Substation Integration and Automation – Approaches and Best Practices

IEEE PES Chicago Chapter
ComEd Commercial Center
Oak Brook, Illinois
Wednesday, March 12, 2003

John McDonald
KEMA Consulting
Overview – Approaches and Best Practices

• System Architecture
 – Substation Integration and Automation Levels
 – Primary and Secondary Substations
 – Architecture Functional Data Paths
 – New Versus Existing Substations
• Communication Protocols
 – IED Standalone Capabilities
 – IED Integration Capabilities
• Utility Case Study
 – Functional Architecture
 – Vendor Installed Architecture
 – Equipment Photographs
Intelligent Electronic Device (IED)

• Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers)
Substation Integration and Automation Levels

<table>
<thead>
<tr>
<th>Utility Enterprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation Automation Applications</td>
</tr>
<tr>
<td>IED Integration</td>
</tr>
<tr>
<td>IED Implementation</td>
</tr>
<tr>
<td>Power System Equipment (Transformers, Breakers)</td>
</tr>
</tbody>
</table>
Substation Integration

• Integration of protection, control and data acquisition functions into a minimal number of platforms to reduce capital and operating costs, reduce panel and control room space, and eliminate redundant equipment and databases.
Substation Automation

- Deployment of substation and feeder operating functions and applications ranging from SCADA and alarm processing to integrated volt/VAR control in order to optimize the management of capital assets and enhance operation and maintenance (O&M) efficiencies with minimal human intervention.
Example of “Primary” Substation and “Secondary” Substation

Primary Substation

Secondary Substation
Primary Substation Automation System
Secondary Substation Automation System
Architecture Functional Data Paths

<table>
<thead>
<tr>
<th>Utility Enterprise Connection</th>
<th>Substation Automation Applications</th>
<th>Power System Equipment (Transformers, Breakers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCADA Data to MCC</td>
<td>IED Integration Via Data Concentrator/Substation Host Processor</td>
<td>Power System Equipment (Transformers, Breakers)</td>
</tr>
<tr>
<td>Historical Data to Data Warehouse</td>
<td>IED Implementation</td>
<td>Power System Equipment (Transformers, Breakers)</td>
</tr>
<tr>
<td>Remote Dial-In to IED</td>
<td></td>
<td>Power System Equipment (Transformers, Breakers)</td>
</tr>
</tbody>
</table>
Web Pages with:
- Real-time values
- Relay settings
- Fault records

Fault records, summaries and waveform data from relays (and settings)
New Versus Existing Substations

• New Substations
 – IEDs With Digital Communications
 – PLCs for Direct I/O
 – No Conventional RTUs

• Existing Substations
 – May Integrate IEDs With Existing RTUs (Not Support Non-Operational and Remote Access Data Paths)
 – Integrate Existing RTU as IED or Eliminate Existing RTU and Use IEDs and PLCs for RTU I/O
Protocol Fundamentals

• Communication Protocol
 – Allows Two Devices to Talk to Each Other
 – Each Device Must Have the Same Protocol Implemented, and the Same Version of the Protocol

• Both Devices From Same Supplier, and Protocol

• Both Devices From Same Supplier, with Industry Standard Protocol

• Devices From Different Suppliers, with Industry Standard Protocol
Protocol Considerations

• North American Electric Utilities Specify the IEDs to be Used in a Substation
 – Chosen Based on IED’s Standalone Capabilities (Relay for Protection of Power System) and Not IED’s Integration Capabilities
 – IEDs From Various Vendors (Will Not Accept Turnkey Approach From One Vendor With All IEDs From that Vendor)
Protocol Considerations…
(continued)

- Once IEDs Specified by Utility Based on Standalone Capabilities, Then Consider Each IED’s Integration Capabilities
 - IED Protocol Support
 - Modbus, Modbus Plus, DNP3
 - UCA2 MMS
 - May Lose Some IED Functionality When Choose Other Than IED’s Native Protocol
 - IED Networking Support
 - RS-232 and RS-485 (Serial)
 - Ethernet
IEC TC57 Harmonization with UCA2

- X - Y
- 7-4 Compatible data objects
- 7-3 Data Templates for Substations
- 7-2 Abstract Communication Service Interface (ACSI)
- 8-1 Mapping to MMS

GOMSFE
- Device Models
- Device Models
- Device Models
- Common Class Definitions
- Standard Data Types and Common Components

Common Application Service Model (CASM)

UCA2

61850-x-y
North American Projects

- Omaha Public Power District (OPPD) – Two Substations and One Training Simulator
- MidAmerican Energy Company (Iowa) – Two Substations and One Training Simulator
- Los Angeles Department of Water and Power – 179 Substations, Two Development Systems, One Training Simulator Over Five Years
- EPCOR Utilities (Edmonton) – Two Substations
- Minnesota Power – Strategic Plan
- Potomac Electric Power Company (PEPCO) – all 4kV, 13kV, 69kV and 230kV Substations
- Frankfort Electric and Water Plant Board (Kentucky) – Sixteen Substations and One SCADA System With Two Dispatch Centers
Omaha Public Power District (OPPD)

- EPRI Tailored Collaboration (TC) Project
- Two Substations, One Training Simulator
- Require all IEDs with UCA Capability to be Integrated Using UCA2 MMS Protocol and Ethernet Networking
- Discovered that IEDs Thought to Have UCA Capability Did Not (Beckwith M2002B LTC Control)
- Discovered that IEDs Achieve UCA Capability By Adding a Separate Box (Rather Than Integrating Into IED) (RFL 9745 Teleprotection)
- Integrators Not Need SEL 2030 Communication Processor – Integrate SEL Relays Directly
- One Substation System and Training Simulator System Being Installed
OPPD Simplified SA Functional Sketch

EMS Network
- SCADA
 - DNP 3.0/C2020 Protocol Converter
 - 1200 bps C2020

Substation 912
- SCADA Interface
- Data Concentrator
- Protective Relays
- Trf. LTC Monitor
- Trf. LTC Annunciator
- Trf. Temp Controller
- Direct I/O

Corporate WAN
- Data Warehouse
 - ORACLE

Corporate WAN (through a firewall)
- Router
 - 10 Mbps
 - Router/Firewall

T1 Network Connection
- Frame Relay (QWEST)
- 56 Kbps leased Frame Relay Connection
- SA Sub

EMS
- Dial In
- GPS Time Reference

DMZ
- Can break connection with Corporate if needed
Simplified OPPD SA System