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Abstract—We study how to achieve optimal network capacity
in the most energy-efficient manner over a general large-scale
wireless network, say, a multi-hop multi-radio multi-channel
(MR-MC) network. We develop a multi-objective optimization
framework for computing the resource allocation that leads to
optimal network capacity with minimal energy consumption. Our
framework is based on a linear programming multi-commodity
flow (MCF) formulation augmented with scheduling constraints
over multi-dimensional conflict graph (MDCG). The optimization
problem however involves finding all independent sets (ISs),
which is NP-hard in general. Novel delayed column generation
(DCG) based algorithms are developed to effectively solve the
optimization problem. The DCG-based algorithms have signifi-
cant advantages of low computation overhead and achieving high
energy efficiency, compared to the common heuristic algorithm
that randomly searches a large number of ISs to use. Extensive
numerical results demonstrate the energy efficiency improvement
by the proposed energy-efficient optimization techniques, over a
wide range of networking scenarios.

Index Terms—Multi-radio multi-channel network; capacity
optimization; energy efficiency; multi-objective optimization

I. INTRODUCTION

In large-scale multi-hop wireless networks, simultaneously

achieving capacity (or throughput) optimization and energy

efficiency is a challenging issue. Many existing studies in the

context of either traditional single-radio single-channel (SR-

SC) [1]–[4] or multi-radio multi-channel (MR-MC) networks

[5]–[8] often focus on network capacity; however, the impor-

tant problem of energy-efficient capacity optimization over

a generic MR-MC network1 has not been well investigated

yet. Being able to simultaneously exploit multiple channels

through different radio interfaces, an MR-MC network can

have significantly higher capacity than an SR-SC network [6],

[7]. However, in MR-MC networks with increased system

dimensions, energy-efficient capacity optimization requires

jointly considering the coupling issues of routing, link schedul-

ing and channel/radio assignment.

A fundamental issue in multi-hop wireless networks is the

interference due to co-channel transmissions. In order to model

1The SR-SC network model can be viewed as a special MR-MC model.

the interference among different wireless links, the conflict

graph (or contention graph) tool is often adopted, where

the links that can transmit simultaneously without mutually

causing interference construct an independent set (IS) over the

graph. Augmented with constraints derived from the conflict

graph, the main-thread approach for wireless network capacity

optimization is to apply a linear programming (LP) multi-

commodity flow (MCF) formulation [1]. Such a formulation

has been extended to general MR-MC networks based on the

recently developed multi-dimensional conflict graph (MDCG)

[7], [10]. The convex hull over all the possible ISs defines the

space of resource allocation. The optimal resource allocation

for capacity indicated by the MCF solution can be expressed

as an IS-based scheduling problem: the ISs take turns to access

the channels for data transmission, with the proportion of

transmission time of each IS determined by the MCF solution.

Maximizing capacity and minimizing energy consumption

are often contradicting objectives in wireless networks and

thus need careful investigation. In our primary work on MR-

MC networks towards joint optimization of these two aspects,

we show that a significant amount of energy can be saved

by trading only a small portion of capacity [16]. In this

paper, the optimization formulation in [16] is enhanced to

a multi-objective optimization framework to jointly optimize

network capacity and energy efficiency, where we define

energy efficiency as the network throughput per unit of en-

ergy consumption, or equivalently, the ratio between achieved

capacity and the energy consumption. The multi-objective

framework consists of two steps. In the first step, the MCF

problem is solved over the MDCG to obtain the optimal

capacity. In the second step, a multi-objective optimization

problem is formulated, which is solved by first transforming

the capacity objective into constraint and then minimizing

energy consumption over the whole network.

Considering the exponentially many possible ISs, the re-

source allocation space can be significantly large. Finding all

possible ISs is an NP-hard problem in general [9]. A common

approach in practice is to randomly search a reasonable

number of ISs, which form a subspace of the entire solution978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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space. The searched ISs are then used in the MCF problem

to obtain an approximate optimal solution [1], [16]. Such

approximation over a subspace further motivates the search

of an energy-efficient solution in the sense that an IS-based

scheduling over a different subspace may lead to a higher

network capacity but lower energy consumption.
The random search (RS) algorithm, however, suffers from

the large computation overhead in searching the ISs and

solving the large-scale optimization problem. It has been

shown that RS may even miss some critical ISs that are

of structure-level importance towards the optimal scheduling

[6]. In this paper, we propose to use the delayed column

generation (DCG) method [11] to solve the two LP problems

formulated within the multi-objective optimization framework.

With the DCG method, an LP problem is first solved to obtain

a feasible solution over a subspace; then a new column that

can lead to an improved solution (e.g., a larger capacity or a

lower energy consumption) is searched to enter the subspace.

The steps are run iteratively till converging to the optimal

solution. We propose two DCG based algorithms in solving

the multi-objective optimization problem. The first one, termed

as DCG-S algorithm, is to apply DCG in solving the capacity

optimization problem (i.e., step 1 in the proposed framework)

with the energy efficiency problem (i.e., step 2 in the proposed

framework) solved over the IS subspace obtained in step 1.

The second one, termed as DCG-W algorithm, applies DCG

in both steps where the step-2 problem is independently solved

over the entire IS space. We show that the DCG-W algorithm

can achieve an energy efficiency higher than the DCG-S with

a slightly increased computation overhead.
There are many studies on energy-efficient networking in

the literature. Most of the existing works focus on energy-

efficient protocols, such as medium access control (MAC)

and routing protocols, in the context of single-hop or SR-

SC networks [12], [13]. This paper systematically studies

how to calculate the energy-efficient optimal network capacity

and the associated resource allocation in a general context

of large-scale multi-hop MR-MC wireless networks. Major

contributions of this paper can be summarized as follows.

1) We develop a multi-objective optimization framework

for energy-efficient network capacity optimization based

on the MCF formulation augmented with the tool of

MDCG. The multi-objective optimization framework

based on the MDCG can jointly generate cross-layer

optimal resource allocation of routing, link scheduling,

and channel/radio assignment.

2) Novel DCG-based algorithms are proposed to effectively

solve the optimization problem. We show that the pro-

posed DCG algorithms have the advantages over the RS

algorithm [16] in terms of lower computation overhead

as well as higher network capacity and better energy

efficiency.

3) Extensive numerical results are presented to demonstrate

the energy efficiency gain by the proposed algorithms,

over a wide range of scenarios with different network

size, different number of channels or radios. The perfor-

mance and computation overhead of the RS algorithm

and the proposed DCG based algorithms are also eval-

uated and compared.

The remainder of this paper is organized as follows. Section

II reviews more related work. Section III describes the system

model. Section IV presents the multi-objective optimization

framework. Section V develops the DCG-based algorithms.

Numerical results are presented in Section VI. Finally, Section

VII gives the conclusion remarks.

II. RELATED WORK

Energy efficient networking has gained significant attention

in the development of wireless networks. Many existing stud-

ies focus on the design of energy efficient protocols in SR-

SC networks. For example, energy efficient MAC protocols

for WLANs are studied in [14] and [15], where only single-

hop scenario is considered. Power saving techniques are also

proposed to prolong the lifetime of wireless sensor networks

such as in [17], which focuses on listening protocol design

and in [18], which concentrates on routing layer. In this paper,

we propose an energy efficiency optimization framework that

can jointly generate cross-layer optimal resource allocation in

general MR-MC networks.

Since the resource allocation problem is characterized by

two conflicting objectives of capacity and energy, multi-

objective optimization is adopted for the problem formulation.

Many methods have been developed to solve multi-objective

optimization problems. Evolutionary approaches are used in

[19] and [20], where genetic algorithms are applied for the

network optimization. However, such methods run iteratively

and the computation time for getting an optimal solution can

be very long. With the advantage of linearity in our problem,

some lightweight methods with less computation cost can

be used, such as weighting method and ε-constraint method

[21]. The weighting method generates a weighted sum of all

the objective functions as the new objective. However, the

weighted sum of the two objectives in our problem may not

have clear physical meanings and the weights are difficult to

decide beforehand. In this paper, a ε-constraint [21] based

method is applied for the problem formulation.

Our work also exploits the MR-MC technique in formulat-

ing the generic optimization model. The MCF formulation is

implemented in MR-MC scenarios based on MDCG developed

in [7]. The formulated multi-objective optimization problem

is of extremely large scale since the exponentially many ISs

will induce large number of columns in the constraint matrix.

We introduce the DCG method to iteratively search profitable

columns and can efficiently solve the problem. The DCG

method has been applied for scheduling [22] and resource

optimization [23], but their studies are limited to special

scenarios.

III. SYSTEM MODEL

In this section, we introduce a generic system model based

on MR-MC networks. An MR-MC wireless network can be

represented by a connected graph G(N ,L) along with an



3

MDCG as defined latter in this section, where N and L denote

the set of nodes and set of wireless links in the network,

respectively. Two nodes u and v form a directed link luv if

v lies in the transmission range of u. Let C denote the set of

available channels of the network, and Ru denote the set of

radio interfaces equipped on node u. Note that an interface of

a node can only tune to one channel at one time, but can be

switched to other channels at different time. The capacity of

the wireless link luv on a channel c is denoted as wc
uv .

In order to describe the complex co-channel interferences

as well as the aforementioned radio interface conflicts in MR-

MC networks, we adopt the conflict graph approach, which

is a common way for interference representation in SR-SC

networks. An MR-MC network can be interpreted as a multi-

dimensional resource space and the dimensions are defined

by radios, links and channels [10]. The resource points can

be represented as radio-link-channel tuples. Each tuple is

represented as ((u, v), (ru, rv), c), which indicates that the link

(u, v), with node u using interface ru and node v using rv ,

operates on channel c. In this way, a link (u, v) in L can be

mapped to multiple tuples, specifically, |Ru|×|Rv|×|C| tuples

where | · | denotes the cardinality of a set. By considering all

available radios and channels in the network, we can obtain

all the tuples which then form the vertices in the MDCG.

A conflict graph is constructed based on the protocol inter-

ference model where the conflict relationship among links is

defined by their interference ranges. For ease of exposition, we

assume all the nodes have the same interference range2 such

that two nodes interfere with each other if they are within each

other’s interference range. If two links have interfering nodes,

they conflict with each other. Under protocol interference

model, a link can perform a successful transmission only

if both its sender and receiver are free of interference. We

extend the protocol interference model to accommodate MR-

MC networks and determine the conflict relationships by the

following events [5]; if any of the two events occurs, the two

tuples conflict with each other, which is represented by an

edge between them in the MDCG.

1) Interference conflict: Two tuples are associated with

nodes locating within each other’s interference range

according to the protocol interference model and work

on the same channel;

2) Radio conflict: Two tuples share common radio inter-

face at one or two nodes.

In the MDCG, an IS is a set of tuples free of mutual conflict

relationships, i.e., the corresponding links in the original

network with the radio and channel configurations indicated

by these tuples can transmit simultaneously. A maximum

independent set (MIS) over the MDCG is an IS to which

adding any other tuple will violate the “independence”. Notice

that a tuple may belong to multiple ISs. Denote a generic IS

over the MDCG as I and the set of all the ISs as M.

2With diverse interference ranges, the interference relationship may become
asymmetric and the resulting MDCG becomes directed. However, this does
not affect the validity of our proposed methods.

Assume that the system operates on the basis of time slots

of unit length. In a time slot, only the tuples belonging to

the same IS can be turned on (only one IS can be activated).

Thus, a scheduling is formed when different ISs share the time

alternately for transmissions.

IV. PROBLEM FORMULATION

In this section, we formulate the MCF-based linear pro-

gramming problem for solving the resource allocation and

energy efficient capacity optimization in MR-MC networks.

With the help of MDCG, the new formulation facilitates jointly

deciding the optimal scheduling of link transmissions, channel

assignment and radio interface assignment.

A. MCF Problem Formulation

The formulation of the MCF problem over a general MR-

MC network has been introduced in [7] and [16]. In this sub-

section, we briefly present the problem constraints. Based on

them, two optimization problems will be formulated in the

next sub-sections. Consider multiple commodity flows in the

network with each flow specified by its source-destination

pair (s, d) ∈ Ω, where Ω is the set of all source-destination

pairs. Specifically, the flow on luv associated with pair (s, d)
is denoted as f(s,d)(u, v). Each flow has a rate requirement

r(s,d). To avoid flow starvation and ensure fairness in the

network, we use λ as network capacity in the sense that at

least λr(s,d) amount of throughput can be ensured for each

commodity flow [6]. Therefore, ∀(s, d) ∈ Ω, all the outgoing

flows from the source s sum to the corresponding throughput

of this commodity, i.e.,∑
lsu∈L

f(s,d)(s, u) = λr(s,d) (1)

where ∀luv ∈ L,

f(s,d)(u, v) ≥ 0, (2)∑
(s,d)∈Ω

f(s,d)(u, v) ≤ Buv. (3)

Buv is the capacity bound of link luv which is explained

latter in (8). Besides, for each node, its incoming and outgoing

flows should be balanced, which results in the flow conserva-

tion constraints such that ∀(s, d) ∈ Ω, and ∀u ∈ N/{s, d},∑
v:luv∈L

f(s,d)(u, v) =
∑

w:lwu∈L
f(s,d)(w, u) (4)

Since there is no incoming (outgoing) traffic at a source

(destination) node, ∀(s, d) ∈ Ω, we have∑
u:lus∈L

f(s,d)(u, s) = 0, (5)

∑
u:ldu∈L

f(s,d)(d, u) = 0, (6)

For optimal network throughput, different ISs will be turned

on alternately in different slots for transmission. Therefore, the

realized rate of link luv is bounded by both the physical link
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capacity and the portion of time that the link is scheduled. We

denote the fraction of time allocated to IS Im as αm, where

|M|∑
m=1

αm ≤ 1, 0 ≤ αm ≤ 1, ∀m (7)

Then, the flow bound Buv on link luv is seen to be the sum

of active channel capacities, i.e.,

Buv =
∑

m:luv∈Im

αmwc(luv,Im)
uv , ∀luv ∈ L (8)

where c(luv, Im) denotes the channel allocated to luv when

Im is scheduled.

B. Network Capacity Optimization

The capacity λ can be viewed as a measure of the network

throughput, and optimizing network throughput is equivalent

to maximizing λ. In fact, maximizing λ under the flow con-

servation constraints and scheduling constraints is a common

formulation of the MCF problem. Denote this basic single-

objective problem for capacity optimization as P1:

P1 :

{
minimize : λ
subject to : constraints (1)-(8)

(9)

Note that, in P1, the variables to be determined include

λ, the flows {f(s,d)(u, v)} and the scheduling parameters

{αm}. Since each IS Im associated with αm corresponds to a

solution of channel scheduling and radio resource allocation,

solving P1 leads to joint network throughput optimization and

resource allocation. In addition, the solved variables together

indicate the routing in network. The constraints and objective

function are linear so that P1 is a linear programming problem.

From (1)-(8), one can see that the columns of the constraint

matrix corresponding to {f(s,d)(u, v)} are fixed; while the

columns associated with {αm} are exactly determined by the

ISs set M.

However, in order to optimally solve the problem, we need

to search for all the ISs to construct all the columns. The

challenge is that the number of ISs can be extremely large

as in the order of O(2|T |) (where |T | is the number of all

tuples), and searching for all the ISs is an NP-hard problem

[9]. Moreover, even if we can obtain all the ISs, the number

of columns of the constraint matrix in the LP problem is so

large that the generation and storage of the matrix is inefficient

and even practically infeasible. A typical approach is to apply

random search to find as many ISs as possible [1]. But this

method can only give approximately optimal solutions and the

computation overhead in finding reasonable number of ISs is

very large. In this paper, rather than directly solving the LP

problem after searching for a satisfactory amount of ISs, we

explore the DCG method to quickly find solutions.

C. Energy-Efficient Capacity Optimization

The network capacity optimality may not necessarily lead to

energy optimality since a high throughput often indicates high

energy expenditure on data transmissions. Reducing energy

consumption usually requires a decrease in the throughput.

However, since different resource allocation solutions with

different amounts of energy consumption may yield the same

network capacity, it is possible to achieve energy conservation

without degrading the network performance by carefully allo-

cating resources. This leads to an interesting multi-objective

optimization problem as the energy-efficient capacity opti-

mization problem. In the following, we first present a model

of the network energy consumption, and then establish the

multi-objective optimization problem.

1) Energy model: In a time slot, suppose the nodes that

all its incident links are unscheduled remain in sleep mode to

save energy. The energy consumption of the network mainly

consists of transmission energy and reception energy where

we ignore the sleeping energy as well as the amount of

energy spent on channel/radio/mode switching. For each link

luv ∈ L, denote P t
u (P r

v ) as the amount of energy spent by the

sender node u (receiver node v) for transmitting (receiving)

one bit data. The energy consumption of a node depends on

the amount of time that the node is involved in transmission

which depends on the scheduling of ISs. Since we always

schedule ISs, a tuple in some scheduled IS may not have data

to transmit. Such tuples with zero flows can be switched off

to further save energy. Notice that multiple tuples in the same

IS and connected with the same node can be scheduled at the

same time. In this case, the node may have to spend more

energy to serve all the active tuples operating on different

interfaces or channels. Taken these facts into consideration,

the energy consumption of each node is actually proportional

to the amount of incoming and outgoing flows at this node.

Therefore the total amount of energy consumption E in a unit

time period can be calculated as

E =
∑

(s,d)∈Ω

∑
luv∈L

(
P t
uf(s,d)(u, v) + P r

v f(s,d)(u, v)
)

(10)

2) Multi-objective optimization formulation: Multi-

objective optimization is conducted to deal with design

problems which are characterized by the presence of multiple

conflicting objectives. Unlike single-objective optimizations

that search for global optimal solutions, multi-objective

optimization instead seeks for a set of points that can fit the

requirement of optimum. Such concept of optimum is known

as the Pareto optimality, which is defined formally as follows

[24]: A point x∗ ∈ X is Pareto optimal if and only if there
does not exist another point x ∈ X such that F (x) ≤ F (x∗)
and Fi(x) < Fi(x∗) for at least one function3. In other words,

a solution is Pareto optimal if there is no other point that

improves at least one objective function without detriment

to another one. The set of Pareto optimal solutions forms

the Pareto front. To solve the multi-objective optimization

problem is to search for the Pareto optimal solutions or locate

the Pareto front in the solution space.

We adopt the ε-constraint method to solve the multi-

objective optimization where the problem is reformulated by

keeping one of the objective functions and converting the

3If not specified, we are considering minimization problem.
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others into constraints:{
minimize : Fs(x)
subject to : Fi(x) ≤ εi ∀i = 1, . . . , k, i �= s

(11)

where Fi(x), i = 1, . . . , k, are the objective functions and

{εi} indicate the constraints formed by the other objective

functions. The solution to the revised problem can be proven

to be Pareto optimal if the bounds of the converted constraints

are all reached [21].

A systematic variation of ε yields a set of Pareto optimal

solutions. We set energy consumption as objective function

and convert capacity objective to constraint since the capacity

of a network is naturally bounded by the network structure and

configuration. In order to determine the value of ε, we need to

first decide the upper bound of the objective function which

in our case is the lower bound of the network capacity (since

capacity is the objective to be maximized while the standard

form is a minimization problem). It can be easily verified

that in this model the solutions to the multi-optimization

problem are Pareto optimal. Each solution on the Pareto

front found in our problem stands for the optimal (minimal)

energy consumption that can be achieved without degrading

the current network capacity.

The value of ε cannot exceed the maximal capacity that can

be achieved from the network. Therefore we can first solve the

single objective optimization problem P1 for optimal capacity

λ∗, and then specify the value of ε by λ∗ or some portion of

λ∗ such that ε = qλ∗ and vary the value of q to get a variation

of ε. Denote this multi-objective optimization problem as P2:

P2 :

⎧⎨
⎩

minimize : E
subject to : λ ≥ qλ∗

constraints (1)-(8) hold

(12)

Let M∗ ⊂ M, and A = {α1, . . . , α|M∗|} be the scheduled

set of ISs and their portions of time allocation in order to

achieve the optimal capacity λ∗, respectively. Intuitively, if

each IS Im ∈ M∗ only uses qαm portion of time to transmit

data, the amount of flow of each scheduled tuple will decrease

by a percentage of 1 − q. Thus, it is easy to see that, in this

case, the constraint (11) holds while the energy consumption

decreases to qE based on (10). Therefore, the term q also

indicates an upper bound for the solution of optimal energy

consumption to problem P2.

As an alternative to P2, if each node has a pre-defined

energy budget, we can convert energy objective to constraint

according to the network requirement and treat capacity as ob-

jective function. Such conversion will yield a similar problem

which can be solved in a similar way as below.

V. ENERGY-EFFICIENT CAPACITY OPTIMIZATION

ALGORITHMS

Above we have formulated the MCF problem as linear

programming problems. Despite the extremely large number

of all ISs, our experiences indicate that some critical ISs will

be actually scheduled while most ISs may never be used.

This inspires us to adopt the efficient DCG method [11]

to iteratively generate columns that are expected to improve

the problem objective. The generated columns together with

an initial set of feasible columns form a subspace where

the optimal solution can gradually approach to the optimal

solution in the whole problem space.

A. Delayed Column Generation

The DCG implementation involves a sequence of master

problems and sub-problems. We describe the DCG method in

the following LP framework (the master problem) with the

understanding that problem P2 is a special case.

minimize :
∑
i∈Q

cixi

subject to :
∑
i∈Q

akixi ≤ bk, k = 1, . . . ,K

xi ≥ 0, ∀i ∈ Q

where Q is the index set corresponding the columns that have

already been generated and {xi} is the set of variables to be

determined with the corresponding costs {ci}. Also, suppose

there are K constraints (K rows in the coefficient matrix)

with bounds {bk}. aki is the (k, i)-th entry of the constraint

matrix. The master problem is a relaxed version of the original

problem with a subset of columns.

The DCG method starts with an initial basic feasible so-

lution of the original problem and an initial set of columns

corresponding to Q associated with the solution. Then, the

method runs iteratively. In each iteration, after solving the

master problem, it searches among the columns outside Q for

a new column with negative reduced cost c̄s to enter Q, where

the reduced cost of a column (with index s) is expressed as

c̄s = cs −
K∑

k=1

βkaks, (13)

and {βk} are the optimal dual variables to the master problem.

If no such column is found, the method exits with the current

{xi} as the optimal solution. Otherwise, since there may be

many such columns, the one with the most negative reduced

cost is selected by solving the following sub-problem:

s∗ = argmin
s/∈Q

c̄s = argmin
s/∈Q

(cs −
K∑

k=1

βkaks). (14)

After solving the sub-problem, the master problem is up-

dated by adding s∗ to Q and generating the corresponding

column. Then a new iteration is triggered.

B. The Proposed Algorithms

Based on the DCG method, we propose two algorithms

for the energy-efficient capacity optimization, namely DCG-S

and DCG-W algorithms. While both the two algorithms solve

problem P1 at first to obtain the optimal capacity λ∗ by taking

advantages of DCG for its efficiency, they are different mainly

in treating problem P2.
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1) Solving P1: In both DCG-S and DCG-W algorithms,

P1 is solved with the same DCG-based method. The DCG

iterations should start with an initial basic feasible solution.

First, the initial set of ISs can be constructed by repeating the

following procedure until all the tuples are covered by the ISs

found: randomly select a tuple that has not been included in

any of the existing ISs and then search an IS starting from this

tuple. Pseudo codes for this method is shown in Algorithm 1.

Algorithm 1: Finding an initial set of MISs.

T : set of all tuples;

S = ∅. //solution: initial set of ISs;

V = ∅. //set of tuples contained in selected ISs;

while T /V �= ∅ do
p ← a tuple randomly chosen from T /V;

I = {p}; V = V ∪ {p} ;

while p′ ∈ T /V do
if {p, p′} is an IS then

I = {I, p′};

end
end
S ← {S, I};

end

Suppose n ISs have been selected above, we can construct

the initial feasible solution that schedule them alternately in

the following conservative manner. Assign equally 1
n portion

of time to each IS such that each tuple in the selected

ISs will gain 1
n physical capacity on that tuple. Then, to

ensure feasibility, each commodity flow f(s,d)(u, v) on link

luv can be set as the bottleneck capacity of a path between

the corresponding source and destination pair (s, d). With

the above scheduling and flow assignment, we can therefore

construct a feasible solution as the initial solution, and the

problem P1 can be then solved following the standard DCG

iterations as described above.

The constraint matrix corresponding to this solution consists

of all the columns associated with capacity constraints, flow

conservation constraints and the initial set of ISs. Any newly

generated column is constructed by an IS, so that generating a

new column is in fact finding a new IS. Recall the objective of

P1. The cost coefficient c for the variable αm that corresponds

to an IS is 0. Therefore, finding a new IS by solving the sub-

problem in (14) reduces to solving the following maximum

weighted independent set (MWIS) problem:

max
s/∈Q

K∑
k=1

βkaks. (15)

To solve the above MWIS problem, we adopt the greedy

algorithm [25] which runs iteratively as follows. In each

iteration, it collects the tuple with minimum weight degree

(sum of weights of all its neighbors) and then removes all

the tuples with edges connected to the collected tuple from

the conflict graph. It returns an MWIS when all the tuples

have been collected or removed. Algorithm 2 gives a formal

description of this method.

Algorithm 2: Greedy MWIS algorithm

Gc: the conflict graph;

S = ∅
while Gc �= ∅ do

Let p be a tuple of minimum weighted degree in Gc;

S = S ∪ {p};

Remove p and its neighbors from Gc;

end
Output: S;

2) DCG-S algorithm: The solution of P1 provides us the

optimal capacity λ∗ and a set of ISs that are selected to obtain

λ∗. With the DCG process, these selected ISs construct a

subspace Msub of the original M. Our formulation of the

multi-objective optimization problem gives the intuition that

we should schedule as less tuples as possible in order to

minimize energy consumption. It is hence a simple way to

restrict our attention to the subspace Msub in solving P2

because the optimal capacity has already been achieved by

Msub. In the DCG-S Algorithm, with Msub obtained above,

P2 is solved simply by applying the LP method. Usually, the

number of ISs in Msub is small, so the complexity of the

DCG-S algorithm is almost in the same order as that of the

DCG-based algorithm in solving P1.

3) DCG-W algorithm: The lightweight DCG-S algorithm

based on our intuition cannot guarantee to find the global

optimal solution to the multi-objective problem, because the

energy optimization in P2 is solved based on the capacity-

oriented subspace Msub. For global optimality, it is necessary

to re-select ISs with respect to energy optimization. Therefore

we propose the DCG-W Algorithm indicating that P2 is solved

based on the whole problem space M. In DCG-W, we first

solve P1 as above but only store the obtained value of λ∗

which is used to construct P2. We independently perform

another series of DCG iterations to solve P2, where the

problem space is re-initialized and the columns are re-defined

according to the parameters in P2. The initial feasible solution

can be the solution achieved in the first DCG iterations for

solving P1. Compared with the DCG-S algorithm, one can

see that the DCG-W algorithm incurs higher computation

complexity but better energy optimality.

VI. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate

the performance of our optimization methods. We consider an

MR-MC network with 25 homogeneous nodes randomly de-

ployed in a 1000m×1000m area as shown in Fig. 1. Each node

by default is equipped with 3 radio interfaces that can operate

on 8 wireless channels; however, in the following, we vary

these numbers to evaluate their impacts on the performances.

The physical link capacity on each channel is set to 1 rate unit.

The communication range and interference range of each node
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are 250m and 500m, respectively. Consider that there are 3

commodity flows with the same flow requirement (3 rate unit)

traversing through the network, where the source-destination

pairs are denoted as (S1, D1), (S2, D2) and (S3, D3) as shown

in Fig. 1. The unit energy consumptions for transmitting and

receiving a unit amount of data are set as P t + P r = 1.
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Fig. 1. Network topology.

We compare the proposed DCG-S and DCG-W algorithms

with the RS algorithm [16]. In the RS algorithm, we randomly

select 2 × 105 distinct ISs. These ISs are then expanded

to maximum independent sets (MISs) based on which the

problem P1 is solved. The reason is that each expansion of

an IS will introduce more mutually independent tuples for

data transmission that do not conflict with any existing tuples

in the IS, and hence may improve (or at least maintain) the

achieved capacity. In the DCG-based algorithms, we do not

conduct such expansion since each IS is optimally determined

by the sub-problem solutions in the DCG algorithm itself.

The DCG iterations involved in our two algorithm terminate

when no new column can be found by the MWIS algorithm

(Algorithm 2) or the corresponding objective value holds for

100 iterations. We develop Matlab programs to implement the

above algorithms where the CPLEX [26] tool is embedded

within the Matlab environment for solving the LP problems

involved in the algorithms.

A. Energy Efficiency Gain

In order to demonstrate the energy efficiency improve-

ment of multi-objective optimization, we first perform single-

objective capacity optimization (problem P1) with RS method.

The value of energy efficiency achieved in this method (raw

energy efficiency) is used as a reference value for later

comparisons. The multi-objective optimization (problem P2)

is performed with the value of q in constraint (12) set as 100%.

The achieved energy efficiency is compared with the reference

value to obtain the energy efficiency gain. The computation

runs independently in different scenarios with various numbers

of radios on each node or numbers of channels in the network.
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Fig. 2. Energy efficiency gain.

The results of energy efficiency gain are shown in Fig. 2,

from which we observe that by solving the multi-objective

optimization we can always achieve at least 20% improvement

of energy efficiency comparing with the energy-blind single-

objective optimization. Due to the complex structure and

interference relationship of multi-hop networks, there may

be multiple resource allocation solutions achieving the same

network capacity but consuming different amounts of energy.

The energy-blind capacity optimization will return any one

of the solutions while the multi-objective optimization can

obtain the one with minimal energy consumption and therefore

achieve higher energy efficiency. As the number of radios

or channels increases, the network structure becomes more

complicated and there is a higher probability that the capacity-

only optimization finds a much worse solution than the multi-

objective optimization. As a result, the energy efficiency

gain is much larger when there are more radios or channels

available and there can be 60% or even more improvement in

some cases.

Above we can also observe that the DCG-W algorithm

achieves the most energy efficiency gain while the RS al-

gorithm achieves the least. Performance comparisons among

these algorithms are examined in more details in the following.

B. Performance Comparison

To compare the performance achieved by the RS and DCG-

based algorithms, we first investigate the achieved optimality

in terms of network capacity (by solving P1). Since DCG-

S and DCG-W methods share the same procedures in this

stage, here we term them as DCG-based algorithm. The results

are shown below in Fig. 3, where, on each line, each point

stands for the achieved energy and capacity at a number of

available channels (4 to 8 for the points from the left to the

right). It can be seen that, with the same number of channels,

the DCG-based method can always achieve higher capacity

than the RS algorithm. Meanwhile, the solution of DCG-based

method consumes even less energy than that of RS algorithm.

This is because the former can fully explore the network to

figure out the best resource allocation and scheduling while the

latter is limited to a subspace (even though we have searched

a significant number of ISs, the whole space is still much

larger that an exhaustive search is almost infeasible). Such
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advantages of the DCG-based method over the RS algorithm

becomes even more significant as the number of channels

increases, as shown in the figure that the performance gaps

in terms of both capacity and energy are being widened.
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Fig. 3. Capacity and energy comparison.

We then compare the performances in solving the multi-

objective problem P2 and derive the Pareto fronts solved

by each method. From the results shown in Fig. 4, we can

observe that the Pareto fronts solved by the DCG-S and DCG-

W algorithms are much closer to the upper left corner than

those by the RS algorithm, where the closer to the upper left

corner the higher capacity and lower energy consumption are

achieved.

7 7.5 8 8.5 9 9.5 10 10.5
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

energy consumption

ca
pa

ci
ty

RS
DCG−S
DCG−W

Fig. 4. Pareto front comparison.

In the following, we closely examine these algorithms

by using the normalized energy efficiency metric, where the

normalization is done by dividing the achieved energy effi-

ciency by the corresponding reference value (or raw energy

efficiency). The comparison is performed in four groups of

parameter settings with different number of nodes, channels

or value of q. From the results shown in Fig. 5, we have the

following observations of these algorithms:

1) The RS algorithm is outperformed by the proposed

DCG-based algorithms in most cases since the random
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Fig. 5. Normalized energy efficiency achieved by the algorithms.

searching only uses the information of a subspace of

the entire IS space. Especially when the network scale

increases, the portion of the whole IS space covered by

the searched subspace becomes even smaller, resulting

that the solutions obtained get further away from the

optimum.

2) The DCG-S algorithm can achieve better performance

than RS in most cases since global IS information is

considered in solving P1 for optimal capacity. However,

it still suffers from the similar issue as in the RS

algorithm that only a subspace generated in the first step

is used in the LP step for energy optimization.

3) The DCG-W algorithm achieves the best performance

in all cases. In this algorithm, the column generation

iterations are performed twice where both capacity and

energy are involved in the optimizations. Compared

with DCG-S, the DCG-W algorithm fully explores the

problem space both in capacity optimization and energy

optimization steps.

Furthermore, Fig. 5 also demonstrates the impact of q on

the performances obtained by these algorithms. We can see

that, in general, the energy efficiency achieved by the RS and

DCG-S algorithms tends to increase as q decreases. As q gets

lower, the capacity constraint is relaxed which in turn results in

that more choices of resource allocations can be considered for

energy optimization. Consequently, it is easier to get the most

energy efficient configuration of network flow and scheduling

which leads to higher energy efficiency. In contrast, the energy

efficiency of the DCG-W algorithm is almost not affected by

the changing of q, since this method can always maintain

optimality.

C. Computation Time Comparison

Table I summarizes the comparisons of these algorithms’

computation time. In the first network, the computation time
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TABLE I
COMPUTATION TIME COMPARISON

network with 25 nodes (each has 3 radios) and 5 channels
method computation time (seconds)

RS 1015
DCG-S 90
DCG-W 196

network with 40 nodes (each has 3 radios) and 8 channels
method computation time (seconds)

RS 30193
DCG-S 970
DCG-W 1156

of the RS algorithm is about 5 to 10 times of that in DCG-

based algorithms; while in the second network with larger

scale, the computation time consumed by the RS algorithm

climbs about 30 times while the other two algorithms increase

by 5 to 10 times. The computation time of the RS method

is mainly consumed by the searching of ISs and the large-

scale LP optimization performed based on these ISs. However,

the DCG-based algorithms only select a moderate number

of ISs in the first stage. Moreover, the computation time of

the DCG iterations is low because the greedy algorithm that

solves the MWIS problem is expressively fast. Also, in the

second stage that solves P2, the optimization processes of

the proposed algorithms start with a small scale problem with

much less columns than that in the RS algorithm. As a result,

the proposed algorithms can save much computation time in

both of the two stages.

VII. CONCLUSION

In this paper, we investigate the energy-efficient capacity

optimization problem in generic MR-MC wireless networks,

and formulate a multi-objective optimization framework based

on the MCF problem scenario. Our framework is augmented

with the tool of MDCG that facilitates joint design of routing,

channel/radio scheduling and flow allocation. A significant

challenge regards to the large problem scale due to that there

could be extremely large number of ISs. To tackle this, we

propose two DCG-based algorithms that can efficiently solve

the multi-objective optimization problem without searching for

too many ISs. Extensive numerical results demonstrate that the

proposed algorithms achieve promising energy efficiency gain.

Moreover, the proposed DCG-W algorithm achieves the best

energy efficiency over the RS and DCG-S algorithms.
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