
45IEEE Network • July/August 2010

he next-generation Internet will accommodate various
multimedia applications over a common IP-based
transport infrastructure. Many multimedia services
(e.g., online multiplayer games, IPTV, videoconferenc-

ing) require a scalable and efficient multicast mechanism
capable of disseminating the shared data to widely distributed
destinations and quick in responding to subscribing requests
from end users. Traditional IP multicast delivers data for each
group along a tree structure at the network layer, which is
constructed by a distributed multicast routing algorithm. IP
multicast is bandwidth efficient in data delivery but suffers
from the scalability issue [1], since the messaging overhead
and memory cost grow linearly with the number of multicast
groups supported by the router. The more recent overlay mul-
ticast establishes the data dissemination structure at the appli-
cation layer. Each link in the overlay network is an end-to-end
logic connection between two end hosts. Although overlay
multicast requires no modification of the unicast infrastruc-
ture, it induces redundant traffic at the network layer [2]: it is
common that separate overlay links pass through common
physical links in the underlying transport network.

Multicast is a generic service paradigm commonly used by a
wide variety of multimedia applications. A scalable and effi-
cient multicast mechanism should be one of the infrastruc-
tural functionalities provisioned by the next-generation
Internet [3]. Our perspective is that the rapid development of
hardware and software technologies enable networking
devices to execute more complex computing and more intelli-
gent processing, which provides an opportunity to streamline
the design of networking functionalities for next-generation
Internet. Extensive efforts are being made in both academia
[3, 4] and industry [5] on incorporating application-oriented
intelligence into the network layer.

In fact, enhancing network nodes with more intelligence

has become a mainstream idea to design the modern multicast
protocols. REUNITE [6] stores the destination addresses of a
multicast group at network routers located at the intersection
points along a multicast tree to facilitate multicast forwarding;
however, it needs to maintain group-specific information
through a soft-state mechanism, which still incurs considerable
memory and message overheads. In Xcast [7] each packet car-
ries a list of destination addresses, and the network router can
process the destinations list for multicasting. Although Xcast
takes a similar service model as adopted in this article, it is
not scalable because the limited size of the Xcast header con-
strains the protocol to be applicable only in a scenario with a
small number of multicast receivers. The FRM scheme [8],
most closely related to our study, encodes the multicasting
tree into the packet using a Bloom filter, and computes pack-
et copies and output interfaces by checking the router’s neigh-
boring edges against the embedded tree. Our method instead
only encodes receiver destinations in the packet, which can
reduce bandwidth overhead and facilitate the group joining
process. The LIPSIN scheme [3] uses a similar methodology
as FRM with enhanced techniques to reduce false positives
incurred by the Bloom filter processing, but requires an extra
protocol to assign and manage ID for each link of the net-
work. In MAD [9] it is proposed to adaptively switch between
IP and overlay multicast modes, depending on the service sce-
narios. Such a scheme can mitigate memory overhead when
there are a large number of groups with infrequent data traf-
fic, but cannot fundamentally solve the scalability issue.

This article proposes destination-oriented multicast
(DOM), following the philosophy that network routers can
have enhanced intelligence in addition to basic routing and
forwarding. With DOM, each packet carries explicit destina-
tion information instead of an implicit group address to facili-
tate multicast data delivery; and each router leverages the

0890-8044/10/$25.00 © 2010 IEEE

Xiaohua Tian and Yu Cheng, Illinois Institute of Technology
Xuemin (Sherman) Shen, University of Waterloo

Abstract
In this article we propose a scalable and efficient destination-oriented multicast pro-
tocol for next-generation Internet. With DOM, each packet carries explicit destina-
tions information, instead of an implicit group address, to facilitate the multicast
data delivery; and each router leverages the unicast IP routing table to determine
necessary multicast copies and next-hop interfaces. The fundamental issue is that
we need to limit the bandwidth overhead for such explicit addressing, since it is
impractical to attach all the destination addresses to each packet. We resort to the
Bloom filter technique to encode the destination information carried by each packet
for bandwidth efficiency, with elaborated design to accommodate the features of
the practical Internet including longest-prefix matching, route aggregation, and
asymmetric interdomain routing. Moreover, DOM enables a fast group joining
approach to minimize the joining delay perceived by receivers. The scalability and
efficiency of DOM are demonstrated with simulation results.

DOM: A Scalable Multicast Protocol for
Next-Generation Internet

TT

TIAN LAYOUT  7/8/10  12:12 PM  Page 45



IEEE Network • July/August 201046

unicast IP routing table to determine necessary multicast
copies and next-hop interfaces. The fundamental issue is that
we want to limit the bandwidth overhead for such explicit
addressing since it is impractical to attach all the destination
addresses to each packet. In our design the in-packet destina-
tion information is encoded into the Bloom filter to achieve
bandwidth efficiency. The Bloom-filter-based design is further
elaborated to accommodate the features of the practical Inter-
net including the longest-prefix matching, route aggregation,
and asymmetric interdomain routing. We focus on presenting
the concept and design methodology of DOM in this article,
while the implementation details of the protocol are available
in [10]. Moreover, this article presents a new border gateway
protocol (BGP)-view-based joining scheme to address the
asymmetric routing issue for interdomain multicasting and a
fast group joining approach to minimize the joining delay per-
ceived by receivers.

The proposed DOM has the following properties:
• The memory and messaging overheads incurred at each

router for DOM are independent of the number of groups
being supported.

• The forwarding bandwidth efficiency of DOM is very close
to that of IP multicast.

• DOM enables establishing the reverse shortest path tree
(SPT) even with asymmetric routing, and minimizes the
joining delay perceived by the receivers.

• DOM decouples the group identifier (ID) from multicast
routing and forwarding, and enables a scalable source-spe-
cific localized group ID allocation scheme.
In the remainder of this article we first describe the DOM

service model and discuss associated practical design issues.
We then present the Bloom-filter-based design to realize the
DOM protocol in the practical Internet. Performance analysis
and simulation results are demonstrated to verify the scalabili-
ty and efficiency of DOM. Future work is briefly discussed in
the concluding remarks.

DOM
Service Model
In the DOM service model, each receiver domain sends a join
message to the source node of the groups in which it is inter-
ested; based on the join messages, each source node can know
the members for each group it provisions. Each multicast

packet will carry the destination addresses of all the members
so that each router can retrieve the addresses and leverage
the unicast routing table to compute necessary copies and out-
put interfaces. DOM provides a uniformed intra-/interdomain
multicasting service, but we focus on the interdomain case in
this article for convenience of demonstration.

Membership Management — For membership management, a
border router of a stub autonomous system (AS) domain is
selected as the designated router (DR). We use RDR (SDR)
to denote the DR of a receiver-side (source-side) AS domain.
When multicast routing/forwarding is considered, RDR also
represents the prefix associated with the corresponding receiv-
er domain. The meaning of RDR will be clear in the context.
The transit domain border router is denoted TBR.

The RDR basically needs to implement the Internet Group
Management Protocol (IGMP) to discover the active groups
within its domain. When new groups are activated, the RDR
is triggered to send membership updating messages (MUMs)
to the data source node (SRC) in the format as (RDR: GID1,
GID2, …, GIDn), where RDR represents a domain prefix and
GID represents the group ID. Note that the MUM messages
will be forwarded along the shortest path between the RDR
and the SRC according to the unicast routing information.

The SRC aggregates the MUM messages it has received and
maintains a multicast group list (MGL). For each group provi-
sioned by the SRC, the MGL establishes a record in the format
as (GID: RDR1, RDR2, …, RDRn), where each RDR again indi-
cates a domain prefix. The MGL lets the SRC trace the active
receiver domains for each group it provisions. Figure 1 shows an
example where the record of group 1 in the MGL is illustrated.
When the SRC multicasts data over a certain group, it inserts the
corresponding MGL into the packet as the destination informa-
tion in the format of a shim header. The multicast packets are
then forwarded to the SDR for interdomain multicasting.

Multicast Forwarding Protocol — When receiving a multicast
packet, each router will extract the MGL record from the
packet, and compute packet copies and corresponding output
interfaces. Specifically, a DOM router performs the following
processing. First, check the unicast routing table to determine
the output interface for each destination listed in the MGL of
the packet, and aggregate destinations with the same output
interface into a set. Second, replicate the packet for each

Figure 1. DOM service model.

SRC: Data source node 
SDR: Sender-side 
        designated router 
TBR: Transit domain 
        border router 
RDR: Receiver-side 
        designated router 
GID: Group identifier 

A 

Routing table for unicast 

- 
B - 
C - 
D 1 
E 1 

1 

1 

1 

F GID1 D, E 

GID1 D, E, F 

GID1 F 

GID1 D 

GID1 E 

2 

2 

2 

2 

RDR: F 

RDR: E 

RDR: D 

TBR: C 

TBR: B 

SBR: A 

SRC: S 

Multicast group list 

TIAN LAYOUT  7/8/10  12:12 PM  Page 46



IEEE Network • July/August 2010 47

unique interface found in the first step. Third,
update the MGL of each packet copy with the
aggregated set yielded in the first step so that the
packet copy for a given interface contains only the
destinations that can be reached via this interface.
By removing unnecessary destinations from the
MGL record, the downstream router will not gener-
ate unnecessary packet copies for those destinations
that have been delivered over other sibling subtrees.
Each router will execute the same operations of
aggregation, replication, and MGL record updating,
until one multicast packet reaches an RDR. Figure
1 depicts the forwarding process of group 1, where
the destinations list includes D, E, and F.

We consider the case that all routers (including
SDRs, RDRs, and TBRs) are aware of DOM. How
to deploy DOM in a compatible manner with the
legacy routers will be studied in the future work.

Practical Design Issues
In the prototype DOM service model all the routers
involved in the multicast forwarding (other than the
DRs) do not need to maintain any state regarding
multicasting. The forwarding complexity is totally
independent of the number of groups to be supported, result-
ing in desirable scalability. Nevertheless, considerable band-
width overhead could be incurred when there are a large
number of receivers (RDRs) for each group: the MGL in the
packet becomes impractically long, and the number of receivers
that can be supported is constrained by the packet header size.

A possible solution is resorting to the Bloom filter technique
[8]. In DOM, the MGL can be encoded into a Bloom filter
which saves much space in the packet (e.g., about 40 percent in
our simulation). However, the Bloom-filter-based design needs
to support the particular features of Internet. Normally, Inter-
net routers apply the longest-prefix matching and route aggre-
gation schemes to control the size of the unicast routing table,
by which the same destination network may be represented
with different network prefixes in different routers. Since the
Bloom filter only supports exact query, it is possible that the
destination RDR prefixes encoded in the Bloom filter cannot
match any forwarding entry stored in a SDR/TBR. Instead of
directly utilizing the unicast routing table, there is a need to
establish the forwarding states that can recognize the Bloom-fil-
ter-formatted MGL along the data delivery path.

Most of the existing multicast protocols [1] establish the
forwarding states when the joining request is delivered from
the receiver to the source node (or rendezvous point), and
then forward the data packets along the path that is reverse to
the joining path. Such a reverse path forwarding (RPF)-based
approach, however, requires the symmetric routing environ-
ment: the path from the source to a receiver follows the same
path used to go from the receiver to the source. Unfortunate-
ly, the interdomain routing is usually asymmetric for adminis-
trative reasons [6]. When designing the DOM, we also need to
consider the effect of asymmetric routing on the protocol.

Implementation of DOM Protocol
This section presents a Bloom-filter-based design for DOM,
where the practical design issues mentioned above are solved
with reasonable cost.

Bloom Filter Based Design
We are to describe the Bloom-filter-based DOM design
according to the upstream procedure (i.e., states establish-
ment) and the downstream procedure (i.e., data forwarding),

as illustrated in Fig. 2, where Bloom filters are illustrated as
shadowed areas.

The left side of Fig. 2 shows how forwarding states are
established by MUM messages. To reduce the bandwidth
overhead for membership updating, the list of active groups in
the MUM message is encoded with a group Bloom filter
(GRP_BF). When an MUM message reaches an upstream
TBR/SDR router, the router will retrieve the RDR prefix, and
store it as a local forwarding state that leads to a reverse path
of the MUM incoming interface. By continuously observing
the MUMs, each related interface of the TBR/SDR will mem-
orize all the destination domains that can be reached through
it, and the reverse SPT from the SRC to subscribing RDRs
can then be constructed. At an output interface, each RDR is
stored as a separate Bloom filter, called an interface RDR
Bloom filter (IRDR_BF), which will be used to facilitate mul-
ticast forwarding.

The upstream MUM messages will finally reach the SRC
node, and each message will be stored as a record of the
MUM table. The SRC node should have a local channel list
indicating the multicast groups it provisions. By checking each
GID against the MUM table and identifying the matched
GRP_BF, the SRC can detect the destination prefixes for a
given group. The destinations information under the group ID
will be encoded into a destination Bloom filter (DST_BF) and
stored in the multicast destination cache. Note that the
DST_BF in fact encodes the MGL according to the DOM ser-
vice model.

The right side of Fig. 2 illustrates how multicast packets are
forwarded. At the SRC node, the DST_BF for a group will be
inserted as the destination information into each multicast
packet. In the downstream data forwarding process, each
router generally executes the same operations of aggregation,
replication, and MGL record updating introduced in the
DOM service model. The only difference is that these opera-
tions are conducted with Bloom filters in both the packet and
the router. Specifically, each TBR/SDR compares the packet’s
DST_BF with IRDR_BFs at each interface. A packet replica
is generated and dispatched along the interface, if the
DST_BF and IRDR_BFs installed at the interface have any
element matched. The subset of matched prefixes associated
with each output interface is then re-encoded into the branch
Bloom filter (BRA_BF). The BRA_BF will be inserted into

Figure 2. Bloom-filter-based design of DOM.

SRC: Data source node 
GID: Group identifier 
TBR: Transit domain 
        border router 
GRP_BF: Group bloom 
              filter 
IRDR_BF: Interface RDR 
              bloom filter 
DST_BF: Destination 
              bloom filter 
BRA_BF: Branch bloom 
              filter 

IRDR_BF (RDR1) 

Output interface 1: 

IRDR_BF (RDR3) 
... 

IRDR_BF (RDR2) 

Output interface 2: 

IRDR_BF (RDR5) 
... 

... 

SRC 

TBR 

GID1, GID2, GID3, ... 

RDR1 GRP_BF 

GID 

Downstream Upstream 

DST_BF 

GID1 DST_BF (dest. RDRs) 

RDR GRP_BF (active GIDs) GID BRA_BF (matched RDRs) 

GID2 DST_BF (dest. RDRs) 
... ... 

RDR2 

Local channel list: 

MUM table. 

Multicast 
destination 

cache: 

GRP_BF 
... ... 

TIAN LAYOUT  7/8/10  12:12 PM  Page 47



IEEE Network • July/August 201048

the packet replica delivered through that interface, serving as
the destination information DST_BF for further downstream
forwarding.

The downstream procedure actually follows the RPF con-
cept: the data packet is forwarded along the path that is
reverse to the MUM joining path. The states installed by
MUM messages explicitly construct a reverse SPT rooted at
the SRC node, and the forwarding procedure avoids directly
checking the unicast routing table to decide output interfaces.
With such RPF-based multicasting, DOM will not be impact-
ed by the issues of longest-prefix matching and route aggrega-
tion.

DOM with Asymmetric Routing
In Fig. 1 it is possible that the MUM sent by E takes the path
E-C-A to reach S, while the downstream data path is A-B-E;
thus, the forwarding states cannot be installed following the
RPF concept. To address such an issue, an option is to lever-
age the Multiprotocol Extensions to BGP-4 (MBGP) [1],
which can announce different unicast- and multicast-capable
routes to help the MUM messages take the correct joining
path to the SRC; however, MBGP incurs high complexity.

We thus propose a low-complexity solution to address the
asymmetric routing issue, the BGP-view-based joining scheme.
We have two assumptions: the physical links of the data deliv-
ery path from the SDR to a RDR are bidirectional, and the
interdomain routing policy always allows control messages
(e.g., MUMs) traveling along the path reverse to the data
delivery path. These two assumptions are very reasonable in
practice. Most of the physical links are bidirectional to save
the cost in deployment, and a more flexible policy to multicast
control messages is preferable considering the remarkable
benefit from a scalable multicast design.

The BGP-view-based joining scheme could construct the
reverse SPT for multicasting even with asymmetric interdo-
main routing, as illustrated in Fig. 3. The service provider des-
ignates a BGP-speaking SDR, which knows the shortest paths
from itself to any possible receivers. The information is stored
in the local BGP routing table, where each table entry repre-

sents the local routing view for a given destination network
prefix. For instance, the BGP routing entry for the network
associated with E shows that E can be reached through the
next-hop B and the path vector B-E in Fig. 3. The BGP rout-
ing entry will be passed to the corresponding RDR so that the
receiver side knows the actual routing view the sender side
can see. Then the MUM is forwarded along the reverse path
indicated by the BGP path vector with source routing (e.g., E-
B-A in Fig. 3). In this manner the MUM can correctly install
forwarding states at corresponding routers along the indicated
joining path to the SRC, the dashed line path in Fig. 3.

A natural question is: how can the BGP view seen by the
SDR be passed to a RDR? The key observation is that DOM
adopts the source-based service model [1], where each receiver
knows the SRC information (SRC IP address, channel num-
ber, etc.) before subscribing to a channel. A number of tech-
niques can be used to transport the BGP routing entry from
the SDR to a RDR, for example, via web pages or sessions
announcement applications. We note that there should be an
interface between the SDR and multicasting applications at
SRC to retrieve BGP views considering the BGP routing
selection rules; the implementation details are out of the
scope of this article.

Fast Group Joining
The DOM design has the benefit of enabling a fast group
joining procedure: it is possible for the RDR to start receiving
requested packets before its MUM message arrives at the
SRC. The DOM protocol needs some modification to support
the fast group joining. Along the path that the MUM mes-
sages travel, the routers not only add the IRDR_BF informa-
tion but also temporarily store the group IDs. While the
regular TBR/SDR forwarding process only compares the
DST_BF against the IRDR_BFs, a GID-based forwarding is
added as an assistant process to facilitate the fast join scheme.

An example of fast group joining is illustrated in Fig. 3.
Consider that a multicast tree has been established between
the SRC and the subscriber RDRs after an initiation period.
A subsequent MUM from E can follow the same path marked

Figure 3. DOM with asymmetric routing and fast group joining.

Path of MUM msg from D 

SDR: A 

Interface 1: 

IRDR_BF (D) 

DST_BF (D) 

E B-A 

B 

BGP routing entry 
for E at A 

E B-E 

MUM: 

Payload 

Data packets for group 7 

IRDR_BF (E) 

GID7 

TBR: B 

Interface 2: 

IRDR_BF (E) 

GID7 

2 

2 

D 

D 

D 

E 
E 

E 

1 

1 

1 

Path of MUM msg from E 
Path of data pkts 
IRDR_BF (D) 

IRDR_BF (E) 

RDR: F 
TBR: C 

TBR: B 

RDR: E 

SRC: S 

RDR: D 

2 

SDR: A 

TIAN LAYOUT  7/8/10  12:12 PM  Page 48



IEEE Network • July/August 2010 49

by the dashed line to subscribe to a newly activated group
within its domain, say group 7. Upon receiving the new
MUM, the TBR router B will temporarily store the group ID,
GID7, at its interface 2, and then forward the MUM further
to the next hop. If B has already been forwarding data packets
of group 7 to D along its interface 1 when the MUM arrives,
it will find that the group 7 data packets being forwarded via
interface 1 match the GID7 labeled at interface 2. Node B will
then immediately forward the same data packets via interface
2 to E, although DST_BF(D) and IRDR_BF(E) do not match.
Thus, E can receive the requested data packets before the
MUM arrives at S.

We emphasize that the GIDs need to be stored in the
router only temporarily. When the regular forwarding process
later confirms that the packet with a certain GID should be
dispatched through a certain interface, the GID-based for-
warding process is then stopped, and the corresponding GID
label on that interface will be removed. Consider the group 7
packet at SDR A in Fig. 3; as DST_BF(D) matches the
IRDR_BF(D), the regular forwarding process confirms that
the group 7 packet should be dispatched through A’s interface
1, and GID7 can be deleted immediately. In TBR B, however,
the GID7 can be deleted only after the first packet with the
updated DST_BF(D,E) arrives. At that time, the regular for-
warding process will confirm that group 7 packets should be
forwarded via interface 2, and GID7 can be removed. The
temporal GID labels are the trade-off cost for fast group join-
ing. With the label removing mechanism, the number of for-
warding states at each router is still independent of the
number of groups in the long run.

Performance Analysis
Scalability
Compared with IP multicast, DOM installs fewer forwarding
states at routers on the multicasting tree. This is because
DOM stores only one state on each related node for each
subscribing domain. In contrast, each subscribing domain may
join in tens of thousands of groups, and each group needs a
state on each related node under IP multicast. The number of
forwarding states per node for DOM is independent of the
number of groups being supported by the node. Moreover,

DOM decouples the membership management component
from the multicast forwarding component. The forwarding
component at a router just requires RDR related information.
Group IDs are only used for labeling groups at the SRC and
RDRs to establish the service relationship; thus, the group
IDs can be allocated at the SRC locally in the form of a two-
tuple (source node address, source-specific channel ID) [6],
which breaks the address space limitation of IPv4 Class-D
addresses.

Bandwidth Efficiency and False Positive
DOM strikes a balance between bandwidth efficiency and
small Bloom filter false positive rate, in comparison with the
closest related work, FRM. The fundamental difference
between DOM and FRM is that the DOM encodes only desti-
nation prefixes in the packet shim header while the FRM
encodes multicasting tree branches. The Bloom filter incurs
false positive, which means the element not encoded in the
Bloom filter might be falsely detected. For a fixed-length
bloom filter, the more elements are encoded, the higher the
false positive rate can be. In DOM and FRM, when the num-
ber of receivers/branches exceeds the capacity of a single shim
header, multiple packets are sent to cover all destinations,
which are counted as redundant traffic. Since covering the
same number of destinations normally requires more branch-
es, DOM can generate less redundant traffic than FRM does
if they keep the same false positive rate [10].

Joining Delay
In DOM receivers could perceive shorter joining delays than
in FRM. This is because the DOM fast joining mechanism
can efficiently respond to join requests at the intermediate
router already on the multicasting tree, while the joining pro-
cess of FRM has to be completed at the SRC. In a practical
scenario there are a large number of groups running over the
Internet, so when an RDR wants to join in a new group dis-
covered within its domain, it is very possible that the join
request can meet some intermediate router which has been
forwarding the requested data to other members already in
the group. Thus, the requested data can be steered to the
RDR immediately instead of waiting until the join request
arrives at the SRC.

Figure 4. Simulation topology.

Regional AS 
(e.g., city) 

Access 
router 

Organization AS (e.g., company, school)

Access 
router 

Backbone 
routers 

SDR1 

SDR2 

TIAN LAYOUT  7/8/10  12:12 PM  Page 49



IEEE Network • July/August 201050

Simulation Results
In this section we present some NS-2 simulation results to
compare the performance of DOM with other reference mul-
ticast schemes including IP multicast Dense Mode (DM),
Sparse Mode (SM), and FRM. The network topology for sim-
ulation is given in Fig. 4, which is widely used in the literature
as a hypothetical U.S. backbone network. There are two SRCs
associated with the two SDRs, as illustrated in Fig. 4, and
RDRs are placed at organization AS domains. In the simula-
tion each RDR joins in G = 200 groups evenly provided by
the two SRCs.

For memory overhead, we count the number of forwarding
entries at intermediate routers of the multicasting tree for
each scheme under study. Figure 5 shows the cumulative dis-
tribution function (CDF) of the number of forwarding entries
per node in each scheme, where there are N = 80 RDRs.
DOM can significantly reduce the number of forwarding
states stored at each node compared to IP multicast because
DOM stores destination-specific states at the router. The
number of states per node for DOM is independent of the
number of groups passing through, in contrast to IP multicast.
The low memory overhead could facilitate high-speed for-

warding on the line card, which has limited memory capacity.
The forwarding states in the FRM router are in fact the
router’s AS neighbor edges, which are used to compare with
the tree branches encoded in the packet shim header to deter-
mine output interfaces. Thus, the number of forwarding
entries per node in FRM is the AS degree of this node.

We examine the bandwidth overhead by counting the num-
ber of packets received at a given node when multicasting a
single packet from each SRC to all receivers. Figure 6 shows
that the number of packets each router receives under DOM
is close to that under IP multicast and less than that under
FRM, which means that the bandwidth overhead of DOM is
close to that of IP multicast and less than that of FRM. The
reason is that DOM encodes only destination information in
the packet, with the intermediate routers maintaining the for-
warding states, while FRM encodes the multicasting tree
branches in the packet. It usually takes more tree branches to
cover the same number of destinations; therefore, FRM gen-
erates more redundant traffic than DOM.

Although DOM and FRM both adopt the source-based
joining operation that has to be finished at the SRC, DOM
performs better than FRM in terms of joining delay with the
fast group joining scheme. We compare CDFs for the per-
node access delay averaging the participated 200 groups under
DOM and FRM, as shown in Fig. 7. The access delay is the
time for the data to start arriving at the RDR since sending
the join request. It is obvious that RDRs experience less
access delay under DOM than under FRM.

Conclusions and Future Work
In this article we have proposed a scalable and efficient multi-
cast scheme, DOM, for next-generation Internet. By carrying
necessary receiver addresses information within the packet
shim header, the proposed DOM can leverage the existing
unicast IP routing information to deliver the data to receivers.
In the Bloom-filter-based implementation of DOM, all the
management and addressing information traversing the net-
work is encoded with Bloom filters for memory and band-
width efficiency. Moreover, the DOM design allows seamless
integration with practical Internet features including longest-
prefix matching, route aggregation, and asymmetric interdo-
main routing. In addition, DOM enables a fast group joining
approach to minimize the joining delay perceived by receivers.
For future work, we will study how to incrementally deploy
the DOM with backward compatibility with legacy routers.

Figure 5. CDF of the number of forwarding entries per node (N =
80).

Number of forwarding entries per node
0

0.1

Pr
ec

en
ta

ge
 o

f 
ro

ut
er

s

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200

DOM (N = 80)
FRM (N = 80)
IP-DM/SM (G = 200)

Figure 6. CDF of per-node packet reception (N = 80).

Per-node packet reception (PPR)
5

0.5

0.4

Pe
rc

en
ta

ge
 o

f 
ro

ut
er

s

0.6

0.7

0.8

0.9

1

0 10 15 20 25

DOM (N = 80)
FRM (N = 80)
IP-DM (N = 80)
IP-SM (N = 80)

Figure 7. CDF of per-node average access delay (N = 80).

Per-node average access delay (ms)
200150

0.1

Pe
rc

en
ta

ge
 o

f 
RD

Rs

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 300 350 400 450

DOM (N = 80)
FRM (N = 80)

TIAN LAYOUT  7/8/10  12:12 PM  Page 50



IEEE Network • July/August 2010 51

References
[1] K. C. Almeroth, “The Evolution of Multicast: from the MBone to Interdomain

Multicast to Internet2 Deployment,” IEEE Network, vol. 14, no. 1, Jan./Feb.
2000, pp. 10–20.

[2] S. Fahmy and M. Kwon, “Characterizing Overlay Multicast Networks and
their Costs,” IEEE/ACM Trans. Net., vol. 15, no. 2, Apr. 2007, pp. 373–86.

[3] P. Jokela et al., “LIPSIN: Line Speed Publish/Subscribe Inter-Networking,”
Proc. ACM SIGCOMM, Aug. 2009, pp. 195–205.

[4] A. Feldmann, “Internet Clean-Slate Design: What and Why?” SIGCOMM
Comp. Commun. Rev., vol. 37, no. 3, July 2007, pp. 59–64.

[5] Cisco Systems, “Cisco Application-Oriented Networking”;
http://www.cisco.com/go/aon

[6] I. Stoica, T. S. E. Ng, and H. Zhang, “REUNITE: A Recursive Unicast Approach to
Multicast,” Proc. IEEE INFOCOM, vol. 3, Mar. 2000, pp. 1644–53.

[7] R. Boivie et al., “Explicit Multicast (Xcast) Basic Specification,” Internet draft,
Mar. 2001.

[8] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, “Revisiting IP Multicast,” Proc.
ACM SIGCOMM, Aug. 2006, pp. 15–26.

[9]T. W. Cho et al., “Enabling Content Dissemination using Efficient and Scal-
able Multicast,” Proc. IEEE INFOCOM, Mar. 2009, pp. 1980–88.

[10] X. Tian, Y. Cheng, and B. Liu, “Design of a Scalable Multicast Scheme with
an Application-Network Cross-Layer Approach,” IEEE Trans. Multimedia, vol.
11, no. 6, Oct. 2009, pp. 1160–69.

Biographies
XIAOHUA TIAN [S‘08] (xtian3@iit.edu) received his B.E. and M.E. degrees in com-
munication engineering from Northwestern Polytechnical University, Xi’an, China,
in 2003 and 2006, respectively. He is currently working toward a Ph.D. degree
in the Department of Electrical and Computer Engineering, Illinois Institute of
Technology, Chicago. His current research interests include application-oriented
networks, multicast protocols, cross-layer design for multimedia networking, and
peer-to-peer networks.

YU CHENG [S‘01, M‘04, SM‘09] (cheng@iit.edu) received his Ph.D. degree in
electrical and computer engineering from the University of Waterloo in 2003.
Since August 2006 he has been an assistant professor in the Department of Elec-

trical and Computer Engineering, Illinois Institute of Technology. His research
interests include application-oriented networking, Internet performance analysis,
wireless networks, and network security. He received a Postdoctoral Fellowship
Award from the Natural Sciences and Engineering Research Council of Canada
(NSERC) in 2004, and a best paper award from the International Conference on
Heterogeneous Networking for Quality, Reliability, Security, and Robustness
2007 (QShine ‘07). He served as a Technical Program Co-Chair for the Wireless
Networking Symposium of IEEE ICC 2009. He is an Associate Editor for IEEE
Transactions on Vehicular Technology and Area Editor for Computer Networks.

XUEMIN (SHERMAN) SHEN [M‘97, SM‘02, F‘09] (xshen@bbcr.uwaterloo.ca)
received his B.Sc. (1982) degree from Dalian Maritime University, China, and
his M.Sc. (1987) and Ph.D. degrees (1990) from Rutgers University, New Jersey,
all in electrical engineering. He is a professor and University Research Chair,
Department of Electrical and Computer Engineering, University of Waterloo,
Canada. His research focuses on mobility and resource management in intercon-
nected wireless/wired networks, UWB wireless communications networks, wire-
less network security, wireless body area networks, and vehicular ad hoc and
sensor networks. He is a co-author of three books, and has published more than
400 papers and book chapters in wireless communications and networks. He
has served/serves as Technical Program Committee Chair for IEEE VTC ‘10 Fall,
Symposia Chair for IEEE ICC ‘10, Tutorial Chair for IEEE ICC ‘08, Technical Pro-
gram Committee Chair for IEEE GLOBECOM ‘07, General Co-Chair for CHINA-
COM ‘07 and QShine ‘06, and Founding Chair of the IEEE Communications
Society Technical Committee on P2P Communications and Networking. He also
has served/serves as a Founding Area Editor for IEEE Transactions on Wireless
Communications, Editor-in-Chief for Peer-to-Peer Networking and Application,
and Associate Editor for IEEE Transactions on Vehicular Technology, Computer
Networks, and ACM/Wireless Networks. He has also served as Guest Editor for
IEEE Journal on Selected Areas in Communications, IEEE Wireless Communica-
tions, and IEEE Communications Magazine. He received the Excellent Graduate
Supervision Award in 2006, the Outstanding Performance Award in 2004 and
2008 from the University of Waterloo, the Premier’s Research Excellence Award
(PREA) in 2003 from the Province of Ontario, Canada, and the Distinguished
Performance Award in 2002 and 2007 from the Faculty of Engineering, Univer-
sity of Waterloo. He is a registered Professional Engineer of Ontario, Canada,
and a Distinguished Lecturer of the IEEE Communications Society.

TIAN LAYOUT  7/8/10  12:12 PM  Page 51



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


