Substation & Distribution Automation, Protocols and Security Issues

William J. Ackerman
Principal Consultant
WE’VE MOVED SINCE LAST SUMMER
Substation Data - The Old Way

- **DATA AND CONTROL**
- 3 - SINGLE PHASE CURRENTS
- 1 - THREE PHASE WATTS
- 1 - THREE PHASE VARS
- 3 - BUS VOLTAGE (1 SET PER BUS)
- 1 - TRIP/CLOSE STATUS & CONTROL
- 1 - RECLOSER STATUS & CONTROL
Substation Data - The New Way

DATA AND CONTROL QUANTITIES

REAL TIME VALUES
- $I_a, I_b, I_c, I_n, I_+, I_-, I_0$ Mag. and Angle
 14 points
- V_a, V_b, V_c, V_+, V_- Mag. and Angle
 10 points
- KW_a, KW_b, KW_c, KW_3
 4 points
- $KVar_a, KVar_b, KVar_c, KVar_3$
 4 points
- $KWH_a, KWH_b, KWH_c, KWH_3$
 4 points
- $KVarH_a, KVarH_b, KVarH_c, KVarH_3$
 4 points
- Frequency, Power Factor
 2 points
- Distance to Fault
 1 point

DEMAND VALUES
- I_a, I_b, I_c, I_n (Magnitude and angle)
 8 points
- KW_a, KW_b, KW_c, KW_3
 4 points
- $KVar_a, KVar_b, KVar_c, KVar_3$
 4 points
Substation Data - The New Way

DATA AND CONTROL TO EMS

STATUS POINTS (Minimum of 27)

<table>
<thead>
<tr>
<th>Breaker</th>
<th>Recloser</th>
<th>Ground Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/C Protection 1</td>
<td>O/C Protection 2</td>
<td>O/C Protection 3</td>
</tr>
<tr>
<td>Base Settings</td>
<td>Alt 1 Settings</td>
<td>Alt 2 Settings</td>
</tr>
<tr>
<td>Zone Sequence</td>
<td>Spring Charging</td>
<td>Single-shot Reclose</td>
</tr>
<tr>
<td>Multi-Shot Reclose</td>
<td>Open Command</td>
<td>Close Command</td>
</tr>
<tr>
<td>Event Capture 1</td>
<td>Event Capture 2</td>
<td>Waveform Capture</td>
</tr>
<tr>
<td>Trip Coil Monitor</td>
<td>Clear Recl Counters</td>
<td>Breaker Fail Initiate</td>
</tr>
<tr>
<td>Sync Check On/Off</td>
<td>Sync Check Bypass</td>
<td>Local/Supv</td>
</tr>
</tbody>
</table>

CONTROL POINTS (Minimum of 18)

<table>
<thead>
<tr>
<th>Trip</th>
<th>Close</th>
<th>Recloser Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recloser Disable</td>
<td>Enable O/C Prot 1</td>
<td>Enable O/C Prot 2</td>
</tr>
<tr>
<td>Enable O/C Prot 3</td>
<td>Enable Base Settings</td>
<td>Enable Alt 1 Setting</td>
</tr>
<tr>
<td>Enable Alt 2 Setting</td>
<td>Enable 1-shot Recl</td>
<td>Enable Multi-Recl</td>
</tr>
<tr>
<td>Enable Event Capt 1</td>
<td>Enable Event Capt 2</td>
<td>Enable Wave Capt</td>
</tr>
<tr>
<td>Enable Sync Check</td>
<td>Bypass Sync Check</td>
<td>Local/Supv</td>
</tr>
</tbody>
</table>
Substation Data - The New Way

DATA AND CONTROL

SUMMARY
- Real Time Values: 43
- Demand Values: 16
- Maximum Values: 36
- Minimum Values: 36
- Status Values: 27
- Control Points: 18

OTHER DATA:
- Fault Records: 32
- Operations Records: 128
- Load Profile Records: 3,840
- Waveform Samples: 14,336
- Power Quality Data: 4,000
Substation Data - Old and New

10 FEEDER SUBSTATION, REAL TIME VALUES ONLY

(2 Incoming Lines, 2 Transformers)

<table>
<thead>
<tr>
<th></th>
<th>RTU BASIS</th>
<th>IED BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOGS</td>
<td>82</td>
<td>602</td>
</tr>
<tr>
<td>STATUS</td>
<td>24</td>
<td>378</td>
</tr>
<tr>
<td>CONTROL</td>
<td>24</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1232</td>
</tr>
</tbody>
</table>

REAL-TIME DATABASE CAN BE ALMOST TEN TIMES LARGER WHEN IEDs ARE USED!
SA, DA, Protocols, DR and Security

Circuit Breaker

Test Sw.

Control/Status Information

RTU and I/O Equipment
- 3 Volt Transducers
- 3 Amp Transducers
- 1 Watt (3-phase) Transducer
- 1 VAR (3-phase Transducer)
- 2 Status Inputs (T/C, Recloser)
- 2 Interpose Relays (T/C)
- 1 Control Relay (Recloser)

Communication Line to Master Station
SA, DA, Protocols, DR and Security

- V, I, f Generator
- Circuit Breaker
- Test Sw.
- Circuit Breaker Simulator
- Control/Status Information
- IED Under Test
- Link to Local and/or Remote HMI or Control System
SA, DA, Protocols, DR and Security
Substation Data - Old and New

10 FEEDER SUBSTATION, REAL TIME VALUES ONLY

(2 Incoming Lines, 2 Transformers)

<table>
<thead>
<tr>
<th>Points</th>
<th>Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOGS</td>
<td>82</td>
</tr>
<tr>
<td>STATUS</td>
<td>24</td>
</tr>
<tr>
<td>CONTROL</td>
<td>24</td>
</tr>
<tr>
<td>130</td>
<td>870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Points</th>
<th>Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>IED BASIS</td>
<td>602</td>
</tr>
<tr>
<td>378</td>
<td>756</td>
</tr>
<tr>
<td>252</td>
<td>504</td>
</tr>
<tr>
<td>1232</td>
<td>5474</td>
</tr>
</tbody>
</table>

Status Checks: on/off (2)
Control Checks: on/off (2)
Analog Checks: -max, -norm, -act, 0, +act, +norm, +max (7)
Consider “simple” PLC automation scheme with 5 possible outputs determined by 15 inputs (3 single-phase voltages from 5 devices, low, normal, high value)

- Need to test $\sim 1.2 \times 10^6$ possible input combinations!
- 6 tests per hour using generators = ~ 70 years
- This appears to be somewhat unreasonable
- Redesign such that outputs are dependent upon phase-B voltage from 5 devices
- Now only need to test 3,000 possible combinations!
- 6 tests per hour using generators = 63 days
- Still somewhat unreasonable
- FINAL SOLUTION: DO SOME SPOT CHECKS AND PRAY!
SA, DA, Protocols, DR and Security

• NEAR-TERM IMPACT OF DATA VOLUME
 – New methods for building database essential
 • Use substation and/or device templates for replication
 • Pre-define standard objects
 • (Careful, there is no such thing as two identical substations)
 • Use object symbols, drag and drop to database
 • New naming conventions may be required
 • (Just when you got everybody to understand and use the old ones)
 • Greater use of default values on limits, etc.
 • (Careful, once a default, always a default)
SA, DA, Protocols, DR and Security

• NEAR-TERM IMPACT OF DATA VOLUME
 – New methods for maintaining database essential
 • Each new IED means hundreds of points
 • Need some technique to insure that nothing else changed when adding/deleting items
 • Saving field changes for a monthly database update probably won’t work
 • Current checkout techniques will take too long to be practical
SA, DA, Protocols, DR and Security

• NEAR-TERM IMPACT OF DATA VOLUME
 – Performance Issues
 • 10 to 100 times greater CPU power?
 • 10 to 100 times additional disk storage?
 • Disk access times?
 • Shadow disks?
 • Can 2-second status and 10 second analog scans be maintained?
 • Upgrade communications facilities to higher bit rates to handle more data per unit time
 • Re-define a lot of status and analog points as slower scan or demand only
SA, DA, Protocols, DR and Security

A LITTLE PERSPECTIVE

- BATCH PROCESS, 100-BUS LOAD FLOW, COMPUTER SVCS DEPT
- BATCH PROCESS, 250-BUS LOAD FLOW, TIME SHARE TERMINAL
- 500-BUS LOAD FLOW, ON-LINE EMS COMPUTER
- 1000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
- 2000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
- 5000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
- 10000-BUS LOAD FLOW, ON-LINE EMS COMPUTER

TIME TO GET ANSWERS

YEAR

BATCH PROCESS, 100-BUS LOAD FLOW, COMPUTER SVCS DEPT
BATCH PROCESS, 250-BUS LOAD FLOW, TIME SHARE TERMINAL
500-BUS LOAD FLOW, ON-LINE EMS COMPUTER
1000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
2000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
5000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
10000-BUS LOAD FLOW, ON-LINE EMS COMPUTER
SA, DA, Protocols, DR and Security

• NEAR-TERM IMPACT OF DATA VOLUME
 – Database Integrity and Failover Issues
 • Report and process by exception essential
 • Revisit deadbands and how they are defined
 • Make deadband definition more complex than a simple percent
 • What is impact of deadband on subsequent calculations?
 • (Greater deadband equals less useful results?)
SA, DA, Protocols, DR and Security

NEAR-TERM IMPACT OF DATA VOLUME

- Database Integrity and Failover Issues (continued)
 - Need to reconsider periodic check-point of complete database
 - Check-point by exception?
 - Not enough time to do periodic integrity scan of entire RT database
 - Break integrity scan into smaller groups, checked less often
 - Complete initializing scan after failover may take too long
 - Scan times much greater than actual CPU failover times
SA, DA, Protocols, DR and Security

NEAR-TERM IMPACT OF DATA VOLUME

- Alarm and Event Processing
 - Alarm priority structure will require complete re-design
 - Alarm processing can’t be deterministic any more
 - A single IED can generate many alarms from one power system event
 - Multiple IEDs in the same or nearby substations may see the same event
 - Human factors design critical
 - Can’t swamp dispatcher/operator during disturbance conditions
 - Dispatcher/operator needs to see every alarm during quiet conditions
 - Significant disturbance = 200,000 alarm burst?
 - Alarm and event record retention criteria needs review
 - Alarm and event search tools must be more user friendly
• NEAR-TERM IMPACT OF DATA VOLUME
 – Supervisory Control Issues
 • Control sequences no longer deterministic (fixed times)
 • Control response a function of the IED involved
 • (Some are fast, some are slow)
 • Dispatcher/Operator no longer has “feel” about control completion time
 • (Need supplemental information per point on control speed?)
 • “Check before Operate” may not be
SA, DA, Protocols, DR and Security

Importance of Real-Time

SCADA/EMS/DMS System

HMI INTERFACE
(Select point)

CONTROL PROCESSOR
(Command timer)

COMMUNICATIONS PROCESSOR
(Modem, transmit)

DATA TRANSMISSION
(Line)

REMOTE END PROCESSOR
(Modem, decode)

FAIL
(Alarm Message to Operator, Alarm DB)

ALARM/EVENT PROCESSOR
(Success/fail)

END DEVICE RESPONSE
(Change state)

COMMAND TO END DEVICE
(Contact close)

END DEVICE FEEDBACK
(Contact close)

END DEVICE CONTROLLER XMIT STATUS

SUCCESS
(Event Message to Log Database)

UNCOMMANDED CHANGE OF STATE?

COMMUNICATIONS PROCESSOR
(Modem, receive)

DATA TRANSMISSION
(Line)

REMOTE END PROCESSOR
(Encode, modem)

XMIT COMMAND TO END DEVICE CONTROLLER

END DEVICE CONTROLLER XMIT STATUS

DATA TRANSMISSION
(Line)

REMOTE END PROCESSOR
(Encode, modem)

SCADA/EMS/DMS System
SA, DA, Protocols, DR and Security

- **LITIGATION DATABASE**
 - In the near future a “Litigation” Database may be as important as an Operations Database.

 - All events adverse to open access (i.e., tripping of relays causing interruptions or denial of transfer capability, inability to deliver per contract, etc.) will require full documentation and justification that the events were truly technically necessary.

 - Full documentation of such events must be easily accessible as quickly as possible after the event so that appropriate responses can be prepared.
PROTOCOL ISSUES – HISTORY --- Mid 1980’s

Substation Device Interfaces

Urgent Need for a standard Substation IED Protocol
Many competing vendor, utility “standards”

IEEE-PES Substations Committee

Responded with Interim Solution

IEEE Standard 1379: “Trial Use Recommended Practice for Data Communications between Intelligent Electronic Devices and Remote Terminal Units in a Substation”

DNP 3.0, Level-2
IEC 60870-5-101, 2, 3, 4, 5

“Trial Use” designation provides limited lifetime
(DNP3.0 initially was designed as an implementation of an IEC 60870 protocol)
SA, DA, Protocols, DR and Security

- PROTOCOL ISSUES - HISTORY
 - IEEE-1379 Updated in 1999, “Trial Use” designation removed
 - IEEE-1379 specifies two recommended protocols
 - DNP 3.0
 - IEC 60870-5-101, 2, 3, 4, 5
 - Many other protocols being used today
 - Modbus, Modbus+ (Very popular)
 - ASCII (Slow, but comprehensive)
 - Incom, CONITEL, SC1801, CDC Type 2, etc. (Obsolete)
 - Future Protocol Direction
 - UCA Compatible
SA, DA, Protocols, DR and Security

PROTOCOL ISSUES

UCA (Utility Communications Architecture)

Version 1 issued December 1991

Part of EPRI Project RP2949, Integration of Utility Communication Systems

Mostly Functional Descriptions

Not widely adopted by industry because of lack of details

Manufacturing Messaging Specification (MMS)(ISO/IEC 9506) to be used for real-time data but specific implementations missing
SA, DA, Protocols, DR and Security

- UCA (Utility Communications Architecture) is NOT a protocol
- UCA is a set of rules and techniques for achieving enterprise-wide common communications procedures
- There are many protocols that may be UCA-compliant
- The utility industry is seeking to achieve a common, universal, inter-operable protocol for all SUBSTATION data interchange (including control) that is UCA-compliant
- Ultimately, inter-changeability is desired (but will probably never occur)
SA, DA, Protocols, DR and Security

• UCA is NOT “Plug and Play”
• Communications in a Substation Use “Publish and Subscribe” Technology
• Addition of a new device (a relay, for example)
 – Install, wire, assign unique address(es)
 – Program new device to listen for, and respond to, messages from other specific devices
 – Program all other applicable devices to listen for and respond to messages from new device
PROTOCOL ISSUES

UCA/MMS Forum started in May 1992

Six working groups to consider MMS applications

1. Power Plants
2. Control Centers
3. Customer Interfaces
4. Substation Automation
5. Distribution Feeder Automation
6. Profiles

WGs 1, 2, 3 not very active

WG 4, 5, 6 functions have been absorbed into UCA-2.0™ Users Group
SA, DA, Protocols, DR and Security

PROTOCOL ISSUES

Inter-Utility Control Center Real Time Data Exchange
- Power system data
- Interchange Scheduling data

Initial Protocols based on Regional Needs
-WSCC (Western Systems Coordinating Council)
- IDEC (Inter-Utility Data Exchange Committee)
- ELCOM (European)

Above Groups, Vendors, Users Wanted one Standard
- Name adopted was ICCP
- Inter Control Center Communications Protocol
SA, DA, Protocols, DR and Security

PROTOCOL ISSUES

Utility Communications Specification Working Group Established
EPRI RP-3830-01
Work started September 1991, soon merged with IEC efforts
Result issued as IEC International Standard
Common U.S. name is ICCP
Common International name is TASE.2
Telecontrol Application Service Element 2
IEC 60870-6-503, -505, -702, and -802
TASE.2 utilizes MMS, is UCA compatible
Over 200 Utilities using ICCP in U.S.
NERC Mandate to use ICCP for Data Exchange
SA, DA, Protocols, DR and Security

Protocol Issues

UCA In the Substation

UCA Version 2 Specification issued Late 1996
EPRI transferred rights on UCA-2.0™ documentation to IEEE
IEEE Published UCA-2.0™ documents as a technical report (TR-1550) which is available to the public
UCA-2.0™ Users Group and IEC TC-57, WG 10,11,12 coordinate efforts to produce a common protocol document
SA, DA, Protocols, DR and Security

PROTOCOL ISSUES

UCA-2.0™ Meetings and Demonstrations held in conjunction with IEEE-PES Power Systems Relay and Substations Committees (3 times per year)

Vendors demonstrate latest product achievements and interoperability
SA, DA, Protocols, DR and Security

PROTOCOL ISSUES
Substation Automation
GOMSFE
(Generic Object Models for Substation and Feeder Field Devices)
Non-vendor specific
Compliance with Power System Object Model descriptions
IEDs became available mid-1998 for interoperability demonstrations, but didn’t support all features (and many still don’t)
Currently at Version 0.9x
GOOSE
(Generic Object Oriented Substation Event)
GSSE
(Generic SubStation Event)
SA, DA, Protocols, DR and Security

- Agreement on a common language is ‘UCA compliant’ but not necessarily inter-operable:
 - English French
 - Spanish Swedish
 - Arabic Chinese
 - etc.
SA, DA, Protocols, DR and Security

• Agree on ‘English’ as common language -- still not 100% interoperable

• U.S. English British English
• Windshield Windscreen
• Hood Bonnet
• Tire Tyre
SA, DA, Protocols, DR and Security

- Agreement on “U.S. English” does not guarantee interoperability:

<table>
<thead>
<tr>
<th>“Northern” English</th>
<th>“Southern” English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello</td>
<td>Hey</td>
</tr>
<tr>
<td>Everybody</td>
<td>Y’all</td>
</tr>
</tbody>
</table>
SA, DA, Protocols, DR and Security

- Agreement on “Northern” English does not guarantee interoperability:

 - Brooklyn
 - Toity
 - Harvard
 - Boston
 - Thirty
 - Havad
SA, DA, Protocols, DR and Security

- Inter-operability requires every data message to be self-contained, and not dependent upon any outside information. Result is a lot of overhead---very inefficient communications, but at 10 Mb/S or 100 Mb/S, this usually isn’t a problem (However, at 9600 b/S it’s impractical)
UCA is not “efficient”

Time in milliseconds to get one status value:

<table>
<thead>
<tr>
<th>Min # of Bits</th>
<th>UCA</th>
<th>DNP3.0</th>
<th>CONITEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 b/s</td>
<td>1000</td>
<td>133</td>
<td>27</td>
</tr>
<tr>
<td>2400 b/s</td>
<td>500</td>
<td>67</td>
<td>13</td>
</tr>
<tr>
<td>9600 b/s</td>
<td>125</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>1 Mb/s</td>
<td>1.2</td>
<td>0.16</td>
<td>0.032</td>
</tr>
<tr>
<td>10 Mb/s</td>
<td>0.12</td>
<td>0.016</td>
<td>0.0032</td>
</tr>
<tr>
<td>100 Mb/s</td>
<td>0.012</td>
<td>0.0016</td>
<td>0.00032</td>
</tr>
</tbody>
</table>
SA, DA, Protocols, DR and Security

• **Why Standardize Models**
 – Vendor independent
 – Simplify definition of device data
 – Maximize reuse of data component definitions
 – Reduce development and maintenance costs
 – Allow expanded market of suppliers
 – Allow flexibility in product design
Object Model Requirements
- Topology and protocol independent
- Standard representation of IED Data (definition and data type) for communication interoperability
- Extensible (levels of standardization)
- Allow vendors to differentiate products with value-added specialized functions
SA, DA, Protocols, DR and Security

• “Settled” issues:
 • Fiber optics will be physical media in HV substations, copper may be ok in LV
 • Ethernet will be transmission technique
 Ethernet speed is not specified; 10 Mbit, 100 Mbit, 1 Gbit available (but different speeds not inter-operable)
 • MMS will be communications services
Some other observations:

1. Ethernet is a definition of how to format, address and transmit datagrams over some media; and how to handle any problems such as data collisions. It says nothing about what the data is.
2. MMS stands for Manufacturing Messaging Specification. It is an IEC Standard. It specifies how to perform services such as “send data”, “receive data”, “request data”, “no response”, “acknowledge”, etc. It says nothing about what the data is.
3. TCP/IP is actually two protocols: Transmission Control Protocol Internet Protocol
TCP is responsible for breaking up a message into datagrams, re-assembling them at the other end, re-sending anything that gets lost, and putting things back in the right order. It doesn’t know anything about the message or its meaning.

TCP is connection-oriented---it confirms communications.
4. UDP/IP is actually two protocols
 User Datagram Protocol
 Internet Protocol
UDP provides port addressing and data-integrity layer on top of IP.

UDP is Connectionless--- it does NOT provide any sequencing or datagram loss protection services. UDP must rely on repetition in hopes that at least one transmission get through.
SA, DA, Protocols, DR and Security

IP is responsible for routing individual datagrams
IPv4 is address-limited (32 bits), being replaced by IPv6 for more addresses (128 bits), more features

TCP hands IP a datagram with a destination.

IP doesn’t know how this datagram relates to any datagram before or after. It just gets it to the specified destination.
SA, DA, Protocols, DR and Security

- IEEE P-1525 (PES Substations Committee) was to be U.S. standard that would result in interoperability of equipment. Failed in balloting and has been cancelled.

- IEC 61850 (TC57) is International standard that should result in interoperability of equipment.
SA, DA, Protocols, DR and Security

- A number of US personnel are balloting members of IEC, IEEE, UCA Committees
- UCA is in demo mode, No real published standards, will be incorporated into IEC-61850
- IEC-61850 is in 10 parts, all are published as International Standards, Part 10, Testing, is last to be published
 - Part 1 is an excellent introduction and overview—available from the IEC offices in Switzerland
- No vendor has all UCA functions in a device
Major Open Issues

UCA communications ok for data, does not yet meet requirements for Protection

Some tests and demos have generally not met speed requirements

Many installations are still in “learning phase”

Most Ethernet Equipment is not DC-operated

Most Ethernet equipment has narrow operating temperature range (0°C - 40°C)

RFI/EMC (IEEE C37.90) characteristics not tested in most Ethernet equipment
UCA/Ethernet will use switched hub in substation to establish ‘pseudo’ determinism.

UCA Hub in substation will enable:
- Relay-to-relay communications
- Substation-to-substation communications
- Substation-to-desktop (via firewall) communications
SA, DA, Protocols, DR and Security

SUBSTATION OPERATIONS NETWORK OR CORPORATE NETWORK

Bridge/Router(m)

Bridge/Router(n)

Bridge/Router(n+1)

Switched Hub

Firewall

Remote Trip

Local Trip

* Points marked with * are inputs to event recorder
SA, DA, Protocols, DR and Security

EVENT RECORDER TRACES OF AN OPERATION --- SUBSTATION TO SUBSTATION DIRECT CONNECTION

Everything Works OK

SUBSTATION A EVENT RECORDER
 LOCAL TRIP
 TRANSFER TRIP
 SIGNAL
 GUARD

SUBSTATION B EVENT RECORDER
 REMOTE TRIP
 TRANSFER TRIP
 SIGNAL
 GUARD

Something Didn’t Work Correctly

SUBSTATION A EVENT RECORDER
 LOCAL TRIP
 TRANSFER TRIP
 SIGNAL
 GUARD

SUBSTATION B EVENT RECORDER
 REMOTE TRIP
 TRANSFER TRIP
 SIGNAL
 GUARD

Transfer Trip signal not received, decoder module defective!
SA, DA, Protocols, DR and Security
IEEE 1613

Standard to define environmental characteristics of Ethernet equipment in substations

Incorporates basic provisions of C37.90 series on SWC, EMI, RFI

Applies only to substation equipment, NOT including protection

Approved as IEEE Standard December 2002
SA, DA, Protocols, DR and Security

Major Open Issues

- Network maintenance tools for technicians still in infancy (Ethernet is not easy to troubleshoot)
- Security issues are just starting to be addressed
- UCA will require large amounts of software code in the end device
 - Unit Testing increasingly difficult
 - More opportunities for bugs
Network Timing and Time Sync

Most common today is a GPS receiver with IRIG-B output, distribution to relays via a timing wire

Requires extra wiring, propagation delays in timing wire can impact accuracy

IEEE Standard 1588 (approved July 2002) provides for ‘inexpensive’ time distribution over Ethernet and some other networks, with accuracy in the sub-microsecond range
SA, DA, Protocols, DR and Security

- Is UCA-2.0™ the final ‘One and Only’ answer to protocol needs?
 - Designed to meet practically all currently known requirements
 - Provides a defined ‘single’ protocol for the entire utility industry
 - Includes ‘hooks’ to add new functions in the future
 - Is rigidly structured, but very flexible
Security Issues
SA, DA, Protocols, DR and Security

[Diagram showing a control house, locked gate, chain link fence, locked door, communications facility, and switchgear and transformers enclosed within a secured area.]
SA, DA, Protocols, DR and Security

Data Sources
- Real-time measurements:
 - watts, vars, volts, etc.
 - status indications
 - generation costs
 - transmission data
- Historical Data:
 - operation records
 - load profiles
 - event records
- Customer Data:
 - billing data
 - usage profiles
 - contracts
- Financial Data:
 - costs
 - assets

Data Users
- Real-time Data:
 - system dispatch
 - energy trading
 - load forecasts
 - fuel contracts
 - long-term contracts
- Asset Utilization:
 - construction planning
 - maintenance planning
 - real estate planning
- Financial:
 - cash flow
 - payroll
- Customer Service:
 - customer retention
 - power quality

Unauthorized Intruder
SA, DA, Protocols, DR and Security

Generation of Power

<table>
<thead>
<tr>
<th>ACTION</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking transmission of data by introduction of random noise, corruption of data ('denial of service')</td>
<td>Impairment of economic dispatch, increased costs, mismatch between required and actual generation, cost to purchase replacement power for under-generation, excess generation without recovery of costs</td>
</tr>
<tr>
<td>Alteration of real-time production data</td>
<td>Impairment of economic dispatch, increased costs, mismatch between required and actual generation, cost to purchase replacement power for under-generation, excess generation without recovery of costs</td>
</tr>
<tr>
<td>Alteration of metering data</td>
<td>Bills rendered for less than actual amount delivered</td>
</tr>
<tr>
<td>Alteration of fuel cost information</td>
<td>Impairment of economic dispatch, increased costs, payment for fuel not used</td>
</tr>
<tr>
<td>Alteration of unit status data</td>
<td>Failure to operate at actual limits</td>
</tr>
</tbody>
</table>
Transmission of Power

<table>
<thead>
<tr>
<th>Action</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking transmission of data by introduction of random noise, corruption of data (‘denial of service’)</td>
<td>Fall-back to ultra-conservative operating practices on lines and transformers because of lack of knowledge of actual conditions</td>
</tr>
<tr>
<td>Alteration of real-time power flow data</td>
<td>Departure from optimum dispatch and system operation (at increased costs)</td>
</tr>
<tr>
<td>Falsified switching and tagging instructions to take lines, other equipment out of service</td>
<td>Inability to fulfill contracts, transfer limitations, non-economic operation of generation, inability to sell/buy power</td>
</tr>
<tr>
<td>Insertion of false status information regarding open/closed switches</td>
<td>Generation of false alarms in power system operation programs such as state estimator, topology, contingency analysis etc.</td>
</tr>
</tbody>
</table>
Distribution of Power

<table>
<thead>
<tr>
<th>Action</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking transmission of data by introduction of random noise, corruption of data (‘denial of service’)</td>
<td>Loss of visibility into distribution system, slow or no response to problems, potential safety problems</td>
</tr>
<tr>
<td>Altered transformer and line loading data</td>
<td>Operation of facilities above ratings, accelerated loss of life, bad data for load forecasting, violation of power quality and power delivery regulations</td>
</tr>
<tr>
<td>Altered status data</td>
<td>Undetected outages, violation of power quality and power delivery regulations</td>
</tr>
<tr>
<td>Altered switching and tagging information</td>
<td>Safety issues, including potential injury or death</td>
</tr>
</tbody>
</table>
Power and Energy Trading

<table>
<thead>
<tr>
<th>Action</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking transmission of data by introduction of random noise, corruption of data (‘denial of service’)</td>
<td>Inability to execute profitable transactions, cancel unprofitable transactions.</td>
</tr>
<tr>
<td>Altered quotation data</td>
<td>Significant cost penalties if transactions are entered at the wrong cost or selling price</td>
</tr>
<tr>
<td>Deletion or erasure of agreements</td>
<td>Loss or alteration of transaction records</td>
</tr>
<tr>
<td>Alteration of system conditions and status</td>
<td>Failure to enter into otherwise desirable or profitable transactions</td>
</tr>
<tr>
<td>Intercept confidential data regarding costs, system conditions</td>
<td>Use knowledge of costs and conditions to obtain competitive advantage</td>
</tr>
</tbody>
</table>
Asset Management

<table>
<thead>
<tr>
<th>ACTION</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking transmission of data by introduction of random noise, corruption of data (‘denial of service’)</td>
<td>Under-utilization because of need for conservative operations when actual conditions are unknown</td>
</tr>
<tr>
<td>Altered loading data</td>
<td>Overloading of assets with resulting loss of life, failure to perform proper preventive or corrective maintenance</td>
</tr>
<tr>
<td>Altered status data</td>
<td>Failure to protect apparatus, failure to perform preventive or corrective maintenance</td>
</tr>
</tbody>
</table>
Customer Activities

<table>
<thead>
<tr>
<th>ACTION</th>
<th>IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking transmission of data by introduction of random noise, corruption of data (‘denial of service’)</td>
<td>Inability to detect power quality problems, including outages</td>
</tr>
<tr>
<td>Altered meter data</td>
<td>Under or over billing of customer</td>
</tr>
</tbody>
</table>
SA, DA, Protocols, DR and Security

Objectives of a Security Program

Administration tools

- Automatic
- Human

Confidentiality

- Compartmentalization of information

Integrity of Network and Data

Availability of Network and Data

Non-repudiation
Sources of Threats

- Equipment failure
- Authorized user makes mistakes
- Authorized user exceeds authorization
- “Casual” intruder (curiosity)
- Intentional intruder
- Software bugs
SA, DA, Protocols, DR and Security

Recent advertisement by a network security vendor:

Your Network will never, ever be 100% Secure!
SA, DA, Protocols, DR and Security

What can be done:

- Limited Access
- Obscure, Non-standard Protocols (Exact opposite of UCA objectives)
- Passwords, Other physical identifiers
- Firewalls
- One-way data transfer
Conclusions:

1. The degree of effort expended by an intruder is directly related to the ‘profitability’ of the intrusion.

2. The degree of effort expended to protect against security breaches is directly related to the cost of a breach.
SA, DA, Protocols, DR and Security

Distributed Resources on the Distribution System
SA, DA, Protocols, DR and Security

• Definitions:

- **Point of Common Coupling (PCC)**
- **Phase to Ground**
- **Phase to Phase**
- **Three Phase**
- **Point of Interconnection (PI)**
- **Distributed Resource**
SA, DA, Protocols, DR and Security

- **“User” Concerns**
 - **Safety of Personnel**
 - Personnel must be able to work on the EPS and DER facility without undue risk of injury or death
 - General public should not be exposed to hazardous conditions
 - **Fault duty, including DER, should not exceed ratings of distribution system equipment, including customer-owned equipment connected to the system**
 - Equipment damage, downed conductors, vault fires, etc.
 - **Normal load-carrying and interrupting capabilities, including DER, should not be exceeded**
 - Reduction of system reliability, premature failure of equipment
 - **Protective relaying and control equipment, should not be subject to mis-operation as a result of DER additions**
 - More and longer interruptions, high/low voltage problems
SA, DA, Protocols, DR and Security

• **Producer and General Interest Concerns**
 – Interconnection costs must be minimal
 • Interconnection equipment should be some fraction of the cost of the DER being connected.
 • Utility involvement should be minimized
 – Impact studies cost too much
 – Some utilities use interconnection standards as a means of ‘killing’ DER
 – Interconnection must be ‘simple’ so that it won’t discourage DER applications
 – Interconnection apparatus should be ‘maintenance free’ as much as possible
 – Interconnection operation should be ‘automatic’
SA, DA, Protocols, DR and Security

• Significant Problem Areas
 – Scaling
 “My typical distribution feeder has a peak load of 4 Mw. Adding a few kW of PV is a whole different problem than adding 400 kW.”
 – Islanding
 Utility is still responsible for voltage and frequency of all its customer connections. Creating an island where some utility customers are supplied with un-controlled voltage or frequency is unacceptable
 – Safety
 Personnel working on the distribution system MUST be protected from backfeed or accidental energization
 – Protection System Design
 Radial distribution line protection is designed and coordinated for ‘one way’ power flow. Bi-directional flow in some part or all of a feeder is a whole new world of problems
 – Networked Distribution System
 Consideration postponed to future updates
IN CONCLUSION:
SA, DA, Protocols, DR and Security

A “Plug” for the Substations Committee Annual Meeting:
Tampa, Florida
April 10-14
Meeting Website:
SA, DA, Protocols, DR and Security

Subcommittee C0: Data Acquisition Processing and Control Systems
Treatment of all matters relating to data acquired within substations and control of substations

- Interfaces to Substation Apparatus
- Use of Transducers
- Protocols
- Computers used in Substations
- Sponsor and Promote New Technologies
Guidelines and Recommended Practices for the specification and use of computer-aided systems as applied to substation design, engineering, construction, maintenance and operation.
SA, DA, Protocols, DR and Security

Working Group C2

Application of New Technologies in Substation Monitoring and Control

Task Force C2TF1: Communications Networking Devices Installed in Substations

Task Force C2TF2

Use of Computer Technology in Substation Data Acquisition and Control
Working Group C3
Electric Network Control Systems Standards
Review and Update of All Assigned ANSI/IEEE and IEEE Standards applicable to Substation Automation and Control
SA, DA, Protocols, DR and Security

Standards and Guides Assigned to C0

• IEEE-1379-2000: Recommended Practice for Data Communications between Remote Terminal Units and Intelligent Electronic Devices in a Substation

• IEEE 1613: Standard Environmental and Testing Requirements for Communications Networking Devices in Electric Power Substations

• P 1615: Recommended Practice for Network Communication in Electric Power Substations
SA, DA, Protocols, DR and Security

Standards and Guides Assigned to C0

• P 1646: Standard Communication Delivery Time Performance Requirements for Electric Power Substation Automation

• P C37.1: Standard for SCADA and Automation Systems

• C37.2: Standard Electrical Power System Device Function Numbers and Contact Designations
SA, DA, Protocols, DR and Security

SIGN UP ASAP FOR ANNUAL MEETING

SA, DA, Protocols, DR and Security

THANK YOU!