Questions?

- Email List for ECE 100
 - You’re responsible for all email announcements
 - Did you see the email feedback on Pre-Lab 1? Helpful hints were sent out.
 - Questions should be sent directly to me, not to the ece100-12f list

- Policies
 - Posted on ECE 100 web site
 - Late arrival is equivalent to a missed lab
 - Assignments are due at the beginning of lab
 - Each missed lab will result in a "letter-grade-demotion"

- HandyBoard and Interactive C
 - There is a lot to learn (Appendix E.1), so let me know if you have any questions
Lab 1 Observations

- HandyBug is a starting point for your robot design.
 - Part substitution is common, but ask if you're unsure.
 - Structural integrity is important, especially for touch bumper.
 - Route wires along shortest path. Don't stretch/pull wires.
 - Don't force it! Robot components are fragile!
 - Axle lengths are based on LEGO studs, e.g., 1x6 beam.
 - Touch bumper should be sensitive to small force and able to differentiate left/right.
 - If a hub slips inside a tire, then use a small piece of a rubber band between the yellow plastic hub and the black rubber tire.
 - Use cross-bracing beams and pegs to secure the HandyBoard to the robot.
- HandyBoard problems:
 - If no "heartbeat", then power cycle HandyBoard. If board continues to freeze, then hold "start" during power cycle, and try simple fd, bk commands.
 - Be careful with sensor pins (4-pin wide plug) - improper placement can short out the entire board, which is a $300 mistake!

Post-Lab Reports - General Comments

- Follow the format of the Design Portfolio, including
 - Problem Statement: Design and construct a robot that can avoid obstacles using two touch sensors: one each on the left/right side of the touch bumper. Investigate basic operation of the HandyBoard and Interactive C.
 - Criteria: How will you choose among competing designs? This is important in later labs when choosing an optimum solution.
 - Research/Investigation: Include previous background material.
 - Alternative Solutions: Include flowcharts and detailed description.
 - Optimum Solution: Include reason for choosing (req. in Lab 3); State your plan.
 - Construction/Implementation: Explain hardware/software configuration based on lab notes. List each team member's role (KC, PP, HH).
 - Analysis/Testing: Describe performance and testing process. Answer questions in previous Post-Lab assignment slides.
 - Final Evaluation/Conclusion: Success - why/why not?, Problems Encountered, Future Work
 - Attachments: modified code, lab notes
- Include laboratory teammates' names on post-lab report. Get the dates right. Figure out which section you attend. Check out the Post-Lab Report template on the ECE 100 web site.
Presentation in lieu of Post-Lab 3 Report - week of Sep 17

- Follow the format of the Design Portfolio, including
 - Problem Statement: Design and construct a robot to navigate an unknown maze in the shortest time possible.
 - Explain constraints and criteria for subproblems.
 - Alternative Solutions: Discuss your strategies via flowcharts & code.
 - Describe subproblems with short sections of code.
 - Optimum Solution: Why was it chosen?
 - Construction/Implementation: Describe robot hardware/software configuration, e.g., “as-built” description.
 - Final Evaluation/Conclusion: Submit your IC code as an appendix.
 - Problems?, Adequate Solution?, Future Work?

Team Presentations (in place of Competition Post-Lab Reports)

- Due in your laboratory section the week of September 17.
 - Ten minute PowerPoint presentation, roughly 8-9 slides. No Flash!
 - PowerPoint 2003 and 1024x768 resolution LCD projector.
 - Each team member should present an equal share.
 - Three-to-four person teams: 2-3 slides each.
 - Two person teams: 4 slides each.
- Topic: autonomous robot design proposal
 - Presentation should be directed to your firm’s engineering management.
 - Details/numbers are critical to persuading management.
 - Good presentations use diagrams/pictures to illustrate concepts.
 - Provide a framework similar to the Design Portfolio.
 - Consider the qualities of a “good product”. How many does your design exhibit?