ECE 408 – Introduction to Computer Networks
Spring Semester 2008

2007 Catalog Data: ECE 408: Introduction to Computer Networks
Emphasis on the physical, data link, and medium access layers of the OSI architecture. Different general techniques for networking tasks, such as error control, flow control, multiplexing, switching, routing, signaling, congestion control, traffic control, scheduling will be covered. (3-0-3) (P)

Enrollment: Elective course for CPE and EE majors.

Coordinator: T. Anjali, Associate Professor of ECE

Course objectives:
After completing this course, the student should be able to do the following:
1. Gain an understanding of the overriding principles of computer networking, including protocol design, protocol layering, algorithm design, and performance evaluation.
2. List the techniques and protocols for communicating between digital computers that were in use historically, are in use currently, or will be in use in the future.
3. Specify the details associated with computer networks in LAN, MAN, and WAN environments, and the many tasks performed by Routers/Gateways and Bridges in these networks.
4. Explain protocol stack implementation and verification, traffic considerations, congestion control techniques, etc.
5. Describe the functionality and significance of Circuit and Packet Switching, the Internet, ATM, VoIP, and other current topics.
6. Understand the specific implemented protocols covering the application layer, transport layer, network layer, and link layer of the Internet (TCP/IP) stack.
7. Gain pre-requisite knowledge to study advanced topics in computer networking.

Prerequisites by topic:
3. Probability and statistics
4. Senior standing

Lecture schedule: One 150-minute session per week.

Topics:
16. The OSI and TCP/IP Reference Model (1 week)
17. Physical layer media, data transmission (1 week)
18. Analog and digital transmission, Multiplexing and switching (1 week)
19. Data link Layer, Framing (1 week)
20. Error Detection and Correction (1 week)
21. Flow control techniques, ARQ protocols (1 week)
22. Medium Access Control protocols (1 week)
23. TDM/FDM techniques (1 week)
24. Network layer introduction (1 week)
25. IP protocol, switching, routing (1 week)
26. Transport layer protocols, TCP, UDP (1 week)
27. Application layer (1 week)
28. Network Security (1 week)
29. Cryptography, Firewalls (1 week)
30. Exams (1 week)

Computer usage: Students prepare homework solutions and reports using word-processing
software.

Professional components as estimated by faculty member who prepared this course description:
 Engineering Science: 3 credits or 100%
 Engineering Design: 0 credits or 0%

Relationship of ECE 408 Course to ABET Outcomes:

<table>
<thead>
<tr>
<th></th>
<th>1,2,3,4,5,6,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Apply knowledge of math, engineering, science</td>
</tr>
<tr>
<td>3b</td>
<td>Design and conduct experiments /Analyze and Interpret Data</td>
</tr>
<tr>
<td>3c</td>
<td>Design system, component, or process to meet needs</td>
</tr>
<tr>
<td>3d</td>
<td>Function on multi-disciplinary teams</td>
</tr>
<tr>
<td>3e</td>
<td>Identify, formulate, and solve engineering problems</td>
</tr>
<tr>
<td>3f</td>
<td>Understand professional and ethical responsibility</td>
</tr>
<tr>
<td>3g</td>
<td>Communicate effectively</td>
</tr>
<tr>
<td>3h</td>
<td>Broad education</td>
</tr>
<tr>
<td>3i</td>
<td>Recognize need for life-long learning</td>
</tr>
<tr>
<td>3j</td>
<td>Knowledge of contemporary issues</td>
</tr>
<tr>
<td>3k</td>
<td>Use techniques, skills, and tools in engineering practice</td>
</tr>
<tr>
<td>3l</td>
<td>Major design experience</td>
</tr>
</tbody>
</table>

Prepared by: T. Anjali
Date: May 14, 2008