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Abstract—Accurate analysis of the age of information (AoI) is
crucial for timeliness-critical systems that often rely on carrier
sense multiple access (CSMA) networks. Existing models that
minimize the tagged node’s AoI in CSMA networks, where nodes
contend for channel access, perform well with near-saturated
background traffic but struggle in heterogeneous unsaturated
networks. To address this, we propose a deep learning (DL)-
augmented stochastic hybrid systems (SHS) model for fast and
precise AoI analysis. Our approach aggregates background nodes
into a single virtual saturated group while reflecting their
heterogeneous and unsaturated characteristics via the channel
access rate. By leveraging DL, the access point (AP) augments
the SHS model with locally monitored traffic, enabling the tagged
node to achieve precise AoI analysis. This integration significantly
improves SHS precision, leading to accurate AoI estimation
in heterogeneous and unsaturated settings. Validation through
802.11-based simulations in the ns-3 simulator demonstrates our
model’s robustness and efficiency in practical CSMA network
scenarios. Additionally, we introduce a joint evaluation metric
to balance AoI and sampling cost, ensuring an optimal trade-off
between information freshness and resource consumption.

Index Terms—Age of information, stochastic hybrid systems,
carrier sense multiple access, deep learning, performance opti-
mization.

I. INTRODUCTION

Timeliness-critical systems underscore the importance of
the age of information (AoI), a crucial metric for information
freshness. It is defined as the elapsed time since the generation
of the most recent update received by a destination node. The
AoI captures the combined effects of source sampling rates
and packet delivery latencies on information timeliness.

AoI has been analyzed using traditional graphical methods
within various queuing and service frameworks. These meth-
ods have included studies on AoI in standard first-come-first-
serve (FCFS) queuing systems, as well as more intricate envi-
ronments [1]–[6]. Such investigations offer valuable insights
into the impact of different queuing policies on AoI, particu-
larly in contexts where queue delays and packet latencies are
significant. Despite their usefulness, these traditional methods
often encounter limitations when applied to more complex
scenarios, such as those found in carrier sense multiple access
(CSMA) networks, where nodes interact dynamically.

A stochastic hybrid system (SHS) approach is a powerful
tool for analyzing average AoI, employing a continuous-time
Markov chain (CTMC) framework. This method integrates

CTMC state distributions with age resets occurring during
discrete state transitions, alongside continuous dynamics rep-
resenting AoI evolution within each state. This combination
offers a robust and comprehensive understanding of AoI
behavior in complex systems. By solving a system of balance
equations, SHS facilitates more effective AoI analysis.

Given the critical role of CSMA networks in timeliness-
sensitive applications, understanding and analyzing the AoI
in these settings is essential. Kaul et al. [7] are among the
first to investigate minimizing system age in CSMA-based
vehicular networks by employing a small buffer and opti-
mized broadcast periods without modifying existing hardware.
However, their approach relies on simulation-based analysis,
lacking theoretical underpinnings. Li et al. [8] advance the
field by developing a Markov transmission model to evaluate
AoI in CSMA networks, considering transmission and colli-
sion probabilities, packet rates, and node quantities, although
limited to homogeneous settings. Conversely, Maatouk et al.
[9] propose an SHS-based framework for AoI analysis in
collision-free heterogeneous CSMA networks. This model
assumes instant sampling and immediate preemptive service,
neglecting practical queuing effects. They also approximate
collision effects through bounded channel access time without
evaluating performance in collision-prone environments. To
bridge these gaps, Wang et al. [10] develop an SHS model
(referred to as near saturated-SHS or NS-SHS in the following
context) for heterogeneous CSMA networks that incorporates
packet collisions and limited buffer scenarios. Nevertheless,
this model’s applicability is confined to near-saturated hetero-
geneous background nodes, meaning they almost always have
packets ready for transmission, limiting its relevance in more
realistic, unsaturated conditions.

To address these limitations, we propose a novel deep
learning (DL)-augmented SHS model designed to enhance
the precision of AoI analysis for a tagged node in heteroge-
neous unsaturated CSMA networks. Specifically, to construct
a tractable finite-state system, we adopt the technique from
[10] that aggregates all N background nodes into a single
virtual saturated node, considering there always exists a certain
background node contending for the channel when N is large
enough. While this approximation significantly reduces the
state dimension of the SHS system, accurately computing this
virtual saturated background node’s channel access rate Rb
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is challenging, requiring dynamically knowing the number of
nodes that actually contend the channel. One key contribution
of this paper is to develop a data-driven machine learning
(ML) approach to timely and accurately estimate Rb, which
reflects the actual saturation degree of the background nodes.
The other key component for accurate AoI analysis is the
tagged node’s collision probability p. It is impacted by both
the traffic arrival rate of the tagged node and Rb, making it
again significantly different from that in the saturated case.

To obtain Rb and p, we leverage DL to model the complex
relationships between network dynamics and these variables.
Specifically, inspired by [11], we use the AP’s locally com-
puted traffic received rates for each background node j,
σ = {σj}Nj=1, and the tagged node’s traffic arrival rate λt as
inputs X (i) = {σ, λt} to the DL model, which predicts p and
Rb as outputs y(i). A key innovation we proposed for training
data collection is the inverse calculation method, which is
critical for generating accurate ground truth data for Rb by
inversely solving SHS equations. By offloading DL inference
to the AP, we reduce the computational burden on the tagged
node while enabling efficient predictions. Finally, the tagged
node’s average AoI is computed by solving balance equations
derived from the DL-augmented SHS.

To the best of our knowledge, we are the first to holis-
tically integrate deep learning with SHS-based AoI analysis
to enhance the precision of AoI predictions in heterogeneous
unsaturated CSMA networks. This integration allows for rapid
and precise adjustments of SHS parameters, ensuring the
model adapts to varying network conditions while maintaining
high accuracy in AoI predictions. Our ns-based simulations
demonstrate the efficacy and accuracy of our DL-augmented
SHS model, which outperforms existing approaches in het-
erogeneous unsaturated CSMA networks. Furthermore, we
introduce a joint evaluation metric to balance AoI and sam-
pling cost, enabling an optimal trade-off. Our contributions are
multi-fold:

1) We examine the existing SHS-based approach for AoI
analysis in CSMA networks, providing insights into its
effectiveness in near-saturated scenarios and highlight-
ing its limitations in unsaturated conditions.

2) We propose an innovative DL-augmented SHS model
that enhances the accuracy of AoI analysis in hetero-
geneous unsaturated CSMA networks. Specifically, this
model maintains tractability by aggregating background
nodes into a single group and using virtual satura-
tion assumptions. Leveraging deep learning, it captures
complex network dynamics for fast, adaptable, and
precise SHS parameter predictions, making it suitable
for practical AoI estimation in real-world unsaturated
CSMA networks. The ground truth for DL training is
derived through direct measurements and a novel inverse
calculation method based on SHS balance equations.

3) Our work is the first to holistically integrate CSMA
MAC protocol analysis, machine learning, and SHS into
a comprehensive AoI analytical system. This integration

exemplifies the effective combination of domain knowl-
edge with ML, a current trend in achieving powerful and
practical solutions.

4) We validate the effectiveness and accuracy of our DL-
augmented SHS model through extensive ns-3 simula-
tions in 802.11-based networks. Our results show signif-
icant improvements in AoI analysis accuracy compared
to existing approaches, particularly in heterogeneous
unsaturated CSMA networks. Additionally, we balance
AoI and sampling cost by defining a joint evaluation
metric, ensuring an optimal trade-off between informa-
tion freshness and resource consumption.

The paper is structured as follows: Section II introduces
the system model, covering the general CSMA networking
model and the fundamentals of AoI and SHS modeling for
AoI analysis. In Section III, we present an insightful analysis
of the existing NS-SHS model for AoI in CSMA. Section IV
elaborates on the proposed DL-augmented SHS framework.
Numerical results are detailed in Section V. Section VI reviews
related work, and Section VII concludes the paper.

II. SYSTEM MODEL

A. A General Unsaturated CSMA Network

In this study, we aim to develop an adaptive SHS-based
model to dynamically evaluate the average AoI of the tagged
node perceived by the monitor at the AP, incorporating ac-
curate collision and traffic estimation over the CSMA MAC.
The general CSMA network we consider involves one tagged
node and N heterogeneous unsaturated background nodes
sending informative updates to a monitor located at the AP
via a shared wireless channel managed by the CSMA MAC
protocol. The AP monitors the traffic received rates from
all background nodes and uses this information to assist the
tagged node in optimizing its arrival rate. To avoid hardware
redesign or protocol modifications, each node sends packets
through its local tail-drop FCFS MAC queue. The traffic
arrival process at each queue follows a Poisson process, with
different nodes having varying traffic arrival rates based on
their demands. Before transmission, each node independently
senses the channel. If the channel is idle, the node initiates an
exponentially distributed backoff period and transmits a packet
when the backoff ends. Successful transmissions or reaching
the retransmission limit result in packet dequeues from the
MAC queue, while collisions trigger retransmissions that go
through the same backoff process. For mathematical tractabil-
ity, we assume a constant channel capacity and exponentially
distributed packet sizes. This CSMA setting is similar to that
used in [10], which analyzes the AoI in a heterogeneous and
near-saturated network. However, our work aims to develop a
more practical model for scenarios regardless of the saturation
degree of the background nodes. In our context, we refer to a
node with a queue size of 1 as a “bufferless” node, indicating it
can hold at most one packet at a time. Investigating a bufferless
system is particularly valuable, as retaining old packets offers
little benefit in terms of information freshness. Notably, the
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model developed in this work is fully capable of accommo-
dating a tagged node with a larger MAC queue, leveraging a
similar modeling methodology as seen in [10]. However, for
clarity and conciseness, we focus on the bufferless system to
illustrate the core methodology.
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Fig. 1. Age waveform of a bufferless node.

B. SHS Basics for AoI Analysis

The age of information measures the time elapsed since
the most recent update was generated. When a source creates
update i with timestamp ui(t), it is sent through the system
and eventually arrives at the monitor. The monitor observes
its most recent update received at time t with an age of
t − ui(t). As time progresses without new updates, the age
increases linearly. The average AoI is the time-average of the
instantaneous age waveform ∆(t), as depicted in Fig. 1. For a
bufferless node, a new update arrival enters the system as long
as the node is empty, and waits to be transmitted; otherwise,
the new update will be dropped upon arrival. Thus, the time
instant of the nth arrival tn is always no earlier than the n−1th

departure instant t′n−1. Over a sufficiently large time duration
τ , the average AoI is given by ⟨∆⟩τ = 1

τ

∫ τ

0
∆(t)dt. For the

nth delivered update, its inter-departure time and system time
are denoted as Dn = t′n−t′n−1 and Tn = t′n−tn, respectively.
The sum of each shaded area Qn = 1

2D
2
n +DnTn−1 is equal

to the integral denoted by ⟨∆⟩. The average AoI is

∆ = lim
τ→∞

⟨∆⟩τ =
E[Qn]

E[Dn]
. (1)

For analytical details on applying equation (1) to different
queuing systems, please refer to the tutorial article [12].

Although traditional graphical methods are commonly used,
the SHS model offers an alternative approach to computing the
average age in complex systems. This approach considers the
networking system as a CTMC, facilitated by the assumption
of exponential backoff and transmission duration. By estab-
lishing a set of balance equations that incorporate the CTMC
state distributions, the age-increasing process in each state,
and the age reset upon state transitions, we can solve for the
average AoI [2], [13].

A Markov process q⃗(t) can be represented as a Markov
chain (Q, L), where Q denotes the set of states, and L
represents the transition edges. Each transition has a rate

denoted by λ(l)δq⃗l ,q⃗(t), with outgoing and incoming transitions
for each state defined as Lq⃗ and L′

q⃗ respectively.
In the SHS model, network events are managed by the

Markov chain, while AoI evolution is handled by the contin-
uous state process x(t). Transitions in the discrete state result
in a reset in the continuous state, modeled by the transition
reset matrix Al . The age process x(t) evolves linearly in
each state q⃗ ∈ Q and is governed by the differential equation
ẋ = bq⃗ , where bq⃗ indicates whether the age increases or
remains constant in each state.

To determine the average age using SHS, we define πq⃗(t)
as the stationary probability distribution of the Markov chain
and vq⃗(t) as the correlation between the age process and the
discrete state. Assuming the ergodicity of q⃗(t), the steady-state
probabilities π̄ are found by solving the balance equations

π̄q⃗(
∑

l∈Lq⃗
λ(l)) =

∑
l∈L′

q⃗
λ(l)π̄q⃗l , q⃗ ∈ Q, (2)∑

q⃗∈Q π̄q⃗ = 1. (3)

The convergence of vq⃗(t) is then given by

v̄q⃗

∑
l∈Lq⃗

λ(l) = bq⃗π̄q⃗ +
∑

l∈L′
q⃗
λ(l)v̄q⃗lAl , q⃗ ∈ Q. (4)

Finally, the average age ∆ of the tagged node is calculated
as

∆ =
∑

q⃗∈Q v̄q⃗0. (5)

III. ANALYSIS OF THE NS-SHS MODEL

NS-SHS involves labeling the tagged node and representing
a vector of the age processes as the continuous state to
track the age of each update accordingly. We hereby briefly
introduce the fundamentals of the SHS model from [10].

The states of the network is typically modeled by
(q⃗(t),x(t)), where

1) The discrete process q⃗(t) ∈ Q represents the state of
the network at time t, with Q denoting the discrete set
of possible states. Note that we use q⃗(t) to denote the
state, which takes the form of a pair of scalar values.

2) The vector x(t) = [x0(t), x1(t), · · ·xK(t)] traces the
age evolution of the tagged node’s packets at the monitor
and in the queue. Specifically, x0(t) is the age of the
tagged node’s latest update at the monitor. The tagged
node’s queue capacity is denoted as K, with packets in
the queue indexed from 1 to K, where packet 1 is at the
head of the queue.

A. NS-SHS for CSMA with Bufferless Nodes

The SHS fundamentals above are then applied for analyzing
the AoI of a tagged node in a CSMA network containing
one tagged node and N background nodes. Node i generates
packets at a rate of λi following a Poisson process. These
packets are then added to the transmission queue. Node i
undergoes an exponentially distributed backoff procedure with
an average duration of 1/Ri. Once the backoff period ends,
the packet begins transmission. The transmission time is also
exponentially distributed, with an average duration of 1/Hi.
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A bufferless tagged node uses a transmission queue with
a capacity of one packet, with an arrival rate λt. Thus,
the tagged node’s queue capacity K is set to 1. The N
background nodes transmit with varying arrival rates. To create
a tractable finite-state SHS, the model aggregates the impact
of the N background nodes into a single state. Specifically,
the network’s state is denoted by a 2-tuple, where the first
indicates the state of the tagged node, and the second element
indicates the state of the background nodes. The set of possible
states Q = {(k,Q), (C,Q), (k,C)} , k ∈ [0, 1]. The states are
specified as follows:

• (1, Q): Both the tagged node and the background nodes
are in the exponential backoff process, contending for
channel access, with the tagged node having one packet
waiting to be transmitted. “Q” indicates that the aggre-
gated background node always has packets waiting to be
transmitted and is always contending for the channel. Af-
ter a successful transmission or a transmission failure due
to reaching the retransmission limit by the background
node, the state returns to “Q”.

• (0, Q): The tagged node has no pending packets, and only
the background nodes are contending for the channel.

• (C,Q): The tagged node has completed the backoff
procedure and is currently transmitting.

• (k,C): A background node has finished its backoff proce-
dure before the tagged node and is occupying the channel
for transmission.

State (C,C) is considered impossible to simplify the model
without compromising its accuracy, as the actual collision
impacts are adequately captured by the transitions caused by
collisions during transmission.

State transitions occur under the following conditions:
• A new update enters the tagged node’s queue, with an

arrival rate of λt.
• One of the nodes captures the channel.
• A retransmission occurs due to a collision.
• A transmission is successful.

This model incorporates the collision effect by integrating the
conditional collision probability p seen by the tagged node and
the successful transmission probability 1 − p into the transi-
tion rates caused by collisions and successful transmissions,
respectively.

The tagged node’s age vector is x = [x0, x1], where x0

represents the age of the latest received packet at the monitor,
and x1 represents the age of the packet in the tagged node’s
queue. Using the equations in Section II-B, we can calculate
the average age. Please refer to [10] for calculation details.

B. Limitations for Unsaturated Scenarios

In this section, we discuss the limitations of the NS-
SHS model regarding its effectiveness and adaptability to
unsaturated CSMA networks.

As demonstrated in Section III-A, the NS-SHS model
effectively incorporates the collision effect and aggregates
the background nodes into a single state within the CTMC,

achieving simplicity and tractability. The approximation of
near-saturated background nodes allows the tagged node to
determine its conditional collision probability p using classic
analysis from [14], [15]. The channel access rate of the tagged
node, Rt, can be formulated as Rt = 1/(tslot · W̄ ), where
W̄ is the average contention window in terms of time slots
and tslot denotes the slot time. This formulation indicates the
average channel access attempts per unit of time. Additionally,
the aggregated background node’s channel access time is the
minimum of N exponential variables, resulting in the channel
access rate of the aggregated background node being set to N
times that of the tagged node, Rb = NRt.

However, we argue that this approximation has significant
limitations. Firstly, assuming the aggregated background node
always has a packet to send, regardless of which background
node is actually sending, differs from reality. In practice, the
impact on the tagged node varies depending on whether all N
background nodes or just a few of them are contending for
the channel. Additionally, the channel access rate Rt obtained
via saturated analysis cannot accurately reflect the tagged
node’s actual channel access rate. The NS-SHS model is more
suitable for networks closer to the former scenario, where most
background nodes are saturated. In contrast, as a network
leans towards the latter scenario, where fewer background
nodes contend for the channel, the NS-SHS model becomes
increasingly inaccurate.

The limitations manifest in two key aspects:
• The NS-SHS model assumes a saturated network, leading

to inaccuracies in calculating the collision probability p
and, subsequently, the channel access rate Rt.

• The assumption Rb = NRt in NS-SHS is based on a
saturated homogeneous approximation, which does not
hold in unsaturated networks. In unsaturated networks,
Rb can vary within the range (0, NRmax], where Rmax is
the maximum possible channel access rate considering no
collisions. Here, Rmax = 1/(tslot · ¯CWmin), where ¯CWmin
denotes the average of initial contention window size.

IV. DL-AUGMENTED SHS

In heterogeneous and unsaturated contention-based CSMA
networks, the interactions among nodes are complex and
uncertain, making the quantitative evaluation of p and Rb

particularly challenging. To address this, we propose a DL-
augmented SHS framework that integrates real-time DL pre-
dictions into SHS analysis to enable precise AoI estimation
and optimization.

A. Framework Overview

The DL-augmented SHS framework consists of three stages:
DL Model Training, inference and SHS augmentation, and
AoI calculation. Fig. 2a illustrates the overall process of the
framework, excluding the detailed DL model training process.
The framework centralizes inference and decision-making at
the AP. The AP monitors traffic conditions, including the
received rates from background nodes σ = {σj}Nj=1, and
locally proposes the tagged node’s arrival rate λt. These
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Fig. 2. The DL-augmented SHS framework and the DL-augmented SHS CTMC.

parameters form the input vector X = {σ, λt}, which is
fed into the DL models, ϕp and ϕRb

. These models predict
the packet collision probability p and the background nodes’
channel access rate Rb, which are used to augment the SHS
model. The AP iteratively adjusts λt to optimize AoI and
provides the tagged node with the optimal arrival rate.

By leveraging DL, the proposed framework refines SHS
parameters, improving adaptability and precision in dynamic,
unsaturated environments. Rather than directly predicting AoI,
DL focuses on p and Rb, which are bounded (p by 1 and Rb by
NRmax), providing a more stable basis for DL outputs. Addi-
tionally, the SHS model, augmented with accurate parameters,
supports analyses beyond AoI, making it versatile for broader
performance evaluations.

B. DL Model Training

We propose training two separate deep learning models,
ϕp and ϕRb

, offline to provide fast and precise predictions
of the current channel conditions, specifically the collision
probability p and the channel access rate Rb during runtime.

a) Input Features: The factors influencing p and Rb

should be considered as candidates for the ML model input.
Inspired by [11], [16], we select the traffic received rate at
the AP from each background node because it encapsulates
information about the arrival rate at each node’s MAC queue,
overall channel utilization, and the interactions among all
CSMA nodes. This method simplifies the communication com-
plexity, and requires only the deployment of an AP to monitor
incoming traffic and respond to inquiries from the tagged
node. The input features for the DL model include the traffic
received rate at the AP from each background node, denoted
by σ = {σj}Nj=1, and the packet arrival rate of the tagged
node, λt. Thus, the input vector is X = (σ1, σ2, . . . , σN , λt).
The outputs of the DL model are p and Rb.

b) Training Datasets: We use two separate training
datasets for the two DL models. The dataset Dp ≜
{(X (i), y

(i)
p )}i is used to train the DL ϕp for inferring the colli-

sion probability p. Similarly, the dataset DRb
≜ {(X (i), y

(i)
Rb

)}i
is used to train the DL ϕRb

for inferring the channel access
rate Rb. Each dataset captures the historical results of past
problem instances. Here, X (i) represents the ith input vector,
and y

(i)
p and y

(i)
Rb

are the ground truth values for the respective
output parameters.

c) Obtaining Ground Truths: Ground truths for p and
Rb are obtained through a combination of simulation and
analytical methods:

For p: The ground truth for p is obtained directly through
measurement in the simulation environment. By monitor-
ing the packet transmission attempts and acknowledgments
(ACKs), we can accurately determine the collision probability.

For Rb: The ground truth for Rb is obtained via the
proposed inverse calculation method using the SHS balance
equations. Given p, we can derive Rt as a function of p:

Rt =
1

tslot · W̄
, (6)

where the average contention window W̄ is given by

W̄ =

a+1∑
k=1

pk−1(1− p)I{k<a+1}
k∑

j=1

CW (j)− 1

2
, (7)

CW (k) = min
(
2mCWmin, 2

k−1CWmin
)
, k = 1, . . . , a+1,

and I{A} is an indicator function that is 1 if A is true,
and 0 otherwise [17]. Given the average AoI of the tagged
node is ∆ = f(p, λt, Rt, Rb, Ht, Hb), since ∆ and the other
parameters are known at the moment, Rb can be inversely
calculated as

Rb = f−1(∆, p, λt, Rt, Ht, Hb),
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TABLE I
SHS TRANSITIONS OF THE TAGGED NODE

l l1 l2 l3 l4 l5 l6 l7 l8 l9
q⃗l → q⃗′l (0, Q) → (1, Q) (1, Q) → (C,Q) (C,Q) → (1, Q) (C,Q) → (0, Q) (0, Q) → (0, C) (0, C) → (0, Q) (0, C) → (1, C) (1, Q) → (1, C) (1, C) → (1, Q)

λ(l) λt Rt pHt (1− p)Ht Rb Hb λt Rb Hb

xAl [x0, 0] [x0, x1] [x0, x1] [x1, 0] [x0, 0] [x0, 0] [x0, 0] [x0, x1] [x0, x1]
vq⃗lAl [v(0,Q)0, 0] [v(1,Q)0, v(1,Q)1] [v(C,Q)0, v(C,Q)1] [v(C,Q)1, 0] [v(0,Q)0, 0] [v(0,C)0, 0] [v(0,C)0, 0] [v(1,Q)0, v(1,Q)1] [v(1,C)0, v(1,C)1]

subject to
0 < Rb ≤ NRmax. (8)

d) MLP Model Training: We train two separate multi-
layer perceptrons (MLPs), ϕp and ϕRb

, to infer the collision
probability p and the channel access rate Rb, respectively.
The models are trained on their respective datasets, Dp ≜
{(X (i), y

(i)
p )}i for ϕp and DRb

≜ {(X (i), y
(i)
Rb

)}i for ϕRb
,

using mean absolute error (MAE) as the loss function:

L(ŷ(i), y(i)) = 1

n

n∑
i=1

∣∣∣ŷ(i) − y(i)
∣∣∣ . (9)

The training process minimizes

L(ŷ(i)(θ), y(i)), (10)

where ŷ(i) = ϕ(X (i);θ) is the output produced by the DL
model ϕ parameterized by θ. The models are validated on
separate datasets to ensure accuracy.
C. Inference and SHS Augmentation

During runtime, the AP monitors σ and locally proposes λt.
The AP assembles the input vector X = {σ, λt} and feeds it
into the trained DL models, ϕp and ϕRb

. These models predict
p and Rb, which are used to augment the SHS model. By
using these predictions, the SHS model is dynamically updated
to reflect real-time network conditions, enabling accurate AoI
estimation and informed decision-making.

D. AoI Calculation Using DL-augmented SHS

Fig. 2b illustrates the SHS CTMC for the bufferless tagged
node under a CSMA network. The SHS transitions of the
model are shown in Table I, with explanations below:

• l1: A new update arrives at the empty MAC queue at rate
λt. The state transitions from (0, Q) to (1, Q) without
reducing age, so x′

0 = x0 and x′
1 = 0. Thus, xAl =

[x0, 0] and vq⃗lAl is [v(0,Q)0, 0].
• l2: The tagged node with a pending packet captures the

channel at rate Rt. Since no update is delivered, x′
0 = x0

and x′
1 = x1.

• l3: Transmission fails due to a collision at rate pHt,
leading to state transition back to (1, Q). The collision
probability p is predicted by the MLP ϕp.

• l4: The update is successfully transmitted and received
by the monitor at rate (1− p)Ht, reducing the age at the
monitor to x′

0 = x1.
• l5: A background node captures the channel at rate Rb.

This transition does not change x1. Rb is predicted by
the MLP ϕRb

.
• l6: Background node transmission, whether successful or

collided, completes at rate Hb, releasing the channel for
new contention.

• l7: A new update arrives at the tagged node’s queue at
rate λt during background node transmission, with no
reset to x.

• l8: A background node captures the channel, with no
change to the tagged node’s age, x′

1 = x1.
• l9: A background node’s transmission completes at rate

Hb, again without affecting x.
The age-increasing process in each state is indicated by ẋ =

bq⃗ =

{
[1 0], q⃗ = (0, ∗),
[1 1], otherwise. This means the age x0 always

increases at a unit rate, while x1 increases at a unit rate only
in states other than (0, ∗). The average AoI is then determined
by solving the balance equations of the DL-augmented SHS
model according to Section II-B. This enhanced SHS model
ensures the estimated AoI closely approximates the true value
under current network conditions.

Our framework adapts dynamically to real-time conditions,
ensuring precise parameter estimation with minimal computa-
tional overhead and fast, accurate AoI estimation for diverse
network scenarios.

V. NUMERICAL RESULTS

We evaluate our DL-augmented SHS model using ns-3
simulations [18]. This section outlines the simulation setup,
MLP training process, and application of the trained MLP
for refining the SHS model. We compare theoretical AoI
estimations with simulation results for the IEEE 802.11 DCF
protocol, demonstrating improved accuracy over the NS-SHS
model in both unsaturated and saturated CSMA networks. We
also explore the trade-off between sampling cost and AoI,
introducing a joint evaluation metric to balance these factors.

TABLE II
NETWORK PARAMETERS

Parameter Value
Slot time 20µs
DIFS 50µs
SIFS 10µs
Initial contention window size CWmin 31
Maximum backoff stages 5
Maximum retransmission limit 7
Number of nodes [1, 16]
Packet payload size 8,000 bits
Bit rate for DATA frame 11 Mbps
Bit rate for ACK frame 1 Mbps
Bit rate for PLCP & Preamble 1 Mbps
PHY header 192 bits
MAC header 224 bits
IP header 160 bits
ACK 112 bits + PHY header

A. Simulation Setup

For illustration purposes, we construct a CSMA network
following the IEEE 802.11 distributed coordination function
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TABLE III
MLP PARAMETERS

Parameter Value ϕp Value ϕRb

# Input 16 16
# Output 1 1
Batch size 10 16
# hidden layers 4 3
# unit in layer 1 512 509
# unit in layer 2 512 371
# unit in layer 3 256 358
# unit in layer 4 256 N/A
# Epochs 1,000 1,000
Data size 38,000 38,000
Train, validation size 26,600, 11,400 26,600, 11,400
Optimizer SGD SGD
Activation function ReLU ReLU
Learning rate 5e-04 1.014e-05
Momentum 0.5 0.479
Early stopping patience 50 50

MAC protocol, with detailed configurations shown in Table II.
Note that our proposed approach is general to all CSMA
networks. To better focus on the core of our method, we do
not consider hidden terminal problems.

Each node transmits one data frame for each transmission
attempt. Each experimental run lasts 300 seconds, and the
samples in the initial 50% of the simulation period are
discarded to eliminate transient effects and ensure steady-state
analysis. Our setting adopts a heterogeneous approach, with
the traffic arrival rate of each background node randomly
set from a uniform distribution with a maximum rate that
varies for different numbers of background nodes to achieve
various saturation degrees. With the simulation environment
established, we proceed to train our MLP models to predict
network parameters accurately.

B. MLP Training

To train a robust and general model capable of predicting
target variables under varying network conditions, we conduct
extensive simulations with different numbers of nodes and
traffic rate patterns. We construct a training dataset with a
maximum number of background nodes, denoted as Nmax, to
ensure the ML models can handle a wide range of network
scenarios. The input vector size is Nmax+1 and takes the form
X = (σ1, σ2, . . . , σNmax , λt). Since the number of background
nodes varies from instance to instance, we zero-pad the input
values for scenarios with fewer than Nmax background nodes.
This maintains a consistent input vector size, ensuring that
the MLP can handle any network scenario within the defined
parameters.

Our training set consists of 38,000 instances generated via
ns-3 simulations with Nmax = 15. A framework named Optuna
[19] is used to optimize the hyperparameters, which are listed
in Table III. The model is trained using PyTorch [20] with
an early stopping scheme to prevent overfitting. In Fig. 3,
we show the training process of ϕp and ϕRb

, demonstrating
the good generalization and accurate prediction capability
of the two MLPs across instances with various numbers of
background nodes and traffic patterns.
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Fig. 3. MLP training: MAE vs. epochs.

C. Accuracy Validation and Performance Comparison

We evaluate the performance of our proposed DL-
augmented SHS model in terms of its accuracy in AoI
prediction under both unsaturated and saturated scenarios.
Additionally, we demonstrate the superiority of our model over
NS-SHS in unsaturated networks.

a) AoI in Unsaturated Networks: Fig. 4 shows the av-
erage AoI versus the tagged node’s arrival rate in unsaturated
CSMA networks with 5, 10, and 15 background nodes, respec-
tively. For illustration purposes, these figures represent AoI
sampled with background nodes’ traffic arrival rates chosen
from a predefined narrow range, ensuring a consistent and
stable saturation degree. As expected, the AoI decreases as
the arrival rate λt increases. Higher arrival rates lead to more
frequent updates, thereby keeping the information fresher.
The bufferless setting reduces queueing delay, resulting in
a monotone decreasing trend. The AoI curves obtained by
our proposed DL-augmented SHS method closely match the
simulation results across all samples, demonstrating its great
accuracy and robustness in unsaturated cases. In contrast, the
gap between the simulation and the NS-SHS results highlights
the limitations of NS-SHS in analyzing unsaturated CSMA
networks.

b) AoI in Saturated Networks: Fig. 5 demonstrates the
applicability of the DL-augmented SHS to saturated CSMA
networks. The AoI results obtained by our proposed SHS
method, the simulation, and the NS-SHS are very close across
all samples, indicating the effectiveness of our model in het-
erogeneous saturated scenarios with various network settings.
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(c) N = 15.

Fig. 4. The tagged node’s average AoI in unsaturated CSMA networks.

The above results clearly show the relationship between
the tagged node’s AoI and the traffic arrival rate. Increasing
the arrival rate improves the AoI, but the improvement shows
diminishing returns beyond a certain point.

D. Effectiveness of Sampling Cost vs. AoI Improvement

To better understand the trade-off between sampling cost
and AoI improvement, we analyze how varying the sampling
cost affects AoI reduction. Our analysis reveals diminishing
returns in the age curves; beyond a certain point, increasing
the arrival rate results in only marginal improvements in AoI.
This emphasizes the need to find an optimal arrival rate that
balances information freshness with the associated cost.

The age curve versus traffic arrival rate illustrates the
varying impacts of arrival rates on AoI improvement. To
quantify the effectiveness of sampling cost in relation to AoI
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Fig. 5. The tagged node’s average AoI in saturated CSMA with N = 5.

improvement, we define the “AoI reduction efficiency” (ARE)
as

δ =
∆AoI

∆λ
, (11)

where ∆AoI represents the reduction in AoI, and ∆λ is the
corresponding increase in the traffic arrival rate. This metric
essentially measures the negative slope of the age curve,
indicating the rate of change in AoI with respect to changes in
the arrival rate. By using ARE, we can evaluate how efficiently
an increase in sampling cost translates into AoI improvement,
guiding the selection of an optimal arrival rate that minimizes
AoI while considering cost constraints.

E. Joint Evaluation for AoI and Sampling Cost

Building on the previous analysis, it is evident that for
a tagged node with a small queue, maintaining a low AoI
typically requires a higher update arrival rate, which increases
the sampling cost. A system designed to minimize only the
AoI might lead to excessive resource consumption, resulting
in higher operational costs. Conversely, focusing solely on
reducing sampling costs may lead to outdated information,
compromising the system’s effectiveness. This trade-off neces-
sitates a joint evaluation to find an optimal balance between
minimizing AoI and controlling the sampling cost. In this
context, “sampling cost” and “arrival rate” are used inter-
changeably because higher arrival rates result in more frequent
updates, thus increasing the sampling cost.

To quantify the joint performance, we propose a composite
metric denoted as P that combines both AoI and arrival rate:

P = α∆̃ + (1− α)λ̃, (12)

where
• α and 1 − α are weight factors that determine the

importance of AoI and arrival rate, respectively.
• ∆̃ is the normalized AoI.
• λ̃ is the normalized arrival rate.

To ensure that the AoI and arrival rate are on comparable
scales, we normalize them using min-max normalization:

∆̃ =
∆−∆min

∆max −∆min
, λ̃ =

λ− λmin

λmax − λmin
, (13)
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where ∆max is a quality of service (QoS) metric indicating
the satisfactory threshold of a node regarding information
freshness, and λmax is the highest sampling rate a node can
afford. ∆min and λmin are typically set to 0. The weights
α should be chosen based on the specific requirements or
preferences of the system. For instance, if minimizing AoI
is more critical, α should be tuned larger accordingly. The
optimal policy is obtained by minimizing P .

Taking Fig. 4a as an example, the joint performance with
various weights is demonstrated in Fig. 6 with ∆max = 198.48
ms and λmax = 100 packet/sec. When α is smaller, min-
imizing P occurs at lower λt, guiding the tagged node to
conserve sampling cost by prioritizing cost-saving over AoI
performance. Conversely, with a higher α, minimizing P
occurs at higher λt, encouraging the tagged node to increase
the sampling rate for better AoI performance.
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Fig. 6. Joint performance for AoI and sampling cost, an example for Fig. 4a.

This approach not only addresses the balance between AoI
and sampling cost but also ensures that the framework remains
adaptable and efficient across various network scenarios. This
is particularly relevant for real-time applications where both
information freshness and resource management are crucial.
By incorporating dynamic adaptation through deep learning,
the model provides a robust solution.

VI. RELATED WORK

The critical role of AoI in CSMA networks has led to
extensive research beyond conventional sampling strategies,
packet management mechanisms, link scheduling, and differ-
ent age metrics [21]–[37]. Kaul et al. [7] pioneer this field by
examining vehicular networks, employing a small buffer and
optimized broadcast periods to minimize system age, though
their work is primarily simulation-based. Kadota et al. [38]
focus on random access networks, optimizing the random
access mechanism under stochastic packet generation and
considering collision effects, with the assumption that sources
retain only the freshest updates. Jiang et al. [39] utilize multi-
agent reinforcement learning (MARL) to enhance data trans-
mission efficiency, outperforming traditional MAC protocols
in terms of both average and peak AoI. Meanwhile, Wang et
al. [11], [40], [41] present analytical methods to reduce AoI for
a tagged node in 802.11-based networks, focusing on service

time approximation and arrival rate optimization, but these
studies assume infinite buffer sizes. Additionally, Tripathi et
al. [42] introduce Fresh-CSMA, a distributed protocol that
emulates max-weight scheduling to minimize AoI in single-
hop wireless networks. Zhou and Saad’s work [43], [44] on
ultra-dense IoT systems provides closed-form expressions for
average and peak AoI, highlighting the advantages of preemp-
tive schemes over non-preemptive ones. Fan et al. [45]–[47]
combines second-order analysis and mean-field approximation
for AoI minimization for distributed uplink transmissions in
CSMA networks.

The SHS approach has gained traction for AoI analysis in
CSMA networks due to its comprehensive modeling capabil-
ities. Maatouk et al. [9] develop an SHS framework for an-
alyzing AoI in collision-free heterogeneous CSMA networks,
assuming instant sampling and immediate preemptive service
while neglecting practical queuing effects. This model also ap-
proximates collision effects by bounding channel access time,
without evaluating performance in collision-prone environ-
ments. Addressing these limitations, Wang et al. [10] introduce
an SHS model that incorporates packet collisions and limited
buffer scenarios for heterogeneous CSMA networks, providing
insights into near-saturated conditions. However, this model’s
effectiveness in realistic unsaturated networks is restricted.
Asvadi et al. [48] extend SHS analysis by deriving a general
formula for average peak AoI (PAoI) applicable to various
scenarios, including VANETs. Furthermore, Maatouk et al.
[49] advance SHS modeling by allowing system transition
dynamics to be polynomial functions of AoI, resulting in
more sophisticated analysis and significant performance gains
in age-aware CSMA environments compared to age-blind
approaches. These advancements underscore the potential of
SHS to enhance the precision and applicability of AoI analysis
in CSMA networks.

VII. CONCLUSION

This work presents a novel DL-augmented SHS model for
AoI analysis in both heterogeneous unsaturated and saturated
CSMA networks. We address the limitations of the existing
NS-SHS model, which often assumes near-saturated settings,
by leveraging DL to dynamically refine the SHS model param-
eters, thereby improving estimation accuracy. Our approach is
validated using 802.11-based simulations in the ns-3 simulator,
demonstrating robustness and efficiency in practical CSMA
scenarios. The results show significant improvements in AoI
analysis accuracy compared to existing methods, particularly
in unsaturated network conditions. Additionally, we introduce
a joint evaluation metric to balance AoI and sampling cost,
allowing for an optimal sampling strategy. This integration of
SHS and DL provides a powerful and adaptable framework
for AoI analysis, making it highly suitable for real-world
applications in timeliness-critical systems.
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