
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 11, NOVEMBER 2008 1149

An Efficient FFT Engine With Reduced
Addressing Logic

Xin Xiao, Student Member, IEEE, Erdal Oruklu, Member, IEEE, and Jafar Saniie, Senior Member, IEEE

Abstract—In this study, an improved butterfly structure and
an address generation method for fast Fourier transform (FFT)
are presented. The proposed method uses reduced logic to gen-
erate the addresses, avoiding the parity check and barrel shifters
commonly used in FFT implementations. A general methodology
for radix-2 -point transforms is derived and the signal flow
graph for a 16-point FFT is presented. Furthermore, as a case
study, a 16-point FFT with 32-bit complex numbers is syn-
thesized using a CMOS 0.18 � technology. The circuit gate
count analysis indicates that significant logic reduction can be
achieved with improved throughput compared to the conven-
tional implementations.

Index Terms—Digital signal processing chips, fast Fourier trans-
form, parallel addressing, parallel processing.

I. INTRODUCTION

F AST FOURIER transform (FFT) is one of the funda-
mental operations in digital signal processing. A key

challenge in many applications such as OFDM [1] is the
hardware implementation of FFTs with large transform lengths
(1024 points). A typical FFT processor is composed of
butterfly calculation units, an address generator, and memories.
Different architectures have been proposed for improving the
performance and reducing the complexity of the FFT hardware.
Pipelined architectures are widely used in FFT realization
[2]–[5] due to their speed advantages. Higher radix [4], [5] and
multibutterfly [6], [7] structures can also improve the perfor-
mance of the FFT processor significantly, but these structures
require more hardware resources at the same time.

Shared-memory-based schemes with a single radix-2 but-
terfly calculation unit [8]–[12] are used in many embedded
FFT processors since they require least amount of hardware
resources, and the “in-place” addressing strategy is a practical
choice to minimize the amount of memory. With the “in-place”
strategy, the two outputs of the butterfly unit can be written
back to the same memory locations of the two inputs, and
replace the old data. Therefore, for in-place FFT processing,
two data read and two data write operations occur at every clock
cycle, necessitating a four-port memory structure. However,
four-port memory blocks are costly and inefficient. In most

Manuscript received December 26, 2007; revised April 01, 2008 and June
09, 2008. Current version published December 10, 2008. This paper was rec-
ommended by Associate Editor P. K. Meher.

The authors are with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, Chicago, IL 60616 USA (e-mail: xxiao2@iit.
edu; erdal@ece.iit.edu; sansonic@ece.iit.edu).

Digital Object Identifier 10.1109/TCSII.2008.2004540

cases, only two-port high-speed memories are available in
hardware. Instead of using one bank of four-port memory, two
banks of two-port memories can be used to realize the four data
accesses in one clock cycle. In this case, a special addressing
scheme is needed to avoid the data address conflict.

Cohen [8] introduced a simplified control logic for FFT
address generation, which is composed of parity checks, barrel
shifters, and counters based on the fact that two data addresses
of every butterfly operation differ in their parity. Ma [9]–[11]
proposed a method to realize the radix-2 addressing logic
that reduces the address generation delay by avoiding parity
check (XOR operations), but barrel shifters are still needed.
Furthermore, Ma’s approach is not “in-place,” so more registers
and related control logic are needed to buffer the interim data
to avoid the memory conflict. Yang [5] proposed a locally
pipelined radix-16 FFT realized by two radix-2 deep feed-
back butterflies. This architecture can improve the
throughput of the FFT processing and reduce the complex mul-
tipliers and adders compared to other pipelined FFT methods,
but it needs extra memory as buffers and there is significantly
more coefficient access due to radix-16 implementation. The
address generator needs two accumulators, in addition to logic
shifters and switches. Li [7] proposed a mixed radix FFT
architecture that contains one radix-2 butterfly and one radix-4
butterfly. The two butterflies share the multipliers, which reduce
the hardware consumption, but the address generation is based
on XOR logic, and is similar to Cohen’s design. Wang [12]
proposed a new method to reduce the memory reference, but
the addressing scheme of this method is optimized specifically
for DSP processors.

In this study, we present a hardware-efficient FFT engine with
reduced addressing logic by using a butterfly structure that mod-
ifies the conventional one by adding exchange circuits at the
input and output of the butterfly [13]. With the proposed archi-
tecture, the two inputs and two outputs of any butterfly can be
exchanged; hence, all data and addresses in FFT processing can
be reordered. Using this flexible input and output ordering, a re-
duced addressing logic is designed that does not need a barrel
shifter and it is “in-place.”

In the following sections, conventional radix-2 FFT imple-
mentations with enhancements to the butterfly unit by Cohen
and Ma are described. We present the modified butterfly archi-
tecture and the improved address generation logic, which is pri-
marily based on inverter, counter, and multiplexors. Although a
shifter is still needed in this design, it shifts only once for each
pass instead of each clock. Implementation results are shown
and compared to the existing architectures.

1549-7747/$25.00 © 2008 IEEE

1150 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 11, NOVEMBER 2008

Fig. 1. Signal flow graph of a 16-point FFT.

Fig. 2. Butterfly unit at pass �.

II. RADIX-2 FFT AND ADDRESS GENERATION LOGIC

The N-point discrete Fourier transform is defined by

(1)

Fig. 1 shows the signal flow graph of a 16-point decima-
tion-in-frequency (DIF) radix-2 FFT.

The FFT algorithm is composed of butterfly calculation units

(2)

(3)

Equations (2) and (3) describe the radix-2 butterfly calcula-
tion at pass as shown in Fig. 2. Parallel and “in-place” but-
terfly operation using two memory banks of two-port memory
units requires that the two inputs of any butterfly are read from
different banks of memory and the two outputs are written to the
same address locations as the inputs.

As shown in Fig. 1, in the conventional FFT addressing
scheme, only the butterflies in the first pass satisfy this re-
quirement. Two inputs and two outputs of butterfly operations
in all other passes are originating from and sinking to the
same memory bank. Therefore, a special addressing scheme is
required to prevent the conflicting addresses.

Cohen [8] uses parity check to separate the data into two
memory banks. Fig. 3 is the signal flow graph of Cohen’s ap-
proach and it shows that inputs and outputs of any butterfly pass
utilize separate memory banks. The addresses of butterfly oper-
ations are “in-place” located. The drawback of Cohen’s method
is the address generation delay.

In order to reduce the delay of the address generation, Ma
[9] proposed an alternative addressing scheme that avoids using
parity check. The signal flow graph of Ma’s scheme is shown in
Fig. 4. In Ma’s scheme, two inputs of a butterfly unit originate

Fig. 3. Signal flow graph of a 16-point FFT using Cohen’s method.

Fig. 4. Signal flow graph of a 16-point FFT using Ma’s method.

Fig. 5. Proposed butterfly structure.

from two separate memory banks but two outputs of the butterfly
unit utilize the same memory bank, and the inputs and outputs of
a butterfly unit are not “in-place” located. Therefore, extra reg-
isters and related control logic are needed to buffer the outputs
of the butterfly until the next butterfly calculation is finished in
order to realize the “in place” operation. Compared to Cohen’s
approach, which uses both parity check and barrel shifters, Ma’s
method needs only barrel shifters and avoids parity check re-
sulting in a reduced address generation delay. However, Ma’s
approach consumes more hardware resources to realize the “in-
place” operation.

III. REDUCED ADDRESS GENERATION LOGIC FOR FFT

The goal of this study is to reduce both the address genera-
tion delay and the hardware complexity. The new addressing
scheme is based on a modified butterfly structure, which is
shown in Fig. 5. The main difference between the proposed
butterfly structure and the conventional one is the two exchange
circuits that are placed at both the input and the output of the

XIAO et al.: EFFICIENT FFT ENGINE WITH REDUCED ADDRESSING LOGIC 1151

Fig. 6. Signal flow graph of a 16-point FFT using the proposed method.

butterfly unit. Each exchange circuit is composed of two (2:1)
multiplexers; when the exchange control signal or is 1,
the data will be exchanged; otherwise, they keep their locations.

The following equation shows the function

(4)

Based on this butterfly structure, all data within the FFT
processing can be reordered by setting different values of the
exchange control signals and . The control signals are
chosen such that the input data always originate from two
separate memory banks and output data are written to the same
memory location in order to achieve in-place operation.

A. 16-Point FFT Implementation

For a 16-point FFT, the signal flow graph of the proposed
approach is shown in Fig. 6. In Fig. 6, the butterfly inputs or
outputs indicated by broken lines denote that the data have
been exchanged. Fig. 7 shows the complete address gener-
ation architecture for a 16-point FFT implementation. The
address generation logic is composed of one 5-bit counter D,
three inverters, one 3-bit shifter, three (2:1) multiplexers, two
(4:1) multiplexers, four multibit (2:1) multiplexers and delay
elements. indicates which pass of FFT is
currently in progress and controls the two (4:1) multiplexers to
generate the correct exchange control signal and for the
butterfly operation. The 3-bit shifter shifts one bit at each pass
and it controls three (2:1) multiplexers to generate the correct

address. Since the proposed technique is “in-place,” the
addresses for read and write are the same except for a delay
introduced for compensating the butterfly computation time.
Table I presents the counter values that are used to generate the
addresses for and memory banks.

B. N-Point FFT Implementation

In order to generalize the addressing scheme for
-point FFT, the necessary circuit components of the ad-

dressing and control logic can be listed as follows:
1) -bit ;
2) inverters that generate the complement of the

from
counter ;

3) -bit ;
4) Two memory banks, and .
In practice, and

can be combined to a single , where B is the least
significant bits of , and P is the most
significant bit of . At any time, the read
and write addresses of is exactly the same as the value of

. For , the read and write address
at Pass is , which is a
combination of counters and . The exchange control signal

is equal to (assume), and is equal to
(assume). The address of twiddle factors at

pass is given by (‘‘0"s).

IV. IMPLEMENTATION AND RESULTS

The proposed FFT algorithm is synthesized using TSMC
CMOS 0.18 m technology. Synthesis is performed with
Cadence build gates and encounter tools. The synthesis results
for a 16-point FFT with 32-bit complex number inputs show a
maximum clock frequency of 280 MHz with 0.665 mm area
and 0.645 mW total power consumption for the complete FFT
operation, including butterfly unit, address generation unit, and
memory circuits.

In order to compare different FFT addressing methods, the
logic complexity is evaluated similar to [9] with the sizes of
some basic circuits and gates listed in Table II. Estimated gate
count comparison for a 1024-point FFT of 32-bit complex data
(16-bit each for the real part and imaginary part) is shown in the
Table III. In terms of area, the proposed scheme requires 24%
fewer number of transistors. This reduction is mainly due to the
difference in logic complexity of the multiplexers and barrel
shifters. Based on the gate counts in Table II (and confirmed
by synthesis results), -input (r:1) multiplexer is approximately
four times smaller than the barrel shifter in terms of area.

The delay of address generation for both read and write op-
erations in the proposed scheme is determined by two stages of
multiplexers, where the first stage uses an -input (r:1) multi-
plexer and the second stage involves a 2-input (2:1) multiplexer
for a -point FFT operation (see Fig. 7).

In [9], the worst case address generation delay is dominated
by an -bit barrel shifter and a (2:1)-multiplexer. An

-bit barrel shifter requires stages of (2:1) multi-
plexers in the critical path. Cohen’s address generation method
[8] uses an -bit parity check unit, an -bit barrel shifter,
and two (2:1) multiplexers in the critical path. Standard cell syn-
thesis results in Table IV show that the proposed address gener-
ation scheme is faster compared to that of Cohen[8] and Ma[9]

1152 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 11, NOVEMBER 2008

Fig. 7. Address generation circuits for a 16-point FFT.

TABLE I
ADDRESS GENERATION TABLE OF THE PROPOSED METHOD FOR A 16-POINT FFT

TABLE II
TRANSISTOR COUNTS FOR CMOS CELLS [9]

for large FFTs, due to the complex wiring and parasitic capac-
itances in barrel shifters and elimination of the parity-check
operation.

Compared to a pipelined FFT architecture such as
given in [5], the proposed shared memory architecture offers
significantly reduced hardware cost and power consumption
at the expense of (slower) throughput. requires

multipliers, adders, and mul-
tiplexers for the butterfly operations in an -point FFT. In
contrast, only one multiplier, two adders, and four multiplexers
are used in the proposed FFT architecture datapath. The latency
(total clock cycles) of a pipelined FFT architecture is faster by
a factor of but the maximum achievable clock
frequency would be less than the proposed design due the
increased complexity of the datapath and address
generation. For low-power embedded applications, the reduced
logic shared memory FFT approach in this paper presents a
more viable solution.

XIAO et al.: EFFICIENT FFT ENGINE WITH REDUCED ADDRESSING LOGIC 1153

TABLE III
ADDRESS GENERATION LOGIC COMPARISON FOR A 1024-POINT FFT WITH

32-BIT COMPLEX DATA

TABLE IV
DELAY COMPARISON OF ADDRESS GENERATION CIRCUITS

V. CONCLUSION

FFT is a fundamental tool for many signal processing and
communication applications. Therefore, several methods have
been proposed to realize conflict-free memory addressing of

FFT. These methods reorder the addresses of the butterfly in-
puts and outputs to realize the parallel accessing of the memory.
In this paper, we introduce a reduced addressing structure by
building a butterfly unit whose two outputs can be exchanged
to allow in-place addressing and to minimize the addressing
logic. The synthesis simulation results and analysis confirm a
highly efficient FFT memory addressing scheme with signifi-
cant logic reduction and delay improvements compared to ex-
isting shared-memory-based FFT methods.

REFERENCES

[1] R. M. Jiang, “An area-efficient FFT architecture for OFDM digital
video broadcasting,” IEEE Trans. Consum. Electron., vol. 53, no. 4,
pp. 1322–1326, Nov. 2007.

[2] W. D. Li and L. Wanhammar, “A pipeline FFT processor,” in Proc.
IEEE Workshop Signal Process. Syst., Oct. 1999, pp. 654–662.

[3] S. S. He and M. Torkelson, “A new approach to pipeline FFT pro-
cessor,” in Proc. 10th Int. Parallel Process. Symp., Apr. 1996, pp.
766–770.

[4] T. M. Hopkinson and G. M. Butler, “A pipelined, high-precision FFT
architecture,” in Proc. 35th Midwest Symp. Circuits Syst., Aug. 1992,
vol. 2, pp. 835–838.

[5] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient
locally pipelined FFT processor,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 53, no. 7, pp. 585–589, Jul. 2006.

[6] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new radix-2/8
FFT algorithm for length-�� � DFTs,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 51, no. 9, pp. 1723–1732, Sept. 2004.

[7] X. Li, Z. Lai, and J. Cui, “A low power and small area FFT processor
for OFDM demodulator,” IEEE Trans. Consum. Electron., vol. 53, no.
2, pp. 274–277, May 2007.

[8] D. Cohen, “Simplified control of FFT hardware,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-24, no. 6, pp. 577–579, Dec. 1976.

[9] Y. Ma, “An effective memory addressing scheme for FFT processors,”
IEEE Trans. Signal Process., vol. 47, no. 3, pp. 907–911, Mar. 1999.

[10] Y. Ma, “A fast address generation scheme for FFT processors,” Chin.
J. Comput., vol. 17, no. 7, pp. 505–512, Jul. 1994.

[11] Y. Ma and L. Wanhammar, “A hardware efficient control of memory
addressing for high-performance FFT processors,” IEEE Trans. Signal
Process., vol. 48, no. 3, pp. 917–921, Mar. 2000.

[12] Y. Wang, Y. Tang, Y. Jiang, J. Chung, S. Song, and M. Lim, “Novel
memory reference reduction methods for FFT implementations on
DSP processors,” IEEE Trans. Signal Process., vol. 55, no. 5, pp.
2338–2349, May 2007.

[13] X. Xiao, E. Oruklu, and J. Saniie, “Efficient FFT engine with reduced
addressing logic,” in Proc. IEEE Int. Conf. Electro/Inf. Technol., May
2007, pp. 390–395.

