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Abstract—Age of information (AoI) is a crucial metric in
modern communication systems, quantifying the information
freshness at the receiver side. This study proposes a novel
and general approach utilizing stochastic hybrid systems (SHS)
for AoI analysis and minimization in carrier sense multiple
access (CSMA) networks. Specifically, we consider a practical
networking scenario where multiple nodes contend for transmis-
sion through a standard CSMA-based medium access control
(MAC) protocol, and the tagged node under consideration uses
a small transmission buffer for a low AoI. We for the first
time develop an SHS-based analytical model for this finite-buffer
transmission system over the CSMA MAC. Moreover, we develop
a creative method to incorporate the collision probability into the
SHS model, with background nodes having heterogeneous traffic
arrival rates. This new model enables us to analytically find the
optimal sampling rate to minimize the AoI of the tagged node
in a wide range of practical networking scenarios. Our analysis
reveals insights into buffer size impacts when jointly optimizing
throughput and AoI. The SHS model is cast over an 802.11-
based MAC to examine the performance, with comparison to
ns-based simulation results. The accuracy of the modeling and
the efficiency of optimal sampling are convincingly demonstrated.

Index Terms—Age of information, carrier sense multiple ac-
cess, stochastic hybrid systems, queueing systems, performance
optimization.

I. INTRODUCTION

Information freshness has become increasingly crucial in

timely updating systems, with the prosperous development

of time-sensitive applications in the Internet of things (IoT)

and cyber-physical systems (CPS). Consequently, the age of

information (AoI) has recently been introduced as a metric

to quantify information timeliness, which is defined as the

elapsed time since the generation of the most recent update

[1]–[3]. AoI captures the effects of source sampling rate

and packet delivery latency on information freshness at the

receiver side. For instance, a low sampling rate in a simple

queuing system results in low packet latency since the queue

is often empty, but infrequent information updates may lead

to outdated knowledge at the receiver, and therefore cause a

high AoI. On the other hand, increasing the sampling rate may

not always benefit the AoI, as a high arrival rate of updating

messages tends to cause congestion and a large queueing delay.

The emergence of the AoI concept immediately stimulates

a large number of studies that re-examine the queueing theory

for AoI analysis in different queuing and service settings

[3]–[8]. Specifically, the work in [3] delved into the average

age analysis in classic first-come-first-serve (FCFS) queues,

including the M/M/1, M/D/1, and D/M/1 systems. The

AoI research also involves the study of sampling strategies

in sensor networks, the age metrics beyond average analysis,

and the packet management mechanisms [9]–[16]. A stochas-

tic hybrid system (SHS) provides an alternate approach for

average AoI analysis when the communication system under

consideration can be modeled as a continuous-time Markov

chain (CTMC). A set of balance equations, incorporating the

CTMC state distributions, the age-increasing process when

residing in each state, and the age reset upon state transitions,

can be established to solve the average AoI [4], [17]. In this

paper, we are to leverage the SHS method to develop a new

analytical model for AoI analysis considering both the carrier

sense multiple access (CSMA)-based medium access control

(MAC) and the queueing effect.

Recently, there has been significant attention on optimizing

the AoI in wireless networks under centralized scheduling

policies [18]–[28]. While these centralized approaches hold

merit, it is essential to extend AoI-related studies to wireless

networks running over distributed MAC protocols, given the

prevalence of time-sensitive applications in such settings [1],

[29]–[43]. The work in [1] proposes an FCFS system with

a small buffer and a well-chosen broadcast period to achieve

a low system age in CSMA-based vehicular networks with-

out modifying the standard hardware. However, this study

purely relies on simulations and lacks theoretical analysis.

The work in [37] develops a CSMA system mimicking the

nearly optimal max-weight policy to minimize the AoI in a

single-hop wireless network. The work in [38] presents an age

analysis of a p-persistent CSMA augmented with additional

collision resolution mechanisms. The work in [39] leverages

multi-agent reinforcement learning (MARL) for more efficient

and situation-aware data transmissions in the CSMA system,

outperforming the traditional MAC in terms of both average

and peak AoI. Nevertheless, [37]–[39] cannot be directly

applied over a standard off-the-shelf CSMA MAC. In [40],

[41], analytical approaches to minimize the AoI of a tagged

node in a practical 802.11-based network are proposed by

service time approximation and arrival rate optimization, under

the setting of infinite buffer size. The work in [42] develops an

SHS-based model for AoI analysis in a collision-free CSMA

network, which motivates this study. However, the model in

[42] omits queueing for simplification, assuming the zero-

delay sampling upon demand and the immediate service with

preemption, which cannot be applied in a practical networking

scenario with the off-the-shelf devices that normally adopt a
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transmission buffer. Moreover, [42] approximates the collision

effect by bounding the channel access time and lacks the

performance evaluation in a practical collision-prone system.

This paper presents a novel SHS-based approach that pro-

vides a significant leap in AoI analysis for real-world wireless

networks using CSMA-based medium access control. Unlike

existing approaches that require hardware redesign or protocol

modifications, our method enables a tagged node to set a small

MAC queue for minimal AoI in a general network setting

where background nodes may take heterogeneous updating

rates. To the best of our knowledge, this work is the first to

integrate the influence of packet collisions into the SHS model,

ensuring its accuracy and practical applicability. Exploiting

our model, we achieve analytical insights into the optimal

sampling rate, enabling us to minimize the tagged node’s AoI

across diverse practical networking scenarios. Furthermore,

our investigation delves into the impact of buffer size optimiza-

tion when jointly considering throughput and AoI. To validate

the SHS model’s performance, we apply it to an 802.11-

based MAC and demonstrate its accuracy and efficiency by

comparing it against ns-based simulation results. The proposed

approach holds significant promise for optimizing communi-

cation efficiency and enhancing network performance in real-

world applications. Furthermore, we elucidate the trade-off

between AoI and throughput, offering valuable insights and

guiding the design of application-oriented sampling strategies.

Remarkably, our method is generally applicable for AoI anal-

ysis over the family of CSMA-based MAC protocols without

requiring modifications to standard hardware or protocol de-

signs, making it highly deployable and practical. In summary,

this paper has multi-fold contributions.

1) We develop a general and accurate SHS-based model for

analyzing AoI in CSMA networks, capturing the inter-

play between queueing effects and channel contention

effectively.

2) We propose a creative method to incorporate the col-

lision effect into the SHS model. The impact of all

the heterogeneous background nodes is jointly modeled

with one aggregated state, which has the dual benefits

of enabling a scalable model and integrating with the

practical MAC analysis [44].

3) We quantitatively determine the optimal sampling rate

to minimize AoI. Unlike existing finite-buffer system

approaches that heavily rely on simulations, our rigorous

modeling approach allows us to analytically determine

the optimal sampling rate, enhancing the flexibility and

applicability of the AoI minimization technique.

4) Our analytical model readily facilitates the joint opti-

mization of throughput and AoI. It can find applications

in many service scenarios where status monitoring appli-

cations generate small packets that can be piggybacked

with data packets, we introduce a novel “throughput

weighted age of information (TwAoI)” to guide the

optimal sampling rate selection balancing the throughput

and AoI requirements.

5) We conduct practical ns-3 simulations over the 802.11-

based network to validate the effectiveness and accuracy

of the proposed analytical model.

The remainder of this paper is structured as follows. Section

II presents the system model, including the general CSMA

networking model and the basics of AoI and SHS modeling.

Section III demonstrates how to construct the SHS model for

finite buffer transmission over the CSMA MAC. The model

is further enhanced to incorporate collisions in Section IV.

Numerical results and the throughput-AoI joint evaluation are

presented in Section V. Section VI reviews more related work

and Section VII concludes the paper.

II. SYSTEM MODEL

This section first describes a generalized networking model

underpinning the family of CSMA-based MAC protocols. We

then briefly explain the AoI concept and present the basics of

SHS modeling for average AoI analysis.

A. A General CSMA Network Model

We consider a general CSMA network where each node

communicates with the monitor residing at the access point

(AP) via a shared wireless channel coordinated by the CSMA

MAC protocol. Each node sends packets through its local

tail-drop FCFS MAC queue, and the traffic arrival process

is modeled as a Poisson process. Different nodes may have

different traffic arrival rates based on their respective appli-

cations. To facilitate the SHS modeling, we first consider a

generalized CSMA setting and then demonstrate how it is cast

over an 802.11-based implementation. Generally, each node

independently senses the channel before transmission. If the

channel is sensed idle, the node then starts an exponentially

distributed backoff period and transmits a packet upon the end

of the backoff. Successful transmissions result in the removal

of the packet from the MAC queue, while collisions trigger

retransmissions, going through the same backoff process.

We consider a constant channel capacity and exponentially

distributed packet size to facilitate mathematical tractability.

Note that such a CSMA setting is similar to the one used in

[40], the most related work to this study; however, our model is

much more practical, where we consider the tagged node uses

a finite buffer, and collision is to be included into modeling.

Note that the simulation study in [1] demonstrates that a small

transmission buffer assisted with an optimal traffic arrival rate

is a valid setting to minimize the average AoI. In this work,

we are to develop an analytical model that can significantly

extend the applicability and convenience of the finite-buffer

system. Specifically, we are to develop an SHS-based model

to compute the average AoI of the tagged node perceived by

the monitor at the AP, incorporating the buffering effect at the

transmission queue and the collision over the CSMA MAC.

B. SHS Modeling for AoI Analysis

The age of information specifies how much time has elapsed

since the most recent update’s generation. The update i is sent

through the system and eventually arrives at the monitor when

a source creates update i with timestamp ui(t). The monitor
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Fig. 1. Sawtooth age waveform.

observes its most recent update received at time t with an age

of t − ui(t). Age increases linearly over time as the update

becomes older without any new updates arriving. The average

AoI is calculated as the time-average of the instantaneous age

waveform ∆(t), as shown in Fig. 1, over a sufficiently large

time duration τ : ⟨∆⟩τ = 1
τ

∫ τ

0
∆(t)dt. The interarrival time

and system time for the nth update are denoted as Yn = tn −
tn−1 and Tn = t′n − tn, respectively. According to Fig. 1, the

sum of each shaded area Qn = 1
2 (Tn + Yn)

2 − 1
2T

2
n is equal

to the integral denoted by ⟨∆⟩. The average AoI is

∆ = lim
τ→∞

⟨∆⟩τ =
E[Qn]

E[Yn]
. (1)

Please refer to the tutorial article [45] for analytical details

of applying equation (1) to different queuing systems. To

compute the average age in complex systems like CSMA,

traditional graphical approaches can be cumbersome and im-

practical in lossy systems where packets may be dropped

or in complex environments where various events must be

considered. To address these challenges, we employ the SHS

method to calculate the overall average AoI. The SHS model

considers the networking system as CTMC, facilitated by the

assumption of exponential backoff and packet size. A set of

balance equations, incorporating the CTMC state distributions,

the age-increasing process when residing in each state, and the

age reset upon state transitions, can be established to solve the

average AoI [4], [17]. In the remainder of this paper, we adopt

similar mathematical notations as that used in [4] to develop

our SHS model.

In an SHS, our proposed method involves labeling the

node of interest and utilizing the continuous state as a vector

of age-related processes to track the age of their updates

at a monitoring point. We model our network by the states

(q⃗(t),x(t)) where:

1) The discrete process q⃗(t) ∈ Q represents the state of the

network at time t, where Q denotes the discrete set of

possible values that q⃗(t) can take. Note that we use q⃗(t)
to denote the state, as the states in our SHS model take

the form of a pair of scalar values.

2) x(t) = [x0(t), x1(t), · · ·xK(t)] is a vector that traces the

age evolution of the interested updating packets at the

monitor and in the queue. Specifically, x0(t) is the age of

the interested node (or namely, the tagged node)’s latest

update at the monitor. The tagged node’s queue capacity

is denoted as K, and packets in the queue are indexed

from 1 to K, with packet-1 being the head of the queue.

The age of a tagged node’s packet in the ith place of

its MAC queue is represented by xi(t), (1 ≤ i ≤ K).
In such systems, we calculate the average AoI for the

tagged node’s update process by determining the limit of

the expected value of x0(t) as time approaches infinity.

A Markov process known as q⃗(t) can be visually depicted as

a Markov chain (Q, L). This chain comprises vertices, with

each vertex being a state q⃗(t) ∈ Q, and directed transition

edges l ∈ L with the departing and entering states of transition

l denoted as q⃗l and q⃗′
l
, respectively. The transition rate of

each edge is denoted by λ(l)δq⃗l ,q⃗(t), where the Kronecker delta

function ensures that the transition l can only occur when the

discrete process q⃗(t) equals q⃗l . The outgoing and incoming

transitions sets for each state q⃗ are defined as follows:

Lq⃗ = {l ∈ L : q⃗l = q⃗} , L′
q⃗ = {l ∈ L : q⃗′

l
= q⃗} . (2)

The Markov chain part in SHS handles the complex rel-

evant events in the network. In AoI analysis, another aspect

SHS should handle is the age evolution of the tagged node.

Intuitively, the transitions in the discrete process would lead

to a reset in the continuous process. In other words, when a

transition l occurs, the discrete process moves to a different

state q⃗′
l
, and a sudden drop in the continuous process x′ = xAl

occurs when a packet is successfully delivered at the monitor.

The transition reset maps are represented by the matrix Al and

play a crucial role in modeling the evolution of the age process.

As the age process can only increase linearly with time in each

state q⃗ ∈ Q, to account for this aspect, the continuous process

x satisfies the following first-order differential equation:

ẋ = bq⃗. (3)

In this equation, bq⃗ = [b0q⃗, b
1
q⃗, b

2
q⃗, · · · b

K
q⃗ ] is a binary vector

in which biq⃗ equals 1 when the age xi(t) increases at a unit

rate in state q⃗, and equals 0 when the age remains constant in

that state. For instance, the age of each update at the monitor

always grows linearly with time, so b0q⃗ = 1 for all q⃗. In order

to determine the average age of the system using SHS, it is

necessary to define the following quantities for each state q⃗:

πq⃗(t) = E
[

δq⃗,q⃗(t)
]

= P (q⃗(t) = q⃗), (4)

vq⃗(t) = [vq⃗0(t), vq⃗1(t), · · · , vq⃗K(t)] = E
[

x(t)δq⃗,q⃗(t)
]

, (5)

where πq⃗(t) is the stationary probability distribution of the

Markov chain and vq⃗(t) is the correlation between the age

process x(t) and the discrete state q⃗(t). In order to establish

the existence and uniqueness of a steady-state distribution for

the Markov chain, it is necessary to make the assumption that

the Markov chain q⃗(t) is ergodic. This requirement is satisfied

by defining the steady-state probability vector π̄ = [π̄q⃗]q⃗∈Q
as

the solution to the general balance equations:

π̄q⃗(
∑

l∈Lq⃗
λ(l)) =

∑

l∈L′

q⃗
λ(l)π̄q⃗l , q⃗ ∈ Q, (6)

∑

q⃗∈Q π̄q⃗ = 1. (7)
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More detail shown in [4] justifies that vq⃗(t) converges in this

ergodic case satisfying:

v̄q⃗

∑

l∈Lq⃗
λ(l) = bq⃗π̄q⃗ +

∑

l∈L′

q⃗
λ(l)

v̄q⃗lAl , q⃗ ∈ Q. (8)

Finally, the average age of the tagged node is:

∆ =
∑

q⃗∈Q v̄q⃗0. (9)

The fundamental outcomes presented above constitute the

foundation of the AoI analysis through SHS. These results will

be utilized in the following section to examine the average AoI

in various scenarios.

III. FINITE BUFFER TRANSMISSION OVER THE CSMA

In our model, a certain node i generates status update

packets for a certain application at a rate of λi, which

follows a Poisson process. These packets are then added

to the transmission queue. Node i takes an exponentially

distributed backoff procedure with the average of 1/Ri. Once

node i finishes its backoff period, the packet at the head of

its queue starts the transmission. The transmission time is

exponentially distributed with an average of 1/Hi; Hi can

also be interpreted as the average transmission rate. Upon a

successful transmission, the number of packets in the queue

decreases by one.

We consider a CSMA network of N nodes, trying to

send updating messages to the monitor at the AP. We are to

develop the SHS model through the perspective of the tagged

node, which uses a transmission queue of size K packets.

The remaining N − 1 nodes function as background traffic,

transmitting with varying traffic rates. A significant feature

of our model is to jointly describe the impact of the N − 1
background nodes on the tagged node using one aggregated

state. Specifically, the network’s state at a certain time is

denoted by a 2-tuple state, where the first element of the

tuple indicates the state of the tagged node, and the second

element is the state of the background nodes. The total set

of possible states Q = {(k,Q), (Ck, Q), (k,C)} , k ∈ [0,K].
Detailed specifications of the states are as follows.

• The states (k,Q), k ∈ [1,K], represent that both the

tagged node and the background traffic independently

start the exponential backoff process to contend for the

channel access, and the tagged node currently has k
packets in the queue. Here, we use “Q” to indicate

there is a certain background node (or, equivalently, the

aggregated background node) tending to grab the channel.

Note that the channel competition from any background

node will cause the same impact on the tagged node; thus,

our model does not differentiate the exact background

node and just uses “Q” to indicate there is background

traffic contending for the channel. In a typical practical

scenario with multiple background nodes, the background

traffic almost always exists. So even after one successful

transmission from the background node, the state still

goes back to “Q”. The state (0, Q) indicates that the

tagged node has no data and only background traffic tries

to use the channel.

• The states (Ck, Q), k ∈ [1,K], represent that the tagged

node grabbed the channel to transmit the head-of-queue

packet, upon the end of the backoff, with other k − 1
packets staying in the buffer. Since a node cannot be in

the transmission state with an empty queue, C0 doesn’t

exist. Also, for the system with K = 1, we denote Ck as

C for simplification as illustrated in Fig. 2.

• The states (k, C), k ∈ [0,K], represent that the back-

ground traffic finished the backoff earlier than the tagged

node and grabbed the channel for transmission.

• Note that a transmission will freeze the backoff of other

contending nodes due to the carrier sensing mechanism.

Thus, the tagged node’s backoff operation either success-

fully ends to transmit or is frozen by transmission from

a background node. Accordingly, the states (Ck, C), k ∈
[1,K] do not exist. Also, due to the memoryless prop-

erty of exponential distribution, a newly started backoff

period and a resumed backoff period follow the same

distribution.

Figure 2 describes the SHS Markovian chain for the sce-

nario where the tagged node has a transmission queue size of

1 packet (i.e., K = 1). State transitions occur when

• a new update enters the tagged node’s queue, with arrival

rate λ, or

• a node among all N nodes captures the channel, or

• retransmission occurs due to a collision (the analytical

details about collisions are to be discussed in the next

section) or

• a transmission is successfully completed.

To analyze the AoI associated with the tagged node, all

elements in the age vector x = [x0, x1, · · · , xK ] are to

be involved. Here, x0 signifies the age perceived at the

monitor, while x1, x2, · · · , xK represent the age progression

of the packets placed at the 1st, 2nd, · · · ,Kth position in

the queue, respectively. Leveraging the equations provided in

Section II-B, we can efficiently compute the average age; the

analytical details are to be elaborated in Sections IV and V.

IV. SHS MODELING WITH THE COLLISION

This section introduces the proposed SHS-based model

incorporating collisions. We will first elaborate on a CSMA

network containing a tagged node with a queue size of K = 1
and updates arrival rate λ. The SHS model is developed with

an assumption that each transmission will be successful with a

probability 1− p, or suffer from a collision with a probability

p. Without loss of generality, we index the tagged node as

node 1, and the aggregated background node as node 2. We

then take the 802.11 distributed coordination function (DCF)

as a concrete case to demonstrate the engineering method to

obtain the collision probability in a practical setting. We then

show in detail how to extend our model to the case where the

tagged node has a queue size of 2 and discuss the practicability

and challenges of SHS modeling for larger buffer scenarios.

A. Incorporating the Collisions
The SHS Markov chain for the discrete state is illustrated

in Fig. 2. At time t, the system state q⃗(t) ∈ Q, with
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Fig. 2. The SHS Markov chain for the tagged node in the CSMA network
with a queue size of 1 packet and collision incorporated.

TABLE I
SHS TRANSITIONS (TAGGED NODE’S QUEUE SIZE = 1)

l q⃗l → q⃗′
l

λ(l) xAl vq⃗l
Al

1 (0, Q) → (1, Q) λ [x0, 0] [v(0,Q)0, 0]
2 (1, Q) → (C,Q) R1 [x0, x1] [v(1,Q)0, v(1,Q)1]
3 (C,Q) → (1, Q) pH1 [x0, x1] [v(C,Q)0, v(C,Q)1]
4 (C,Q) → (0, Q) (1− p)H1 [x1, 0] [v(C,Q)1, 0]
5 (0, Q) → (0, C) R2 [x0, 0] [v(0,Q)0, 0]
6 (0, C) → (0, Q) H2 [x0, 0] [v(0,C)0, 0]
7 (0, C) → (1, C) λ [x0, 0] [v(0,C)0, 0]
8 (1, Q) → (1, C) R2 [x0, x1] [v(1,Q)0, v(1,Q)1]
9 (1, C) → (1, Q) H2 [x0, x1] [v(1,C)0, v(1,C)1]

Q = {(k,Q), (Ck, Q), (k, C)}, where k ∈ [0,K] with K = 1.

The continuous process x(t) = [x0(t), x1(t)] where x0(t)
traces the age of information perceived at the monitor, and

x1(t) tracks the age process of the update in the tagged node’s

queue, which is the next update going to be delivered to the

monitor. Upon a new update delivery, the age at the monitor

will be updated to the age of the just-received message;

mathematically presented, x0 would drop to the value of x1,

reflected by x
′ = xAl . With this being said, using (0, ∗) to

denote the states when there is no update in the tagged node’s

queue, x1(t) is irrelevant in state (0, ∗) and is thus set to 0.

The SHS transitions are enumerated in Table I. Each edge in

Fig. 2 from node q⃗l to q⃗′
l

represents state transition occurs at

exponential rate λ(l) from state q⃗l to q⃗′
l
. The resultant new

vector of the age process is xAl , and vq⃗lAl is the correlation

between the age process x(t) and the discrete state q⃗(t), which

is a crucial part for AoI calculation using equation (8). We

would like to highlight transitions l = 3 and 4, which are

exclusively introduced in this work to handle the collision

effect on the AoI in the CSMA networks. The explanations

of each transition in Table I are provided below.

• l = 1 A new update arrives at the tagged node’s

empty MAC queue with rate λ, causing the queue size to

increase from zero to one. However, the state transition

from (0, Q) to (1, Q) does not cause age reduction

since no new update is delivered to the monitor, that is,

x′
0 = x0. Also, the new arrival is fresh with age zero,

reflecting as x′
1 = 0. Regarding the xAl = [x0, 0], the

vq⃗lAl is thus written as [v(0,Q)0, 0], accordingly.

• l = 2 The tagged node, with an update in the queue,

captures the channel with the backoff rate R1. Since

no update delivery occurs, the age of the update at the

monitor remains the same, i.e., x′
0 = x0. Also, since the

update has been in the queue for a while, x′
1 = x1.

• l = 3 Upon capturing the channel, the transmission

fails due to a collision with probability p at a rate of

pH1, where 1/H1 is the channel holding time for each

transmission. Subsequently, the tagged node enters the

retransmission procedure after the failed transmission,

leading to state transitions back to (1, Q).
• l = 4 The update departs the queue and is received by

the monitor at rate (1 − p)H1, leading to the age at the

monitor drops to x′
0 = x1.

• l = 5 One of the N − 1 background nodes captures

the channel, and the state transitions at rate R2. x1 is

irrelevant to this transition and thus makes no change.

• l = 6 As the behaviors of the N−1 background nodes

do not affect the tagged node’s x, transition l = 6 simply

unifies the successful and collided transmission into one

single transition at rate H2, indicating a background

node’s update transmission has ended and the channel

is released and free for new contention.

• l = 7 During the background node’s transmission

phase, a new update arrives at the tagged node’s queue

at rate λ, and there is no reset to the tagged node’s x.

• l = 8 One of the N − 1 background nodes captures

the channel. Since there is no new tagged node’s update

delivery, it does not incur any reset in the tagged node’s

x. Also, because the update in the tagged node’s queue

has already been in it for a while, x′
1 = x1.

• l = 9 A successful or collided transmission happens at

rate H2. This is again not relevant to any reset in x.

The first-order differential equation of the continuous pro-

cess x satisfies ẋ = bq⃗ =

{

[1 0], q⃗ = (0, ∗),
[1 1], otherwise,

indicating

the age-increasing process when residing in each state. Specif-

ically, the age x0 always increases at a unit rate, and the age x1

increases at a unit rate only in states other than q⃗ = (0, ∗). To

leverage equation (8) for AoI calculation, firstly we are going

to obtain the stationary probability π̄ = [π̄q⃗]q⃗∈Q
of the CTMC

via equations (6) and (7). Here we rewrite equation (6) as

π̄D = π̄B, where D = diag[λ+R2, R1+R2, H1, λ+H2, H2],

B =













0 λ 0 R2 0
0 0 R1 0 R2

(1− p)H1 pH1 0 0 0
H2 0 0 0 λ
0 H2 0 0 0













. (10)

Thus, we have stationary probabilities. Next, we can use

equation (8) to solve

v̄ = [v̄(0,Q) v̄(1,Q) v̄(C,Q) v̄(0,C) v̄(1,C)]

= [v̄(0,Q)0 v̄(0,Q)1 v̄(1,Q)0 v̄(1,Q)1 v̄(C,Q)0

v̄(C,Q)1 v̄(0,C)0 v̄(0,C)1 v̄(1,C)0 v̄(1,C)1].

(11)

Specifically, at state q⃗ = (0, Q), the equation obtained through

equation (8) is

(λ+R2)[v̄(0,Q)0 v̄(0,Q)1] = [1 0]π̄(0,Q)

+ (1− p)H1[v̄(C,Q)1 0] +H2[v̄(0,C)0 0].
(12)

Similarly, the equations regarding states q⃗ = (1, Q), (C,Q),
(0, C), (1, C) are listed below, respectively.

(R1 +R2)[v̄(1,Q)0 v̄(1,Q)1] = [1 1]π̄(1,Q) + λ[v̄(0,Q)0 0]

+ pH1[v̄(C,Q)0 v̄(C,Q)1] +H2[v̄(1,C)0 v̄(1,C)1].
(13)
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H1[v̄(C,Q)0 v̄(C,Q)1] = [1 1]π̄(C,Q) +R1[v̄(1,Q)0 v̄(1,Q)1]. (14)

(H2 + λ)[v̄(0,C)0 v̄(0,C)1] = [1 0]π̄(0,C) +R2[v̄(0,Q)0 0]. (15)

H2[v̄(1,C)0 v̄(1,C)1] = [1 1]π̄(1,C)

+ λ[v̄(0,C)0 0] +R2[v̄(1,Q)0 v̄(1,Q)1].
(16)

Then we can obtain v̄(0,Q)0, v̄(1,Q)0, v̄(C,Q)0, v̄(0,C)0, v̄(1,C)0

by solving equation (8). Finally, the average AoI at the monitor

for the tagged node with queue size K = 1 is

∆K=1 =
∑

q⃗∈Q v̄q⃗0 = v̄(0,Q)0 + v̄(1,Q)0 + v̄(C,Q)0 + v̄(0,C)0 + v̄(1,C)0. (17)

B. SHS Instantiation over the 802.11 DCF

In this part, we outline the process of obtaining the backoff-

related parameter R and the collision probability p when

instantiating the SHS model over an 802.11 DCF MAC. We

leverage the results in [46], where both the protocol specifi-

cations and analytical details for 802.11 DCF are presented.

The work in [46] considers the saturated transmission

scenario, where each node always has packets in the buffer

contending for the channel for transmission. We can still

leverage the saturated analysis in [46] to facilitate our analysis

in the heterogeneous setting. Our approach involves modeling

all the queueing and transmission details of the tagged node

over a finite buffer with a finite arrival rate, using the SHS

modeling as described in Section IV-A. In a highly utilized

channel with multiple nodes, the tagged node nearly always

experiences channel competition from background traffic.

Thus, we can use the saturated approximation to obtain a

collision probability. Note that, our SHS model is designed for

the tagged node, but it can be applied to any node of interest in

a heterogeneous setting for accurate performance evaluation.

Thus, our methodology of integrating detailed SHS modeling

for the tagged node and saturated approximation for collision

probability represents a scalable engineering approach that

accommodates various numbers of background nodes and

heterogeneous traffic arrival processes.

According to 802.11 DCF, each node accesses an idle

channel by an exponential backoff procedure, where the

contention window is dynamically adjusted depending on

the number of unsuccessful retransmissions. The channel

access can be described by a transmission probability τ ,

which may thus suffer a conditional collision probability

p, as demonstrated in [46]. Let CWmin denote the initial

contention window size, m denote the maximum backoff

stage, and a denote the retransmission limit. The values of

p and τ can be obtained by solving the following coupled

equations for a network with N nodes: p = 1− (1− τ)N−1,

τ = 2(1−pa+1)

1−pa+1+p·CWmin

∑m−1

i=0
(2p)i+CWmin(1−2mpa+1)

, Note

that p is the approximate collision probability to be used

in our SHS model as illustrated in Fig. 2. The exponential

backoff period in Fig. 2 can be obtained by computing the

average backoff time amortized over all the backoff stages.

The average contention window W̄ , in terms of time slots

is W̄ =
∑a+1

k=1 p
k−1(1 − p)I{k<a+1}

∑k
j=1

CW (j)−1
2 , where

CW (k) = min
(

2mCWmin, 2
k−1CWmin

)

, k = 1, . . . , a+1,

1 λ
5 R2

0, Q

2 R1

1, Q
6 H2

0, C

4 (1-p)H1

8 R2

9 H2
1, CC1, Q

7 λ3 pH1

2, C2, Q C2, Q

10 λ

11 R1

12 (1-p)H1

13 pH1

16 H2

14 λ

15 R2

17 λ

Fig. 3. The SHS Markov chain for the tagged node in the CSMA network,
with the queue size of 2 packets and collision incorporated.

and the indicator I{A} is set to 1 if A is true, and to 0 other-

wise [47]. Let tslot denote the slot time, the average backoff

period of the tagged node can be set as R1 = 1/(tslot · W̄ ).
Node 2 in the SHS model in Fig. 2 is aggregated over the

N − 1 background nodes, and thus the channel access time

is the minimum of N − 1 exponential variables. Therefore,

R2 = (N − 1)/(tslot · W̄ ). With these values, the SHS model

can be computed for performance analysis, and for other

CSMA-based protocols, appropriate MAC analysis is needed

to determine p,R1, and R2. For example, the MAC analysis

of 802.15.4 can be found in [48] and the references therein.

C. Age Analysis for Larger Queue Size

In order to analytically evaluate the impact of buffer size

on the AoI performance, we need to extend the SHS model

to the cases of K > 1, which is not a trivial task. Where

the SHS Markov chain is readily available, referring to the

descriptions in Section III, the balance equations need to be

established for the age vector x = [x0, x1, · · · , xK ], as the

perceived age at the monitor (x0) depends on age values of

all the packets in the queue (x1 to xK). In this part, we give

the details of extending the SHS model to the case of K = 2.

The operations for further extension to K > 2 cases are not

difficult to figure out following the same principle.

The SHS Markov chain is updated shown in Fig. 3. The

state space has increased to depict the network dynamics as

the queue size increases by 1. Specifically, three states (2, Q),
(C2, Q), and (2, C) are added. In this case, the ages of three

updates are of our concern, say, the newest update at the

monitor, the update in the first place (head) of the tagged

node’s queue (if any), and the update in the second place of

the tagged node’s queue (if any), traced by the continuous

process x(t) = [x0(t), x1(t), x2(t)], respectively. Once the

update departs the FCFS queue and is successfully delivered

to the monitor, x0 would drop to the value of x1, reflected by

x
′ = xAl . And a new age is given to x1 with the value of x2,

represented as x′
1 = x2. The SHS transitions are enumerated

in Table II. Transitions l = 3, 4, 12, and 13 tackle the collision
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TABLE II
SHS TRANSITIONS (TAGGED NODE’S QUEUE SIZE = 2)

l q⃗l → q⃗′
l

λ(l) xAl vq⃗l
Al

1 (0, Q) → (1, Q) λ [x0, 0, 0] [v(0,Q)0, 0, 0]
2 (1, Q) → (C1, Q) R1 [x0, x1, 0] [v(1,Q)0, v(1,Q)1, 0]
3 (C1, Q) → (1, Q) pH1 [x0, x1, 0] [v(C1,Q)0, v(C1,Q)1, 0]
4 (C1, Q) → (0, Q) (1− p)H1 [x1, 0, 0] [v(C1,Q)1, 0, 0]
5 (0, Q) → (0, C) R2 [x0, 0, 0] [v(0,Q)0, 0, 0]
6 (0, C) → (0, Q) H2 [x0, 0, 0] [v(0,C)0, 0, 0]
7 (0, C) → (1, C) λ [x0, 0, 0] [v(0,C)0, 0, 0]
8 (1, Q) → (1, C) R2 [x0, x1, 0] [v(1,Q)0, v(1,Q)1, 0]
9 (1, C) → (1, Q) H2 [x0, x1, 0] [v(1,C)0, v(1,C)1, 0]

10 (1, Q) → (2, Q) λ [x0, x1, 0] [v(1,Q)0, v(1,Q)1, 0]
11 (2, Q) → (C2, Q) R1 [x0, x1, x2] [v(2,Q)0, v(2,Q)1, v(2,Q)2]
12 (C2, Q) → (1, Q) (1− p)H1 [x1, x2, 0] [v(C2,Q)1, v(C2,Q)2, 0]
13 (C2, Q) → (2, Q) pH1 [x0, x1, x2] [v(C2,Q)0, v(C2,Q)1, v(C2,Q)2]
14 (C1, Q) → (C2, Q) λ [x0, x1, 0] [v(C1,Q)0, v(C1,Q)1, 0]
15 (2, Q) → (2, C) R2 [x0, x1, x2] [v(2,Q)0, v(2,Q)1, v(2,Q)2]
16 (2, C) → (2, Q) H2 [x0, x1, x2] [v(2,C)0, v(2,C)1, v(2,C)2]
17 (1, C) → (2, C) λ [x0, x1, 0] [v(1,C)0, v(1,C)1, 0]

effect on the age of information in the CSMA networks.

Especially, right before transition l = 12, the tagged node had

two updates in its queue, and the age vector was x0, x1, x2. As

transition l = 12 occurs, the tagged node’s update departs the

queue and gets to the monitor, causing age reduction x′
0 = x1

at the monitor. Thus, the second update in the queue moves

to the first place, leading to x′
1 = x2. Consequently, the age

map resets to xAl = [x1, x2, 0]. The rest of the transitions are

straightforward and the explanation will be omitted due to the

space limit.

The first-order differential equation of the continuous pro-

cess x satisfies ẋ = bq⃗ =







[1 0 0], q⃗ = (0, ∗),
[1 1 0], q⃗ = (1, ∗), (C1, ∗),
[1 1 1], q⃗ = (2, ∗), (C2, ∗),

indicating the age-increasing process when residing in each

state. Specifically, the age x0 always increases at a unit rate,

and the age x1 increases at a unit rate in states other than

q⃗ = (0, ∗), when there is an update waiting at the first place

of the queue. The age x2 increases at a unit rate in states

q⃗ = (2, ∗) and (C2, ∗), when there is an update waiting at the

second place of the queue. Similarly, we obtain the stationary

probability with equation π̄D = π̄B, and use equation (8) to

solve v̄.

The average AoI at the monitor for the tagged node with

queue size K = 2 is

∆K=2 =
∑

q⃗∈Q

v̄q⃗0 = v̄(0,Q)0 + v̄(1,Q)0 + v̄(C1,Q)0 + v̄(0,C)0

+ v̄(1,C)0 + v̄(2,Q)0 + v̄(C2,Q)0 + v̄(2,C)0.
(18)

The modeling efforts above also demonstrate the principles

for further extension: the perceived age at the monitor, x0, in

fact, depends on the age values of all the packets in the queue,

x1 to xk, as every buffered packet will ultimately move to the

head of the queue and their age values then impact x0. Such

a principle guides the analysis of the age reset matrix Al and

the establishment of the appropriated balance equations. We

also construct and compute the SHS model with K = 3, and

TABLE III
IEEE 802.11 CONFIGURATIONS

Bit rate for DATA frame 11 Mbps

Bit rate for ACK frame 1 Mbps

Bit rate for PLCP & Preamble 1 Mbps

Slot time 20µs
DIFS 50µs
SIFS 10µs
PHY header 192 bits

MAC header 224 bits

IP header 160 bits

Packet payload size 8000 bits

ACK 112 bits + PHY header

Initial contention window size 31

Maximum backoff stages 5

Maximum retransmission limit 7

related numerical results are given in Section V. We, however,

omit the modeling details for K = 3 due to the page limit.

V. NUMERICAL RESULTS

In this section, we apply our SHS model for AoI analysis

and optimization over the practical IEEE 802.11 DCF protocol.

Note that, to the best of our knowledge, this work is the

first analytical AoI study from a tagged node’s perspective

over a collision-prone CSMA with saturated and unsaturated

background nodes; we thus could not get comparable existing

results in the same setting for performance benchmark. There-

fore, we resort to ns-3 simulations to examine the accuracy

of our SHS-based analysis. Furthermore, we consider that in

practice, status monitoring normally generates small packets

and can be piggybacked with data packets. We thus also

apply our model to numerically assist the joint throughput

and AoI optimization. With a slight abuse of the notation for

convenience, we use “n” to indicate the number of background

nodes in all the results.

A. Simulations Setup

For the illustration purpose without losing generality, we

construct a WiFi network following the MAC protocol’s

IEEE 802.11 distributed coordination function with detailed

configurations shown in Table III. To focus on our objective,

we eliminate uncertain influence caused by hidden terminal
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Fig. 4. The average AoI of the tagged node versus its traffic arrival rate (the sampling rate), with various numbers of background nodes.

problems by carefully arranging the location, power, and gain

of each node.

We consider the WiFi network with each node equipped

with a traffic generator following Poisson distribution. Each

successful data transmission only contains one data frame. The

average AoI for each experimental setting was computed over

2000 simulation runs, with each run lasting 300 seconds. Also,

for each run, the samples in the initial 10% of the simulation

period are discarded. Our setting adopts the heterogeneous

setting with high channel utilization, where the traffic arrival

rate of each background node is uniformly selected from the

range [50, 500], and default buffer size is adopted.

B. Analytical Accuracy Validation and Optimal Sampling Rate

We here conduct performance analysis for the scenarios

where the queue sizes of the tagged node are 1, 2, and 3. Fig. 4

compares the theoretical (TH) and simulation (SIM) results of

the “AoI versus arrival rate” of the tagged node, obtained from

varying numbers of background nodes (n = 2, 6, 10, 15), re-

spectively. The analytical results and simulation results closely

match in all the settings. When the network expands to a larger

scale, specifically when n = 15, we can tell the small gap

between the analytical results and the simulation results in the

range of larger traffic arrival rate (say, > 50 packets/s), while

the shapes of the curves still match well. One main reason

leading to the gap is that the SHS model incorporates collision

effect with approximations from the saturated MAC analysis as

given in Section IV-B. Thus, when there are more background

nodes, which accordingly contain more unsaturated nodes

in our heterogeneous setting, the analytical deviation due to

saturated approximation will be more obvious, as shown in

Fig. 4 for n = 10 and 15. It is noteworthy that the analytical

results are robustly accurate for all scenarios with a buffer size

of 3; the small gap to simulation results even tends to diminish

when there are more background nodes (n = 15). This is

due to the fact that a larger buffer under a high arrival rate

facilitates the network nodes to become saturated, matching

the approximation technique adopted in our model. Also, SHS

assumes exponential distributions, which might deviate from

the true situation where many nodes interact through CSMA.

Such inaccuracy due to exponential approximation might be
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Fig. 5. Tagged node’s AoI with queue size K = 1, 2, and 3, respectively,
for the scenarios of (a) n = 10 and (b) n = 50 background nodes.

the main reason contributing to the phenomenon that the AoI

curve has a larger gap in the range of a larger traffic arrival

rate. The good news is that the optimal traffic arrival rate (i.e.,

the optimal sampling rate) minimizing the AoI suggested by

the analytical results is robustly close to that indicated by the

simulation curves in all the settings.

C. Queueing Benefit for Small Sampling Rates

We further scrutinize the queueing effect on AoI as illus-

trated in Fig. 5. While the common sense is that buffering

may negatively impact the AoI, the results in Fig. 5 reveal

interesting insights when the tagged node works in a range

of small sampling rates. In both scenarios with n = 10 and

50 nodes, we observe that employing a queue of size two

yields a more favorable AoI compared to a queue of size one,

especially when the traffic arrival rate is low. Such a finding is

closely related to the transmission strategy considering colli-

sion. In a collision-prone networking context, the transmission

opportunity upon an idle channel is a precious resource. A

ready packet in the buffer can utilize such a resource more

effectively and thus benefit the AoI. This finding suggests that

an energy-constraint node, favoring a low sampling rate, can

leverage the strategy of properly increasing its queue size to

enhance the AoI performance.

D. Joint AoI and Throughput Optimization

Under practical conditions, status monitoring typically gen-

erates small-sized packets that can be conveniently integrated
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Fig. 6. Illustration of joint performance of AoI and throughput when n = 10.

with the transmission of data packets. With this in mind, we

delve into performance optimization strategies that encompass

both data throughput and the AoI. High throughput and low

AoI are generally desirable traits, however, as illustrated in

Fig. 6a, these features tend to have a negative correlation. To

jointly optimize the throughput and AoI, we define “through-

put weighted age of information (TwAoI)” denoted by γ as

γ = αS + (1− α) 1
∆ . (19)

Here, S represents the normalized throughput and 1/∆ phys-

ically represents the age updating rate, making TwAoI intu-

itively balance the information transmission rate and the age

updating rate in a certain application. The weight α can be

adjusted to cater to different application requirements.

Fig. 6b showcases the TwAoI for a tagged node under

various weight and queue size configurations. The results il-

lustrate the delicate interplay between the weight distributions,

queue sizes, and the resultant TwAoI. The important finding

is that the setting with a buffer size K = 2 robustly performs

well (although not always the largest) in terms of TwAoI

under different weighting factor values or traffic arrival rates.

By manipulating queue sizes and adjusting sampling rates,

nodes can finetune their operations to find an optimal balance

between throughput and AoI. Such adjustments could involve

increasing queue size for a throughput-oriented strategy or

shifting to a more aggressive sampling rate for AoI-focused

scenarios.

VI. RELATED WORK

The essence of AoI studies on queueing theory in work [3]–

[8] is to determine the optimal queue arrival rate, striking a

balance between the update frequency and queue congestion.

Additionally, the lossy queue has been studied in the context of

packet management, where arriving updates may be discarded

while the server is busy or preempted (replaced) by fresher

arrivals for older updates [9], [11]. The zero-wait policy [45]

ensures that a new status update arrives just as the previous

update packet departs the queue, leading to optimal throughput

and delay performance. In contrast, works [6], [7] reveal

that the zero-wait policy may not be optimal when channel

resources are limited. Additionally, SHS [4], [17] has emerged

as a powerful tool for AoI analysis, discovering in multiple

sources real-time status updating scenarios where LCFS with

preemption is considered. In this paper, resorting to the SHS

modeling for AoI and optimal sampling rate analysis over the

distributed MAC protocol is an innovative contribution.

The AoI optimization in CSMA networks is still an under-

explored area with limited literature. Some works propose

age-efficient transmission policies [33], [34] optimizing AoI

in slotted ALOHA and CSMA networks using packet age-

gain. In the work [42], AoI minimization in CSMA networks

is investigated without considering the queueing effect. The

focus is on minimizing the AoI through the optimization of

backoff rates, which are upper-bounded to account for practical

collision considerations. In [43], average AoI is analyzed in

random access networks with stochastic packet generation

considering collision effects but with the sources adopting the

queueing discipline that always keeps only the freshest update.

However, all the studies are limited to over-simplified models,

simulation-oriented, collision-free, or requiring changes to the

standard MAC protocol. The works [40], [41] make efforts to

analyze AoI over a practical WiFi network by approximating

the tagged node as a large FCFS server. However, the small

AoI normally favors a small buffer system, this study moves

a significant step forward to fill the gap.

VII. CONCLUSION

This research introduces a novel approach for AoI analysis

and minimization in CSMA networks using SHS. We con-

tribute original techniques that can incorporate finite buffer

states, collision in transmission, and heterogeneous back-

ground nodes (through state aggregation) into the SHS model.

Our model successfully optimizes the sampling rate for AoI

minimization under various practical networking scenarios.

Additionally, the study unveils valuable insights into the in-

terplay between buffer size, throughput, and AoI. Simulations

confirm the model’s accuracy and the optimal sampling rate’s

effectiveness. As a next step, it will be interesting to apply

our model for AoI analysis in other types of networks in the

CSMA family, such as the IEEE 802.15.4 networks.
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