networking
(SDN) can enable centralized scheduling control, ab-
stracting hardware differences and dynamically allocat-
ing network resources. Network function virtualization
(NFV) can offload computational tasks from resource-
constrained sensors to more capable nodes or cloud
infrastructure, thereby improving scalability. In practical
applications where real-time computation is required, the
adoption of SDN and NFV technologies is beneficial for
the implementation and deployment of our scheduling
policy. Our current approach is designed for individual
sensors without explicit consideration of network-wide
coordination or hardware heterogeneity. We can consider
implementing the scheduling algorithm within an SDN
controller, which would manage and optimize scheduling
decisions across a distributed network. The controller
could dynamically allocate resources to devices based on
their energy levels, computational capacity, and commu-
nication needs. Meanwhile, NFV could be employed to
virtualize estimation and scheduling functions, enabling
lightweight sensors to offload complex computations to
more capable nodes or cloud infrastructure. This would
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ensure that devices with limited computational capac-
ity can still participate in the scheduling framework
effectively. Furthermore, the periodic schedule ensures
predictable computational and communication workloads,
making it easier to implement scheduling and offloading
strategies in NFV frameworks. Edge or cloud resources
can be allocated dynamically at predictable intervals,
minimizing resource contention. Lightweight devices can
offload computations at fixed intervals, simplifying syn-
chronization and reducing latency. Thus, the optimization
framework could be extended to consider network-wide
resource allocation. Meanwhile, the conclusions on en-
ergy efficiency and system robustness would be expanded
to include the benefits of centralized scheduling and
computation offloading.

« Interplay between communication protocols and control
algorithms: We can co-design control algorithms that
are resilient to packet delays and losses induced by
scheduling. The scheduling framework can prioritize the
transmission of data critical to control performance, en-
suring stable operation even under constrained communi-
cation resources. Meanwhile, the periodic schedule can be
dynamically adjusted based on real-time feedback from
the control system. For example, if the system’s state
estimation error exceeds a predefined threshold, then the
transmission frequency could be temporarily increased.
Our current approach uses the periodic schedule to op-
timize energy efficiency while maintaining estimation
accuracy without explicitly considering control feedback.
We can consider introducing control system feedback
directly into the scheduling framework. Next, we adjust
transmission frequency based on real-time state estima-
tion error or system stability margins. Then, we prioritize
data packets critical to control actions, such as those
with higher state estimation uncertainty. By ensuring
regular state updates, the periodic schedule simplifies the
design of control strategies that rely on predictable data
availability.

VII. CONCLUSION

In this study, we have examined the problem of sen-
sor scheduling with a focus on optimal energy efficiency.
Advancing prior work that sought to minimize the average
estimation error covariance within energy limitations, we have
formulated a sensor scheduling approach based on optimal
energy efficiency. Our theoretical proofs have confirmed that
a periodic scheduling strategy based on optimal energy ef-
ficiency invariably results in a strictly periodic pattern, and
we have numerically determined the precise scheduling inter-
vals. This research has effectively addressed the challenge of
periodic scheduling in single-sensor remote state estimation.
Opportunities for future research include extending the cur-
rent work to coordinated scheduling policies in multi-sensor
environments. Furthermore, while this study assumes zero-
mean Gaussian noise, full observability, and stabilizability,
extending the framework to address more complex scenarios
is an important direction for future research. For example, the

Kalman filter could be replaced with particle filters or robust
H, filtering to handle different noise distributions. Reduced-
order observers or subsystem-specific estimation techniques
could complement the scheduling framework in scenarios
with limited sensor coverage. The scheduling policy could be
integrated with robust or predictive control strategies to ensure
system performance under instability.
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APPENDIX A
Proof of Theorem 1: First, we obtain that
. N—
J(0) = BN o0 & Sopeg Jr(8)T(Py) —

By o0 & Sy Tr(E[J,]

Py), where E[J,] € [0,1] is the mathematical expectation
that converges to the sequence {6}. Further, we introduce
the following useful lemma to assist our proof.

Lemma 6 ([14, Theorem 1]). J(0) is independent of the initial
condition 3 but only depends on the scheduling.

Due to the provision of Lemma 6, we proceed to dilute the

demarcations between > and P within the context, as it is
valid for all cases. Our primary concern is to ponder about

their existence. We choose a % such that 3 > (J(0 + ¢))1,,
where I,, € R™*™ is the identity matrix. We find that there
exists a K, such that for all N > K,

N-—1
% S Te(E[,]P) < J(6) + e (25)
k=0

Moreover, there must exist infinitely many scalars &, such that

Tr(E[J,]P:) < J(0) + ¢, (26)
which implies that
E[J:P: < (J(0) + )], < . (27)

As a result, we can choose T such that (25), (26) and (27) all
hold at the same time, which is also the period 7" we want to
define, i.e., we now define the period schedule 6, to be the
same as the original schedule @ from time step 1 to 7" and
repeat itself starting from 7'+ 1, such that 6, 74, = 0;,Vk €
Np,1 < j < T. And then, we employ mathematical induction
to prove J(6,) < J(@)+ ¢. For this purpose, we first need to
prove the following:

Peryj < Pj,Vk € N, 1 < j <T. (28)

As Py is stationary, for each moment J;, we can consider
using expectation E[P;] as a substitution and realize the
fulfillment of conditions on an overall basis, i.e.,

h(E[P;_1)], if 0, =0,
E[p] = { "EFe-1)] o (29)
PPy + (1 — p)h(E[Py—1]), if 6 =1.
Thus, we need to prove:
E[Pyr+;](0,) <E[P](0,),VE € Ng,1 <j<T. (30

If we assume (30) holds at a certain time k& = kg, then we
could derive:

E[Pro+1+1](60p)
ME[Pro+1]) < ME[Pg,]) = E[Pry11],
PPro+7+1 + (1 = p)h(E[Pryi7]) = E[Pry1],
According to (27), it is valid at time step k = 0, i.e.,
E[Pr](6,) < E[F](6,) = X.
which leads to Pr(6,) < Py(6,) = X. We obtain:

if 0, = 0,
if 0, = 1.

3D

1 N-1
J(0y) < kZ:O Tr(J,Pe(8,)) < J(6,) +c. (32

Thus, we complete the proof. [ ]

APPENDIX B

Proof of Theorem 2: From the construction of 0%, we
just need to prove that for any periodic policy satisfying the
condition given in [12, Lemma 2], there always exists a strictly
policy with more 0’s or less 0’s under the energy efficiency
constraint.

First, we introduce the following finite sequence definition,

seqpr =1, 0,0,---. (33)

T—1 times
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And then we define the average estimation error sequence

seq, following the strict period at a certain time 7" as ep =

A S ) Tr(Py). We attempt to use mathematical induction

to prove that for any two periods 1 < 77 < Tj, it always

exists e, < €7y.

Initial Case. We have £; = pP + (1 — p)h(P) and we also
have e5 = ph(P)+ (1 —p)h?(P), thus it is easy to obtain
g1 < €.

Common Case. For any 7" > 2, it can be obtained that

e =ph" (P) + (1 - p)h" (P), (34)

thus, it is easily obtained that ep4; —ep > 0.

According to Lemma 2 and Lemma 3, the optimal periodic
policy must consist of two finite sequences, i.e., seq, and
seq;,, where the number of ‘0’ of the two sequences differs
only by 0 or 1, e.g., ‘100101001010010...” or ‘10101010...".
By the way, if the number of ‘0’ differs by 0, then the optimal
periodic policy is called a strictly periodic policy.

According to the conclusion in Lemma 3, we need to prove
that there is always a better one, based on the energy-efficiency
constraint, than Lemma 2, such as a strictly periodic policy
with fewer ‘0’ entries or more ‘0’ entries.

For a given optimal scheduling policy 6, ;, with fixed m
and n like Lemma 2, we define its optimal average estima-
tion error as JOP', thus its corresponding optimal energy-
efficiency objection is defined as P,y = #JSP', and then
we consider two other strictly periodic scheduling policies,
respectively. One is composed of fewer ‘0’ entries from policy
0., +,, denoted as 6, and the other is composed of more
‘0’ entries, denoted as 6,,. Further, the number of zeros to
be supplemented is « and the number to be reduced is f3,
respectively. We obtain that P, = (JP* + ey, ) and
P = 725 (T — ).

It is easy to obtain that,

T+a

m m
Py — Popt :m(Jgpt — Ber,) — ?Jé)pt
mB(JPY — Tey,)

= = <0 (35)
(T-p)T
and
P, — JP* > 0. (36)

Since there can only be a difference of one ‘0’, the strict period
must be the optimal solution, and it can only be a strict period
with one fewer 0’s. Thus, we complete the proof. [ |

APPENDIX C

Proof of Lemma 5: Since 6, depends only on T, we
can use J.(T) to denote J.(6sp,). According to Lemma 3,
the selection range for the optimum is bounded and J.(T)
decreases monotonically. Since 7" is a discrete variable, we in-
troduce a continuous variable 7" to perform differentiation for
further analysis. While this representation slightly abuses the

notation of T, it does not affect the results. We have J'(T) =
J! (T)T Je(T) and J(T) = J!(T)T® — 3]( VT2 427 (T )

Clearly, by proving the convexity (or concav1ty) of J.(T),
we can subsequently establish that the optimal solution for

J(T) is unique. By the law of large numbers, J.(T") increases
monotonically as p decreases. Therefore, we simplify the
problem by considering the case where no packets are lost,
i.e., p = 1, and other cases are similar to this one. Due to
periodic scheduling, we consider the following J.(T), i.e.,

T-1 i—1
1 i D i
=7 > Tr [ APA) + ) AFQA)
1=0 k=0

Since a linear transformation applies an affine transformation
to the input of a convex function Tr(-), the convexity is
preserved. Thus, we consider (37). Clearly, for any fixed
A, P, and @, (37) exhibits a linear growth with respect to
T. Consequently, J.(T) is concave. Therefore, the optimal
scheduling period T' is unique. [ ]

(37

APPENDIX D

Proof of Proposition 1: We delineate the packet trans-
mission process under uncertain channel conditions utilizing
a time-homogeneous Markov chain with recursive properties
to characterize the possible states of the packet transmitting
and receiving process. Let the state transition be defined by
Tie+1 = f(Tk, 1, ux), with the initial state set to 79 = 0. The
strict periodicity of the system is established, which forces
sensors to initiate data transmission strictly at intervals of
T time steps. Consequently, the indicator \;, which denotes
the action of transmission in the k-th time step, has been
substituted with 7. Furthermore, since the structure of the
Markov chain is invariant with respect to the time index
k, we simplify the notation by occasionally omitting the
subscript k. The state 7 at the subsequent time step transits
to a new state 7/, following the probability of state transition
Prr = Pr(7'|7). That is,

Pr(r'|r,i =1
H(rlmi=1) Pr(r'|r,i # 1)
P if 7/ =0, e
)y o —rl = 1 ifr"=7+1,
b o ’ 0 otherwise .
0 otherwise ,

With this set-up, we derive the subsequent stochastic Marko-
vian dynamical system, 7 = f(r,T,c). Without loss of
generality, we assume that the initial state is 7 = 0. Owing
to the periodic nature of the system, it can be determined
that each state is recurrent. Further, we define f(7T') based
on the Markov property as described above, and the ensuing
statement elucidates the central mechanism. Denote by 7, ; as
the long-run proportion of time when the Markov chain is in
state 7 with the definition: 7,; = limy_, E [num, ;] and
Z;TFZI Tri = My o0 %E [num, ], where num, ; and num,
means the total number of the pair (7,¢) happening in (0, V]
and the total number of 7 happening in (0, N], respectively.
For the periodic Markov chain, 7, ; is interpreted as the long-
run proportion of the time that the Markov chain is in state
T,ie, m; =>. 7 ;Prrand > m.; = 1. Thus, we could
obtain:

N—)oo Z th _Tz::o

(38)

T
X E Tri |
=1
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and split J.(6,) as

J.(0,) = Tr ((h°(P),h*(P),...) 7)), 39)

where the vector h!(P) is denoted by (h°(P),--- h°(P)),
T times

and T = (7’1’0717 e s O Ty T 1y e ooy TL, Ty e e - )/. With defini-

tions similar to the above part, we have the vectors m.; =
(mo,is714,---) and m,. = (mr1,7r2, -, 77 N), Iespec-
tively.

For a given periodic policy 8,(z) € ©, we obtain that in
every row vector 7, ., only m entries are non-zero, where the
non-zero vector in 7 is defined as 7, . with their original order.
Thus, for the strictly periodic policy 85, € ©, we have

Je(0sp) = Tr(h#').

where h = (h9(P),hY(P)...) and & = (fo., 71, ..., 7T,
..). Thus, the objective function J(T') in (20) can be alter-
natively expressed as

(40)

0o T-1
_ P iT+j (P
(T) =5 2 (0 =p)Tr | 3 pTH(P) |, @D
i=0 7=0
with
RT(P) =(A(...(APA+Q).. )A +Q
——
T times
=ATP(A) + Z A'Q 42)
Therefore, we obtain (21). [ |
APPENDIX E
Proof of Theorem 3: First of all, we simplify
Tr (AR X (AF)') as
m(T) (a) m(T)
ZTr ARX(AMY) S 3 Tr (AF(AFY)
k=0
m(T)
<o Y np*(A), (43)
k=0

where inequality (a) comes from Cauchy-Schwartz inequality,
m(T) is a linear function of T, {\;},7 = 1,2,...,n denote
the eigenvalues of matrix A, and ¢ = Tr(X). Further, we
denote the trace of P and Q as o, and o, respectively. The
relaxation reformulation of J(T") can be obtained as follows:

o 00 (+1)T-1
J(T) <73 5> (1=p)oy Y np™(4)
i=0 k=iT
» 00 ) T-2 )
72 2 (1=p)'og D (T = 1= k)np* T+ (4)
=0 k=0
» 00 iT—1
+ g ) (1=p) (T = 1o, > np*(4). @4
=1 k=0

Clearly, the scaled function is more straightforward.
According to [40], the trace function A +— Tr[f(A)]

will keep monotonicity when f is continuously differ-
entiable. Obviously, the following conditions are satis-
fied, i.e., When k increases, both Z’,?:(g) Tr (AR X (AF))
and crz np?*(A) increase. Thus given A, n and
m(T), the monotomclty of ST Tr (A*X (A*)") and
UZ;::O 2k(A) is consistent, thereby revealing that the
optimum of infT{right-hand side (R.H.S.) of (44)} is also the
optimal solution of Problem 3 over all possible values of 7T'.
Then, based on the different properties of the spectral radius
p(A), we carry out the following proof in three categories.

A. Case p(A) =1

We begin by addressing the case when p(A) = 1. In this
case, J(T') becomes

no;  n(lT—1)o, n(T—-1)(1-p)o
J(T) ==~ T Tp :
n(@poy— 20, +pog) 1 n _ n(l-p)a,

o 7713 . (45)
As expressed in equation (45), the monotonicity of the function
J(T) is determined by 2po; —20,+poy, i.e., when 202;“% <
p < 1, (45) is monotonically decreasing with respect to 7T,
therefore the optimal scheduling policy is to not transmit.
In this case, we need to check the relationship between
the lower bound of p and the stability condition (19) 1e,
Tr(Q) < 2Tr(P). In the other case, when 0 < g < m
(45) increases monotonically with respect to 7. This implies
that the optimal period length is always 1.

Next, we move on to the case where p(A) # 1. We discuss
the optimal energy-efficiency transmission policy whenever
the system is in the convergence range. We will initially
examine the scenario where p(A) < 1. In terms of format,
this case is more convenient for calculation.

B. Case p(A) < 1

To begin with, we reduce equation (44) into a simpler form
as shown below:

J(T) pcay<1

-£50-

inopp”™ (A) (11— p*'(4))
1—p*(A)

1—p?T=D(A))

p - 2iT (
T—LZ (I-p naqp (A)( 1= 2(4)
(PP (T = 1)p* T (A) + (T - 2)92T(A))
(1-p2(A))?
P — i nog (1 - p*"(4))
+ﬁi=1(1—p) (T-1) 1= 2(4) . “@n

According to Lemma 4, we obtain
—In(1—p)
2In(p(A))

. In other words, there is no restriction on the selection of 7" in
this case. On this basis, we consider simplifying equation (47)

FPrA1-p) <1eT> =T>0
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gy — RS+ (T 0 = A=) (4) £ T2 p(A)(1 =) Inlp(A)* (4) = 2T(1 = p(4))) J(T)
T2(1 = p*(A)) = T*(1 = p*(A))(1 = p)p*" (A)
(46)
through the scalar system approach. Then (47) can be further Case. 1:
redueed 10 (1= A+ Thp(A) =1 61
T(T)py< Case. 2:
_pnop(l = p*7(A)) 1 R.H.S. = 0. (52)
T ;na<A)) 11_ (; _T >1)( ()A) Case 1 can be simplified as
T A T- (- p)pPT(A) (1 =p)p*" (A)(1 + Tln(p (A))) =1 (53)
pnog pP(A) — (T = 1)p* T~V (4) n n(p
- e gy (0= = Moty (77 (0 TAD) = (725 39
(T — 2)p*T < 2T In(p(A)) + In(1 + T'In(p(A4))) = — ln(l - ), (55)

+

(4) )
1—(1-p)p*T(A)
pnog(T —1) (1 —p

(1—p)p**(A) )

T2(1 — p2(4)) p  1—(1—p)p*T(A)
_ P o (1 2T
S T2(1 - p2(A))(1 — (1 —p)p2T(A)) (nop(1 - p*" (4))
+ nog(1 — p2 TV (4)) — ﬁ;(A) (02(A) — p*7(4))
+ nog (T — 1)p2(T—1)(A) +bog (T —1)(1 — p)p2T(A))
nog(1—p)(T' - 1)
T2(1 — p2(A)) (48)

We set the implicit function J(T") with respect to 7' and
then take the differentials on both sides of the equation (48).
Then we obtain the left-hand side (L.H.S.) and the R.H.S. of
the equation, respectively, as follows:

LHS. = (T%(1 - p*(A)) (1 — (1 - A)) J(T
+(27(1 = p*(4) (1 - (1 - ) T(4)

—T(1 - p)(2In(p(A))p*" (A)))) J(T).  (49)

R.H.S. =21n(p(A))p*T (A)n

Jqp
(o =S 0 -07)
+2In(p(A))p* "D (A)n (—poy + oq(T — 1)
+oq(1=p)(T' - 1))
+ 10,0 "V (A) + noy(1 - p)p* (A)

+nog(1 —p). (50

As a result, we obtain the derivative (46) of the implicit
function.

Here, we have slightly abused the continuous and discrete
forms of the function with respect to 7', but the existence
of the optimal solution ensures that the final result remains
unaffected.

We take J(T') = £.J.(T) from formula (48) back into the
preceding formula, and let J'(T") = 0 in (46). Due to J(T') #
0, we obtain

where 14 T In(p(A)) is treated as a whole for computational
convenience. The equilibrium point could be solved by the
Lambert W function method, i.e.,

2(1+ T'In(p(A))) + In(1 + Tn(p(A))) = In 7 2 ~ (56)

thus 2(1 + T'In(p(A))) =
solution for Case 1 as

2¢2 . . .
W($5;), vyielding the optimal

Wo(£55) — 2

= ()

(57)

As the Lambert W function has multiple branches, here we
focus on solution Wy

Based on the proof of Theorem 2 and Lemma 4, we
can infer that if the optimal solution exists in two adjacent
scheduling periods, then it occurs in the one with the shorter
scheduling period.

Next, we consider Case 2. Similar to the calculation method
in Case 1, we also use the Lambert W function to obtain a
corresponding numerical solution.

We first simplify equation (50) as follows:
2(Tr-1)

+Iny <2 In(p(A))p?(A) (pnap 4 19dP

1-p2(A)
—nog(l - p))
—21n(p(A))pnoy +nog + noy(1 — p)p*(A)
+2lp(AN(T 1) (0, + (1~ ) )
(-

=In,4)(=noy(1 —p)). (58)

For the sake of streamlining the calculation process, we
introduce A to represent 2 In(p(A))p?(A)(—npoy+ % -
nog(1—p)?) = 2In(p(A))pnog + noq + noy(1 - p)p*(A), B
to represent no, +no,(1—p), C to represent —no,(1—p) and

X to represent 2In(p(A))(T — 1), respectively. Consequently,

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 20,2025 at 02:54:52 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3574608

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

we derive:
X +In(A+BX)=1In(C) (59)
A A
& E+X +ln(A+BX):1nC+E (60)
1
@m%“wg+xﬁzgé“+% 61)
Ce? A
X = - = 62
& w ( B ) B (62)
Therefore, we conclude that
A
()
Tog=—— /- +1. (63)

2 In(p(A))
To meet the requirements for solving the Lambert W function,

A
we first examine the following range of W (ceBB

cC p-—-1 1

B 2-p > 5" (64)

It is straightforward to see from the above equation that
% is a monotonically decreasing function with respect to p.
Additionally, p is constrained by the convergence condition in
Lemma 4. Therefore, the lower bound of % and its permissible
maximum lower bound are as follows:

.. C 1 1
H;meaX{W)-i—l72}’ (65)

.. C 1 1
maXHZ}fE —m&x{{—mm}a21,—2}. (66)

minsup — = 0.

67
P 3 (67)

Owing to the system limitations, we are aware that the
system error consistently remains less than the Kalman filter’s
steady-state error covariance, i.e., ¢ < p. Thus,

% > (2P p + s~ (-0

20A)
2y + 1+ (=l AP) /2 0). (68

With the constraints 0 < a < 1 and 0 < p 1, the
observed lower bound and the upper bound of are 1
and 2, respegtively. According to (66) and (67), the feasible

: CeB
region of =%

<
A
B

can only range from (—1/e, 0), in other words,
4
%% (C%B) is within the range (—1,0). Meanwhile, here we

CeB

2 <.

Subsequently, we bring forth the following lemma to il-
lustrate that the zeros of the derivative of J(T') consistently
prevail and are restricted to a specific scope.

focus on solution W_; due to

Lemma 7. Lambert Wy function is an increasing bijection
and Lambert W_1 function is a decreasing bijection.

To begin with, we are aware that the zero points of J'(T')
only need to simultaneously satisfy Case 1 and Case 2, i.e.,
(51) and (52). Due to the fact that the solution function T,
pertaining to Case 1 increases, while the solution function T¢o
linked to Case 2 decreases, the 7" that simultaneously adheres
to both Case 1 and Case 2 consistently emerges within their
boundary, denoted as T = (|Te2], |Tc1]). Additionally, as
Ce%

B
amounts to the range (—1,0), we can deduce that the solution

to T is,
W(#5) -3
T = max Li)J—kl,l .

we have already authenticated that the range of W

2Tn(p(A) ©

The numerical approximation can be obtained through New-
ton’s iteration.

C. Case p(A) > 1
We come back to equation (44), when p(A) > 1. We get

I
OV et €) _<1p2(22‘)T<A>>
+ 2 :J(l oy (pwm EIC ig;w»
)
+wwﬁ€_nfal—yziixﬁ. (70)

i=1
Based on the boundary conditions of convergence, we can
obtain:

—In(1 —p)

2T

PTA(1—p)<leT< 2" P)

(A1 =) TTn(p(A))

At this point, we must explore the condition % <1

During this occurrence, as per Lemma 4, the system undergoes
divergence. When sending data is essential, the ideal schedul-
ing period remains constant at 1, i.e.,

—In(1 —p)
2In(p(A))

As a result, the following range is identified:

1<p(A)<,/ﬁ.

According to (71) and the convergence condition, we can
easily obtain that (70) is bounded. Therefore, we further
simplify it like (48). We can still consider using a similar
proof method as above. We first examine the two cases where
the derivative equals 0. In Case 1 as (51), we obtain that

Up(A),T) = (1 - p)p* ()L + Thn(p(4)). (1)

With regard to p(A) and T, the ¢(p(A), T) function demon-

strates a monotonic growth obviously. As such, we examine
1
1Tp as

>1=(1-p)p*(A) < 1.

(71)

the scenario of 7' = 1, and p(A) takes on 1 and
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values. We can derive £(1,1) = 1 — p and £(/ 1= p,l
I+In(y/7= ) This validates the feasibility of ¢(p(A),T) =
I/V()(ﬁ)*2

and the resemblance of solution to (57) with T' = S (A

Then we consider Case 2 like (52), and we just need to
check the R.H.S. of (68). Let £(p(A)) = R.H.S. of (68) with
respect to p(A). We can verify its monotonic behavior by
calculating its derivative as

£ (o)
_ ! p*(4)
5 (2000 + 20 ) )
App(A) In(p(4))
1-p2(A)2 (1= )*(p(A) + 2p(A) In(p(A)))

2p
AR —p>p<A>) |

Since p(A) > 1, the overall ¢'(p(A)) is monotonically
increasing. By substituting the constraint values of p(A4) =1,
we can obtain that ¢'(p(A)) remains greater than 0. In other
words, ¢(p(A)) is monotonically increasing with respect to
p(A). Then we obtain that the lower bound of 4 > 1 is 1,
which satisfies the conclusion when p(A) < 1. Consequently,
we can draw a conclusion similar to it, but with the addition
of constraint (71), i.e.,

(73)

W(fi)—Z —1In(1 — p)
T = min{max{|——2—— +1],1p,| —— 2 |+1
Sy )y
(74)
Thus, we complete the proof. ]

Bowen Sun (Member, IEEE) received the B.Sc
degree in Automation from Southeast University,
Nanjing, China in 2019, where he is currently
pursuing the Ph.D. degree in control science and
engineering. From 2020 to 2021, he was a guest
Ph.D. student at KTH Royal Institute of Technology,
Stockholm, Sweden. His research interests include
sensor scheduling and stability in CPS.

Xianghui Cao (Senior Member, IEEE) is a professor
at Southeast University, Nanjing, China. He received
the Ph.D. degree in control science and engineering
= from Zhejiang University, China, in 2011. He was
a Senior Research Associate at Illinois Institute

of Technology, Chicago, USA, in 2012-2015. His

ﬁ\ recipient of the Best Paper Runner-Up Award from

ACM MobiHoc in 2014 and the First Prize of
Natural Science Award of Ministry of Education of China in 2017. He also

research interests include cyber—physical systems,

wireless network performance analysis, wireless net-
serves as an Associate Editor for IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS and ACTA Automatica Sinica.

worked control, and network security. He was a

‘Wei Xing Zheng (Fellow, IEEE) received the B.Sc.
degree in Applied Mathematics, the M.Sc. degree
in Electrical Engineering and the Ph.D. degree in
Electrical Engineering from Southeast University,
Nanjing, China, in 1982, 1984, and 1989, respec-
tively. Over the years he has held various fac-
ulty/research/visiting positions at Southeast Univer-
sity, Nanjing, China; the Imperial College of Sci-
ence, Technology and Medicine, London, U.K.; the
University of Western Australia, Perth, Australia; the
Curtin University of Technology, Perth, Australia;
the Munich University of Technology, Munich, Germany; the University of
Virginia, Charlottesville, VA, USA; the University of California at Davis,
Davis, CA, USA; etc. He is currently a University Distinguished Professor
with the Western Sydney University, Sydney, Australia. He has served as
an Associate Editor for IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
IEEE TRANSACTIONS ON Fuzzy SYSTEMS, IEEE TRANSACTIONS ON
NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE TRANSACTIONS ON
CYBERNETICS, IEEE TRANSACTIONS ON CONTROL OF NETWORK SYS-
TEMS, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR
PAPERS, and several other flagship journals. He has also served as a Senior
Editor for IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS. He
has been an IEEE Distinguished Lecturer of IEEE Control Systems Society.
He is a Fellow of IEEE.

Yu Cheng (Fellow, IEEE) received the B.E. and
M.E. degrees in electronic engineering from Ts-
inghua University, Beijing, China, in 1995 and 1998,
respectively, and the Ph.D. degree in electrical and
computer engineering from the University of Water-
loo, Waterloo, ON, Canada, in 2003. He is currently
a Full Professor with the Department of Electrical
and Computer Engineering, Illinois Institute of Tech-
nology, Chicago, IL, USA. His research interests
include wireless network performance analysis, in-
formation freshness, machine learning, and network
security. He was the recipient of the Best Paper Award at QShine 2007
and IEEE ICC 2011, the Runner-Up Best Paper Award at ACM MobiHoc
2014, the National Science Foundation (NSF) CAREER Award in 2011,
and the IIT Sigma Xi Research Award in 2013. He has served as several
Symposium Co-Chairs for IEEE ICC and IEEE GLOBECOM, and Technical
Program Committee (TPC) Co-Chair for IEEE/CIC ICCC2015, ICNC 2015,
and WASA 2011. He was a founding Vice Chair of the IEEE ComSoc
Technical Subcommittee on Green Communications and Computing. He was
an IEEE ComSoc Distinguished Lecturer in 2016-2017. He is an Associate
Editor for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE
INTERNET OF THINGS JOURNAL, and IEEE Wireless Communications.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 20,2025 at 02:54:52 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



