Design of Next Generation Internet Based on Application-Oriented Networking

Yu Cheng

Department of Electrical and Computer Engineering
Illinois Institute of Technology
Chicago, Illinois, USA
cheng@iit.edu
http://www.ece.iit.edu/~yucheng/
Agenda

• Background and motivations
• Application-oriented networking (AON)
• AON based multicast
• AON for next generation Internet management
• Conclusion
Towards Next Generation Internet

• Evolvement of the Internet
 – Common communication infrastructure supporting various multimedia applications
 – Emergence of new distributed computing models
 – Extension of connection to mobile users

• Efforts towards next generation Internet
 – Internet QoS and traffic engineering
 – Content-aware or application-aware processing
 – New management plane based on service-oriented architecture (SOA)
 – Wireline/wireless seamless interworking
Embedded Application Intelligence

• Fundamental network functionalities through application-layer protocols
 – Domain name service (DNS) and Dynamic host configuration protocol (DHCP)

• Emergency of application-specific nodes
 – Web caches, multimedia gateways, wireless access gates, and firewalls

• Active networks: a generic architecture to provision programmability within the network
 – Packets replaced with capsules, carrying program segments
 – Never been widely deployed
 • Large bandwidth overhead
 • Lack of common capsule program language
 • Security issue due to users’ active control capability

• Application-oriented networking
Service-Oriented Architecture

- Various resources are encapsulated with standard common interfaces
- Each service component publishes its location and service description
- Applications are created according to “find, bind and execute” paradigm
- SOA is mainly implemented with Web services interface and XML message communications
Cisco Application-Oriented Networking

• XML coding is verbose; pure software based XML parsing leads to unfavorable overhead
• Cisco propose to integrate the capability of intercepting and processing XML message into routers
 – Enable disparate applications to communicate
 – Enforce consistent security policies
 – Provide visibility of information flow
 – Enhance application optimization
• Current Cisco AON applications are limited to message processing at the edge
Agenda

• Background and motivations
• Application-oriented networking (AON)
• AON based multicast
• AON for next generation Internet management
• Conclusion
Application-Oriented Networking

- A generic interpretation of AON: *the IP devices can intercept not only IP packet headers but also the payloads*
- AON is justified by the modern software and hardware technologies
- The AON routers, with embedded application intelligence, enable a chance to reexamine the design of Internet
It is currently obscure on how to exploit the AON capacity to facilitate or enhance Internet in a systematic manner
AON Router

- The traffic input to an AON router is classified as normal traffic and AON traffic
 - One bit in the packet header is set as normal/AON indicator bit
 - Fine-grained classification information is carried in the payload
Agenda

• Background and motivations
• Application-oriented networking (AON)
• AON based multicast
• AON for next generation Internet management
• Conclusion
Multicast Issue

- **IP multicast, scalability issue**
 - Construct and maintain a tree structure for each group
 - Multicast forwarding entries grow linearly

- **Overlay multicast, efficiency issue**
 - Tree or other delivery structures are constructed and maintained in the overlay network over the unicast infrastructure
 - Different overlay links pass through common physical links in the underlying transport network

Multicast Routing Table

<table>
<thead>
<tr>
<th>Grp 1</th>
<th>1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp 2</td>
<td>1</td>
</tr>
<tr>
<td>Grp 3</td>
<td>2</td>
</tr>
<tr>
<td>Grp 4</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
AON-Based Multicast (AOM)

- Multicast requires network embedded intelligence
- Service model
 - Source based model
 - Multicast receiver addresses are encoded in the packet
 - AON router computes necessary copies for appropriate output interfaces according to those addresses
- Protocol components
 - Membership management
 - Forwarding protocol
Membership Management

- Receiver-side designated router (RDR)
 - Discover the active groups using IGMP
 - Maintain a group host list (GHL), storing the membership information
 - Send membership updating messages (MUMs) to the source node, in the format
 (IP address of RDR: group 1, ..., group n)
- Source node
 - Aggregate RDR-group messages received and maintain a multicast group list (MGL)
 - MGL establishes a record for each group provisioned by the source as
 (group ID: RDR 1, RDR 2, ..., RDR n)
For Forwarding Protocol:

- The normal/AON flag bit and the AON module classifier in the payload direct multicast packets to AON module.
- MGL record will be extracted.
- Necessary copies and corresponding output interfaces will be determined against unicast routing table and MGL record.
- The MGL record forwarded to downstream is updated: removing RDRs taken care of by other sub-trees.
Bloom Filter Implementation

• The MUM message and the MGL are compressed with bloom filter
 – MUM: (IP address of RDR: group 1, …, group n)
 – MGL: (group ID: RDR 1, RDR 2, …, RDR n)

• Bloom Filter Design
 – Reverse path routing for multicast
 – Longest prefix match issue
 – Small false positive probability
 – Asymmetric routing
Properties of AOM

• Forwarding complexity is totally independent of the number of groups to be supported
• No new multicast routing protocol needs to be introduced. Existing intra-domain and inter-domain IP routing protocols are leveraged
• The membership management component, the multicast forwarding component, and group ID are completely decoupled
• The cost incurred in the AON-based multicast is the bandwidth overhead, due to the AON classifier and the MGL/GHL record carried with each packet.
Performance Evaluation

• Simulation topology
Performance evaluation

- Bandwidth Cost Percentage (BCP)

\[BCP = \frac{T}{C \cdot D} \times 100\% \]

- AOM is very close to IP multicast in terms of bandwidth efficiency
Performance evaluation

- Forwarding FALSE Positive Rate
- Binary tree topology with different tree heights

<table>
<thead>
<tr>
<th>H</th>
<th>AOM</th>
<th>FRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>2.6934×10^{-53}</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1.4433×10^{-15}</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2.3242×10^{-10}</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>6.6281×10^{-6}</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>0.0111</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>0.4358</td>
</tr>
</tbody>
</table>

Performance evaluation

- Packet Overhead

![Graph showing Packet overhead vs. False positive rate](image-url)
Agenda

• Background and motivations
• Application-oriented networking (AON)
• AON based multicast
• AON for next generation Internet management
• Conclusion
Next Generation Network Management

• Internet developing into an extremely complex system
• Efforts to reduce the development complexity, lower the management cost, and shorten the time-to-market of new Internet applications
 – Service-oriented architecture (SOA)
 – Application-oriented networking (AON)
 – Autonomic computing
• Technologies are not developed in a coordinated manner
• Autonomic service management framework (ASMF)
 – Every thing is a service: any capability that may be shared and exploited in a networked environment, including physical and virtualized services
 – Incorporate SOA, AON, and autonomic computing for optimal scalability, resource utilization, and QoS performance
SOA to be Enhanced

• Implementing the service broker
 – The universal description, discovery, and integration UDDI approach
 – Broker overlay network
 • How to organize the overlay
 • How to search a set of correlated services
 • How to negotiate SLAs in a distributed approach

• Dependable and automatic service composition
 – The business process execution language (BPEL)
 – Service composition and invocation to be handled by the broker overlay

• Web services and XML messages based SOA implementation
 – Verbose XML coding
 – Triggering AON
AON for Service Management

• Integrating XML message backbone to network devices
 – XML parsing expedited by hardware processing
 – Message routing at network layer facilitated by easy access to resource availability and QoS information
 – More thorough investigation of how to exploit AON capability to facilitate SOA based service creation and management in the architecture level
Autonomic computing

- Automated management with properties of self-configuration, self-optimization, self-healing, and self-protection
- A collection of autonomic elements
- “Monitor, analyze, plan, execute” control loop
- Integration consideration
 - component-based reference models
 - Autonomic element encapsulated with Web services interface
 - “find, bind and execute” SOA principle to orchestrate the autonomic service component
 - Issues of distributed service composition and integration with AON
Autonomic Service Management Framework

- Web services network (resource virtualization layer)
 - Manageable Web services with an autonomic manager for internal management
 - Manageability interfaces (distributed service location/composition and SLA based resource allocation considered as important manageability capabilities)
 - Semantic description
 - SLA negotiation
 - Autonomic management (sensor and effector)
- Autonomic application enabling fabric
 - Overlay of autonomic service brokers
 - Distributed service location and composition
- AON transport network
ASB Overlay

- Distributed data base storing published service descriptions
- Automatic service location and composition
 - Semantic request analyzer
 - SLA translator
 - Composition message generator
- Delegated service management
Distributed Service Composition

- Semantic graph based service component location
 - P2P ASB overlay
 - Tree ASB overlay
- SLA negotiation incorporated with service composition
Exploiting AON

• Locality-aware P2P overlay
 – AON router know both application and network layer information
 – Select best path for a logic link

• Network layer solution to ensure an application-layer link
 – Service differentiation
 – Traffic engineering

• Overlay topology optimization
 – P2P implying end hosts at edge
 – A tree structure for ASB overlay (each ASB attached to an AON router)
Summary

• AON provide an opportunity to streamline Internet design
• How to exploit AON capacity in a systematic way is not clear
• This talk presents some initiating work and thinking towards next generation network design
• For future work
 – IPTV over the application-oriented multicasting
 – Develop implementations for ASMF
 – Apply ASMF to manage a prototype DiffServ/MPLS network
References
