
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022 9791

Topology Aware Deep Learning for

Wireless Network Optimization

Shuai Zhang , Student Member, IEEE, Bo Yin , Student Member, IEEE,

Weiyi Zhang , Senior Member, IEEE, and Yu Cheng , Senior Member, IEEE

Abstract— Data-driven machine learning approaches have
been proposed to facilitate wireless network optimization by
learning latent knowledge from historical optimization instances.
However, existing works use simplistic network representations
that cannot properly encode the topological difference. They are
often limited to fixed topology, and the performance is degraded
because the learning target does not get sufficient information
since the topological information is not well captured. To address
this, we leverage the graphical neural network techniques and
propose a two-stage topology-aware deep learning (TADL) frame-
work, which trains a graph embedding unit and a link usage
prediction module jointly to discover links likely to be used in
optimal scheduling. By properly encoding the network structure,
it makes input data with varying topology possible, and also
provides more informative clues for the learning target. Impor-
tant techniques are developed to ensure learning efficiency. The
performance is evaluated on canonical multi-hop flow problems
with diverse network structures, sizes and realistic deployment
scenarios. It achieves close-to-optimum solution quality with a
significant reduction in computation time without retraining.

Index Terms— Deep learning, wireless network optimization,
topology representation.

I. INTRODUCTION

OVER decades, wireless networking has become an indis-

pensable part of today’s society. The recent proliferation

of the Internet-of-Things (IoT) and the dense deployment

of next-generation wireless network access points or base

stations have greatly increased the scale and complexity of

wireless networks. The study of wireless network optimization,

although legacy, still plays a key role in modern wireless

networks; with the pressure of large scale high complexity, and

more dynamics, the need for efficient computation algorithms

that can optimize network resource allocation in an adaptive

and timely manner is more urgent.

Most network optimization tasks follow the paradigm of

mathematical programming: given the constraints of resource

budget or exclusive usage at a single time, performance

Manuscript received 14 October 2021; revised 23 March 2022; accepted
16 May 2022. Date of publication 8 June 2022; date of current version
11 November 2022. This work was supported in part by NSF under Grant
CNS-1816908 and Grant CNS-2008092. The associate editor coordinating
the review of this article and approving it for publication was X. Cheng.
(Corresponding author: Yu Cheng.)

Shuai Zhang, Bo Yin, and Yu Cheng are with the Electrical and Com-
puter Engineering Department, Illinois Institute of Technology, Chicago,
IL 60616 USA (e-mail: cheng@iit.edu).

Weiyi Zhang is with AT&T Labs Research, Middletown, NJ 45697 USA.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TWC.2022.3179352.
Digital Object Identifier 10.1109/TWC.2022.3179352

metrics or system utility can be improved through judicious

allocation and scheduling. Specifically, with the broadcast

nature of wireless networks, at any given time, only a subset of

communication links can be activated concurrently to mitigate

interference [1]–[3] while achieving a high system perfor-

mance figure such as throughput. With such a combinatorial

interference structure, it is common that most performance

optimizations in wireless networks are NP-hard [4]. To tackle

this challenge, studies on wireless network optimization in

the past years focused on the development of approximation

algorithms [5]–[7], based on the mathematical model of the

performance goal and the constraints. One drawback of this

traditional model-based optimization approach is that the com-

putation experience gained from solving historical problem

instances is wasted: whenever changes to the networking set-

ting occur, (for example, user traffic pattern can drift with time,

the set of active users may change due to mobility, or network

topology can shift due to the adjustment of resources), the

optimization procedure needs to be rerun [8], and there is no

difference in the process even if the new situation is almost

identical to the previous network condition.

Inspired by the recent breakthroughs in machine learning

(ML), data-driven approaches receive much attention in the

study of wireless network optimization, especially in vehicular

networks, which is closely linked to the classic yet highly

practical problem of autonomous driving [9], [10]. One major

thread of exploiting the historical data for network man-

agement adopts the methodology of reinforcement learning

(RL), and especially the experience replay technique, allows

an agent to learn a reasonable control policy from its past

interactions with the environment. Research attempts along

this line have developed RL-based algorithms to address

a large range of network optimization problems, including

access control [11], [12], network scheduling [13], [14], and

traffic engineering [15], [16]. These studies typically focus on

the optimization tasks for a specific layer (physical layer, link

layer, or network layer) or simple single-hop networking sce-

narios, where the target system can be conveniently modeled

by a Markov decision process (MDP), and the application of

ML in the cross-layer optimization in wireless networks is

often limited.

Works that follow a supervised-learning approach utilize

historical problem instances that are solved by conventional

algorithms as training data, from which the trained machine

can learn a mapping function to predict or facilitate computing

the solution of a new problem instance [17]–[20], where the

1536-1276 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9062-9539
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-7953-9644

9792 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

Fig. 1. The proposed topology-aware deep learning (TADL) framework. The trained model would convert input data of various topology into representing
vectors, which are used for predicting the usefulness of links to obtain a sub-network of likely links.

new instances do not change the topology or the applications

are only concerned with single-hop scenarios. However, it was

not clear how such supervised learning based approaches could

be adopted for optimization over multi-hop wireless networks.

The fundamental obstacle is the lack of appropriate presenta-

tion of multi-hop wireless network optimization in the ML

framework, which is rooted in the concept of classification.

As a result of these considerations, in this paper, we focus

on the problem of network flow optimization over a

generic multi-hop wireless network with a supervised learning

approach. Such research issues had been one key area in

the recent two decades [21], [22], and are expected to still

play an important role in emerging areas such as vehicular

ad-hoc networks and aerial access networks. Our preliminary

studies in [8], [23] for the first time, to the best of our

knowledge, contributed a method to integrate supervised deep

learning with multi-hop wireless network flow optimization.

In [8], [23], the optimization solutions from historical problem

instances are leveraged as training data to conduct supervised

learning. The innovative angle is to transform the optimal

flow allocation over each link into a normalized importance

index, which paves the way for conducting learning in the

classification-based framework. After training, the machine

gains the capability to predict the usage likelihood of each

link, given a new problem instance; links with low predicted

values are then pruned off from the problem so that the

effective optimization problem scale is reduced with only

minor solution quality degradation.

These preliminary studies are, however, limited to the

situation with a given static topology. In this paper, we aim

to take up the challenge of extending the methodology to

a more generic scenario with dynamic topologies. Effective

re-optimization over various topologies will be particularly

useful if a wireless network needs to timely handle the dynam-

ics due to user mobility, traffic pattern change, or adjustment

of network resources. A straightforward idea to incorporate

topology into learning is feeding the topology information,

in the form of the adjacency matrix, directly to the machine.

However, the topology representation based on the adjacency

matrix will be dependent on the specific node indexes. With

dynamic networks, the communication nodes may acquire new

indexes due to mobility or update of resource allocation, and

the situation of the same topologies but with different node

indexes will not be rare. The fundamental difficulty is there is

no canonical representation for graph data, and to tell if two

graphs representations are structurally equivalent is shown to

be computationally difficult [24].

So far, graphical neural networks (GNN) provide new ways

to address the challenge of representing graphical problem data

in a form that facilitates training and inference. Instead of

straightforwardly treating the input graph data as mere vectors,

GNN provides a way to represent the structure of a graph and

specified interactions among the elements within the graph in

an order-invariant manner.

Leveraging on that, we propose a topology-aware deep

learning (TADL) framework as illustrated in fig. 1 for wireless

network flow optimization. This is to tackle the aforemen-

tioned drawback of current scheme not properly handling

dynamic topologies. In TADL, graph embedding techniques

are developed to incorporate structure-level topological infor-

mation so that its output representations have network structure

information built into it which is independent of node or link

indexes. We show that by learning on such a topology-aware

representation of the problem data, neural networks can accu-

rately infer the links to be used (and thus prune non-critical

links), leading to a good trade-off between problem scale

reduction and closeness to an optimal solution, robustly over

various network topologies and different commodity flow

deployment scenarios, for example, on average maintaining

at least 88% of the optimum network throughput while

lowering the computation time cost by over 60%, across a

wide range of network topology from network scales up to

200 nodes.

In summary, this paper incorporates three-fold innovative

contributions:
• We design the TADL framework that integrates graph

embedding, attention mechanism, and specially tailored

implementation techniques. When appropriately trained

with a sufficient amount of data, TADL achieves robust

link usage predication over various network topologies

and different commodity flow deployment scenarios with-

out retraining.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9793

• Our embedding methods incorporate node vector, link

vector, and interactions among those vectors through

parameters determined by training, and pose no restric-

tions on the network size to be processed. It is such

a design that enables the embedding to encode the

impact of a certain link on the end-to-end (i.e. commod-

ity flow level) performance under complex interference

relationships.

• We develop important learning techniques which are

essential to ensure good performance in topology-aware

learning, including the proper design of loss function,

sample selection with curriculum training, and feasibility

guarantee with link pruning.

• We evaluate the topology-aware extensibility of the

proposed model with a new quantitative measure and

present extensive numerical results with insights includ-

ing the new dimension of complexity-performance trade-

off enabled by TADL, the impact of the training data

volume on the learning performance in the context of

wireless network optimization, and the applicability of

the learned capability in new settings without retraining.

The remainder of this paper is organized as follows.

Section III concisely describes the wireless network optimiza-

tion problem and associated conventional algorithm, which is

to be studied with a machine learning approach in this paper.

Section IV presents the proposed TADL framework and related

implementation details. Numerical results and performance

evaluations are presented in Section V. Section II reviews more

related work. Section VI concludes the paper.

II. RELATED WORK

A. Conventional Wireless Network Optimization

Wireless network optimization had been a key research area

in the recent two decades. The basic methodology is to com-

pute the resource allocation aspects such as channel assign-

ment, base station association, scheduling, and power control

using various mathematical programming algorithms [25]. Due

to the complex inference relationship, wireless network opti-

mization is NP-hard in general, and the major thread of efforts

in the community is the development of various approximation

algorithms [1], [26]. The studies had also been extended from

single-radio single-channel context to complex multi-radio

multi-channel context [27]–[29]. A particular issue inspiring

the machine learning study in [8] and this paper is that a

new optimization problem instance is always solved either

from scratch or with a trivial re-optimization approach [30];

machine learning aims to exploit the historical computation

effort to benefit new optimization instances.

B. Data-Driven Solutions to Network Problems

Aspects of network design problems can be cast as optimum

control problems, and there have been attempts to apply

machine learning methods [31], [32] as a way to discover

heuristic algorithms from data.

For problems with a need for a sequential decision process,

deep reinforcement is used instead. Many of them have a

problem scenario that can be cast as a Markovian Decision

Process, and the solution in each step depends only on the

system’s current state. This line of research is shown by a

series of online network control problems [16], [33], [34].

A particularly relevant work [16] uses an advanced deep

reinforcement learning actor-critic framework to produce the

optimum routing path in a data-center network.

The majority of the work uses a supervised learning

approach and sometimes assisted by unsupervised learning as

a pre-training step. The straightforward approaches [19], [35]

treat machine learning as a black-box approximator for pro-

ducing approximate output to replace an existing compu-

tation block. As a typical example, deep learning is used

to approximate the weighted minimum-squared error power

allocation solution to maximize the network throughput [19].

Our previous work [8] typifies the supervised approach to

optimize the flow scheduling in wireless ad-hoc networks, with

improvements from unsupervised pretraining. Later works

focus on bringing structure information into the model: for

example, a recent work uses graph embedding technique is

used for power control in a D2D network [36]. The embedding

block is used to generate an embedding vector for each D2D

pair, and the learning results in a mapping from such vectors

to the power decision based on them.

Our work is set apart from the existing approaches in

important ways. In terms of the problem itself, though there

are works with a similar D2D network setting, we propose the

neural network solution to multi-hop routing under complex

link interference relationships, while others study simpler

settings, such as node random access strategy, which can be

efficiently learned without the specific link-level information.

Our proposed TADL solution differs from other GNN-

integrated solutions. It employs both node and link embedding

vectors, while others focus more on the information prop-

agation of either nodes or links. And the use of attention

mechanism makes the model output and input not be limited

to a fixed number of input or output, which gives an additional

layer of flexibility. As a result, it handles changing topologies

without assuming artificial limits like the number of nodes or

links, and integrates information both from nodes and links

for making a better quality decision.

III. SYSTEM MODEL

In this paper, we consider a multi-commodity flow (MCF)

problem as a concrete context to demonstrate our method.

We give a brief introduction to the basics of the MCF problem

in this section. Note that although the problem is presented in

a single-radio single-channel (SRSC) setting, a generic multi-

radio multi-channel (MRMC) wireless network can be mapped

as a virtual SRSC with the multidimensional tuple modeling

technique developed in [8], [23], [37], [38].

A. Network Model

The SRSC network is represented by a directed graph

G(N , E), where N and E denote the sets of nodes and links,

respectively. A communication link e ∈ E exists from node u
to node v, denoted by tuple (u, v) if node v is within the

communication range of node u. Each link has a physical

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

9794 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

TABLE I

THE LIST OF MATHEMATICAL SYMBOLS USED

IN THE PROBLEM STATEMENT

transmission capacity c(u, v), specifying the peak data rate

this link can support.

We consider the protocol interference model [39]. A link can

transmit, or become activated, only when no other transmitting

node belonging to a different link is within the interference

range of its receiving node. The scheduling is also under a

radio constraint such that links sharing the same node cannot

be activated simultaneously. As a result of these constraints,

the conflict relations among all links in the network can

be characterized by a conflict graph [1], whose vertices are

network links and there is an undirected edge if two links

interfere. Thus, an independent set (IS) over the conflict graph

indicates a set of links that can be scheduled for transmission

simultaneously.

In the network, there exist K commodity flow demands,

denoted as C. A commodity flow k can be represented by the

pair (sk, dk), with sk being the source node with a positive

net outward data flow and tk the sink node with a positive net

inward flow. Let fk(u, v) denote the amount of traffic flow

associated with commodity k on link (u, v). For commodity k,

the achievable throughput rk is the net flow out of the source

node as

rk =
∑

v∈N+
sk

fk(sk, v) =
∑

v∈N−
dk

fk(v, dk), (1)

where N−
v (resp. N+

v) denotes the set of in-neighbors (resp.

out-neighbors) of v.

B. Problem Statement

We here consider the network flow problem of maximizing

the minimum commodity flow in the network. In a wireless

setting, a network flow problem involves not only routing

decisions but also scheduling decisions in which ISs are acti-

vated in a time-multiplexing manner. Besides the optimization

variables fk(u, v) that specify the routing decisions, let M be

the set of all ISs and αm denotes the fraction of time scheduled

to IS m. Those decision variables need to satisfy the following

constraints.

1) Link Capacity Constraints: The sum of all the flows over

a link does not exceed its capacity across all the activated time

periods, i.e.,

K
∑

k=1

fk(u, v) ≤
∑

m∈M

αmpm(u, v), ∀(u, v) ∈ E , (2)

pm(u, v) � c(u, v) if(u, v) is active in m. (3)

pm(u, v) is the effective capacity of link (u, v) in an IS m: its

value is c(u, v) if link (u, v) is activated in m, and 0 otherwise.

2) Flow Conservation Constraints: For any commodity

flow k, the amount of flow entering an intermediate node

equals to that exits the node, i.e.,
∑

u∈N−v

fk(u, v) =
∑

u∈N+
v

fk(v, u), ∀v �= sk, dk; ∀k. (4)

3) Scheduling Time Constraint: The time fraction assigned

to all ISs must sum to 1, as
∑

m∈M

αm = 1. (5)

With the minimum of all the achieved commodity flows

denoted as z, the MCF problem can be formulated as follows.

Maximize
{fk(u,v)},{am}

z

s.t. constraints(2), (4), (5),

z ≤ rk, ∀k

fk(u, v) ≥ 0, ∀(u, v) ∈ E , k;

αm ≥ 0, m ∈ M (6)

The problem described above has the form of linear pro-

gramming because the objective and constraints are linear

functions. However, the size of M is exponentially large

and cannot be easily enumerated; even to obtain one set of

non-interfering links is equivalent to finding a graph coloring

of links. Therefore the problem is essentially a mixed-integer

linear programming (MINLP) type with an exponential num-

ber of variables.

C. Delayed Column Generation Method

To the best of our knowledge, the most efficient approxi-

mation with guaranteed bound analysis is the delayed column

generation (DCG) method [40], [41]. Starting from an initial

set of ISs, it solves a series of partial problems and uses

the dual solution to generate new ISs to add to the problem.

Following this procedural column generation, a solution suffi-

ciently close to the optimum solution to the original problem

is obtained. In this way, the algorithm memory usage is

saved and complexity can be controlled as a trade-off with

the objective. The reader is referred to the work [41] for a

more detailed account of this method. In the remainder of

this paper, we will use the DCG method to solve sample

optimization instances. The DCG solutions will be used as

training data for supervised learning, and serve as performance

bench mark to evaluate the solution quality when our proposed

machine learning technique is applied. For the convenience of

presentation, we term the DCG based solutions as “optimal

solutions.”

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9795

Remark: We take the multi-commodity flow over a

multi-hop wireless network as specified in this section under

study with two considerations: 1) the independent-set-based

scheduling, NP-hard in general, has been one of the key

challenges in wireless network optimization; 2) this problem

formulation provides a suitable concrete setting to conduct

the topology-aware machine learning targeted in this paper.

However, the benefits of the proposed learning-based method

and related principles and insights generated from this paper

are by no means applicable to this problem only.

IV. TOPOLOGY-AWARE DEEP LEARNING FRAMEWORK

The proposed topology-aware deep learning (TADL) frame-

work is shown in fig. 1, which illustrates the whole procedure

of supervised learning, the application of learning algorithm

for link prediction, and the neural network structure enabling

the topology-aware capability. Specifically, the machine is

equipped with node and link embedding units, a demand

embedding unit, and an attention unit. The embedding units are

mainly used to address the issues of topology representation

as highlighted in the introduction. They learn a reasonable

representation of a problem instance, including multiple link

embedding vectors and a demand embedding vector. Such a

representation is leveraged by the attention unit to identify

network links that are likely to be used in an optimized way.

The remainder of the paper adopts some common math-

ematical notations. We use a boldface uppercase/lowercase

letter to represent a matrix/vector, respectively. We use ‖ to

express vector concatenation and � for element-wise multi-

plication. LIN represents a parameterized linear layer y(x) =
Ax + b; MLP denotes a multi-layer perceptron [42], made

up of several dense neural network layers, each with indi-

vidual non-linear activation function. D and A are degree

and adjacency matrix following the conventional graph theory

definitions.

A. Principles of Topology-Aware Embedding

1) The Challenge of Topology Representation: We consider

the topology-aware vector representation to be an indispens-

able part of applying machine learning to network research,

because the lack of it leads to undesirable fitting on the

network element ordering. Assume that one directly learns

from the usual representations like adjacency matrix A, where

an element A[i, j] is 1 if there is a connection between node

i and j and 0 otherwise, it would be difficult to correctly

represent the structure for the following two reasons.

One concern is that the final decision is likely to depend

on the specific order of the elements. Because from the per-

spective of learning algorithms, permuted adjacency matrices

are treated as vastly different inputs. If the permuted version

does not appear in the training data, it is unlikely that they

both correspond to the same output.

The order-related issue is illustrated with an example in

fig. 2. Network G is given with its nodes numbered in the

clockwise order, and network G′ is obtained from G by

Fig. 2. A learning framework directly using the adjacency matrix leads to
different link predictions.

rearranging its nodes.1 We use a neural network model to

predict the set of links to be used in the optimum scheduling.

The model is an enhanced version of [8] by explicitly includ-

ing the adjacency matrix as input to the machine, denoted as

method ADJ in section V. The ADJ method is applied for link

prediction in G and G′, when one commodity flow is deployed

and other configurations follow that given in Section 4. The

results in these two cases should be identical, because the

network topology and the nodes with traffic demands are

identical. However, two different link sets are predicted for

G and G′, shown by the different sets of red links in the

two cases. The reason behind this is that neural networks

with no topology-awareness are prone to treat the superficial

difference in the adjacency matrices, caused by element order,

as fundamentally different inputs, as shown in Figure 2.

Section 4 presents more numerical results demonstrating the

inefficiency of the ADJ method.

The other concern is that the adjacency matrix representa-

tion will be sparse for typical networks of non-trivial sizes

since the number of usable links |E| is far below the number

of possible node pairs |N |(|N − 1|). Learning from sparse

data is difficult to do with today’s learning frameworks [43].

From these arguments, we see that the intrinsic difficulty is

due to the fact that graphical structures lack an inherent order:

unlike pictures or time series where there is a spatial or tempo-

ral ordering by which the representation can be made unique,

for networks, the nodes and edges information could be passed

in any order to the learning algorithm while not changing

the underlying mathematical object. But neural networks are

exceedingly capable of picking up any pattern in the data;

these patterns could arise from the particular ordering of the

element, which is undesirable because the problem’s solutions

are not a function of that particular order. While this serves

well in other applications like image classification, it hurts the

generalization ability in network-based problems [44]. On the

other hand, generating a representation which corresponds to

the graph structure only without being affected by the element

ordering is reducible to the G RAPH I SOMORPHISM problem in

1Intuitively, node 1 in G is dragged into the area surrounded by nodes 0, 2,
3, 5, and the topology is then flipped vertically; and the nodes are renumbered
in the clockwise order. The nodes (0, 1, 2, 3, 4, 5, 6) in G have a one-to-one
correspondence to nodes (0, 2, 1, 6, 5, 4, 3) in G′.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

9796 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

graph theory. Its complexity is non-trivial and still yet to be

confirmed to belong to the NP-class [45] or not.

Considering the importance and practical difficulty of char-

acterizing network problems based on its topology as dis-

cussed above, we tackle the issue by developing embedding

techniques that have the following properties:
1) The output value shall be constant with respect to

the changes in the order of network nodes or links.

This implies that we get the same evaluation of link

importance regardless of how the node or edge changes

its index.

2) The output value shall be able to handle various and

changing network scales. This requires that when gener-

ating the vector representations of the problem instance,

there should not be any assumption of network size.

3) The vector representation of nodes or links should

directly encode associated feature information. This item

is necessary as in network applications, the associated

information (e.g., node queue capacity, link strength) is

as important as the graph structure itself in determining

the output.
The end result is a network topology-based “signature”

based on each graph element, such that the learning algorithm

could have access to not only the node or link information,

but also how they interact with each other and form a whole

network.

2) Index-Independent Embedding: To achieve the goals

stated above, we use the message-passing network [46]

approach. It iteratively updates the link and node embedding

vectors based both on the feature vectors and the graph

topology. This process is also known in other works as the

graph convolutional network [47]. It works in a way that is

parallel to how a network operates in the normal working state:

each node sends to and receives from its neighbors and makes

updates, and as a result, the updated states are an implicit

function of graph topology. After a few rounds, every node

has partial information about the neighborhood it is in. In this

way, the neural network computes a vector representation for

each node and links in the network that can accommodate the

changing network topology and scale.

We then embed the network’s traffic demand information

by the node and link embedding vectors, (section IV-B)„ and

use the embedded traffic demand and embedded link vectors

to obtain the output (section IV-C).

Our proposed embedding technique can be intuitively

expressed in eq. (7):

Eemb,Vemb = NN1(E,V,G) (7)

solution = NN2(NN3(C,Vemb),Eemb).

NN1 uses GNN to process as input the network graph infor-

mation and outputs embedded node and link vectors. It cor-

responds to the operations defined in section IV-B. NN2 uses

the node and link vectors generated by NN1 to predict the

link importance in the scheduling task, described by eq. (17).

NN3 represents the module used to process the network flow

demand information. It uses the vectors generated by NN1,

and it corresponds to the process described by eq. (16). Note

that notations NN1,2,3 are only abstractions of the components

of our proposed method, and their corresponding definitions

are defined in later subsections.

B. Node and Link Embedding Vector Design

The input to the node/link embedding vector is a graphical

representation of the problem (G,V,E), i.e., the graph itself

and node and link attributes. Matrix V ∈ R
|N |×dv stores the

node-specific features, where the i-th row of the matrix is

a dv-dimensional vector representing the feature vector asso-

ciated with node i. Likewise the link specific feature vectors

are stored in matrix E ∈ R
|E|×de .

1) Input Layer: This step projects the node and link infor-

mation to a higher dimension for later processing; it should

include all the individual information that is beneficial for

solving the problem. Each initial node embedding vector is

derived from the 2-D geometric node coordinates. Then it is

transformed into a dn-hid-dimensional vector through a linear

layer whose parameters are shared for all nodes. The initial

embedding vector for node i is

x0
i = LIN1(posi). (8)

To obtain the initial embedding vector for a link, we define

an indicator function I(u, v) for link (u, v). I(u, v) = 1 if

either node u or v itself is or directly connected to a source or

destination node of any commodity flow; I(u, v) = 0 other-

wise. The de-hid-dimensional embedding vector of link (u, v) is

the concatenation of the end point’s coordinates, the capacity

and the indicator values after linear transforms:

y0
(u,v) = LIN1(posu) || LIN1(posv)

|| LIN2(c(u, v)) || LIN3(I(u, v)). (9)

Each of the four parts have the same dimension de-hid/4.

By doing this, we utilize the link capacity c(u, v), which is

essential for link usage; and also give an additional hint to the

model I(u, v) because links close to the source and destination

nodes should be given more consideration than those that are

not.

2) Graph Convolution: The node and link embedding vec-

tors are updated iteratively for a fixed number of rounds L.

In each iteration, the update is a weighted combination of the

neighbors’ embedding vectors, as shown in eqs. (10) and (11).

x(l+1)
u = f

(l)
1 (x(l)

u ,
1

|Nu|

∑

v∈N (u)

y
(l)
(u,v)) (10)

f
(l)
1 (a,b) � MLP

(l)
1 (a + MLP

(l)
2 (a + bW

(l)
1)) (11)

In iteration l, the updated embedding vector x
(l+1)
u is a func-

tion f
(l)
1 of the current embedding vector and the average of

the embedding vectors of the neighboring links. The function

f
(l)
1 is the neural network that takes two input and processes

them with two multi-layer perceptrons MLP1 and MLP2. The

parameters include the matrix W1 ∈ R
de-hid×dd-hid , and the

internal parameters of MLP1 and MLP2. This form is chosen

to be invariant with respect to the network size or index: the

second argument b is the sum of the neighboring links, which

remains constant with respect to how nodes and links are

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9797

Fig. 3. The proposed node and link embedding vector generation.

numbered. It is then combined with the node information a

for the updated node vector.

The link embedding vectors are updated, and in the process

are coupled with the node vectors. In the (l+1)-th iteration is

shown in eqs. (12) to (15). The main neural network here is the

function f2 taking 4 inputs: the current link vector, the aggre-

gation of the neighboring links, and the current endpoints’

node vectors. Similarly, the function f2 consists of two MLPs

MLP3 and MLP4, with parameters W2,W3 ∈ R
de-hid×de-hid

and W4,W5 ∈ R
dn-hid×dn-hid . The input AGG(M(u,v)) models

the effects of other links to link (u, v). It is a function operating

on a set of neighboring links M(u,v), which is the links

with nodes that are within a distance LM
2 of u or v. The

aggregation sums up the individual cross-link contribution,

modeled as the element-wise product of z(u,v),(u′,v′) and the

current link vector y(u′,v′):

y
(l+1)
(u,v) = f

(l)
2 (y

(l)
(u,v), AGG(M(u,v)),x

(l)
u ,x(l)

v)

(12)

f
(l)
2 (a,b, c,d) � MLP

(l)
3 (a + MLP

(l)
4 ((aW

(l)
2 + bW

(l)
3)

‖(cW
(l)
4 + dW

(l)
5)) (13)

AGG(M(u,v)) � MLP
(l)
5

⎛

⎝

∑

(u′,v′)∈M(u,v)

z(u,v),(u′,v′) � y(u′,v′)

⎞

⎠

(14)

z(u,v),(u′,v′) � MLP
(l)
6 ((xuW6 + xv′W7)

‖(xvW8 + xu′W9)). (15)

And z acts as a mask that weighs how relevant link (u′, v′)
is to the current link (u, v), and it is calculated by con-

sidering how one link’s transmitter affects the other link’s

receiver, as shown in eq. (15). The update process is illustrated

in fig. 3a.

Such node and link vector update is performed for a total of

L times, as shown in fig. 3b. These updates are implemented

as L neural networks with the same architecture but different

parameters. The intuition behind repeating this operation for

several rounds is that we hope to propagate topology infor-

mation on different scales: in the first iteration, information

2Unless specified otherwise, LM is taken to be the interference range.

about one-hop neighborhood is passed, and in the next a few

iterations, for a given node or link, local information from

faraway places is gradually refined into a high-level summary

that aids in the decision making. Since the update processes

information on different levels, we allow the training process

to set these NNs to different parameters.

From eqs. (10) to (15), we can see that no matter how the

nodes and links in the graph change their order or index in the

input, the resulting link or node vectors would not be affected,

because the computation is based on neighborhood exchange

of information, and the neural network is not aware of any

element order issue.

Note that our embedding technique in fact offers a flexible

and generic method for embedding, and is significantly differ-

ent from existing graph-convolutional embedding for wireless

scheduling [20], [48]. The convolution filter in [48] explicitly

assumes an interference pattern and focuses on embedding

information within the immediate neighborhood only, while

works like [20] assumes a fixed network scale in the convolu-

tion step. Our embedding methods incorporate node vector,

link vector, and interactions among those vectors through

parameters determined by training, and pose no restrictions

on the network size to be processed. It is such a design that

enables the embedding to code the impact of a certain link

on the end-to-end (i.e. commodity flow level) performance

under complex interference relationships, when the embedding

is properly trained through solution samples from multi-hop

wireless networks.

As an example, we give a visual demonstration of how

the topology-aware embeddings can characterize the difference

and similarity between network instances. We consider 4 types

of network topologies, as shown in Figure 4a. For each topol-

ogy, we generate 25 network instances by randomly perturbing

the link capacities. For each type of the network instances,

we apply the topology-aware graph embedding processing and

project the embedding vectors to a 3-dimensional space.3

In Figure 4b, we plot the projected vectors. We use a

combination of colors and marker styles to differentiate the

four types of network instances: red dots, red ‘x’s, blue dots,

3We divide the embedding vector dimensions into three equal regions. The
summation of the elements in the three region are then projected and plotted
in the 3-dimensional space.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

9798 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

Fig. 4. Illustration of topology representation. (a): Four types of topology.
(b): The efficiency of embedding vector in encoding and differentiating the
settings of network topologies and link capacities. Red dots and red ’x’
represent type (a) and type (b) networks, while blue dots and blue ’x’ represent
type (c) and type (d) networks.

and blue ‘x’s represent type (a), (b), (c), and (d) networks

respectively.

We can see that type (a) and type (b) network instances

cluster in the highly overlapped sub-space with similar

distributions. Such structure-level similarity is expected,

as topology (b) is just a vertical flip of topology (a). The

structure similarity between type (c) and type (d) instances

is also demonstrated, as topology (d) is a horizontal flip of

topology (c). Furthermore, the clear separation between the

blue sub-space and red-subspace indicates that our embedding

successfully captures the distinction between two different

topology structures.

This example illustrates that the graphical neural network

has the capability to identify network instances that are similar

in the structure. And we believe that this capability is key to

solving the optimal scheduling problem, because with it, the

neural network can associate the important scheduling links

with the corresponding network topology. In other words, this

capability enables the NN to learn the mapping from the input

network information to the link importance scores.

In some sense, this example also justifies the superior

performance observed in section V, by showing its ability to

differentiate between different topologies. In section V, exten-

sive numerical results will be presented to demonstrate the

effectiveness of our embedding for the link prediction problem

targeted in this paper, with comparison to the adjacency matrix

based topology representation.

C. Link Prediction With Attention

1) Embedding Data Demands: To encode the information

of demand sets C, we treat a source-destination node pair as

if it is a virtual link. We use a feed-forward network with

set-invariant properties [49] using the embedded nodes as the

input, as shown in eq. (16)

qC =
∑

k∈C

MLPq(x
(L)
sk

‖x
(L)
tk

), (16)

where MLPq is a learnable MLP block. For each demand

node pair, the operation concatenates the final node embedding

vectors of source and destination nodes and passes them

through an MLP to obtain a dd-dim embedding vector. The

final results are added as the vector representation of all the

demands.

2) Output Generation: The prediction ŷ ∈ R
|E|, with

elements in [0, 1] indicating the likelihood that the link is going

to be relevant in the master problem, is generated with the

attention mechanism. Specifically,

ŷ = ReLU(Attention(qCWq, Y
(L)Wv)) (17)

with Attention(x, Y) � xTY, where the demand set vector qC

and the edge embedding are first converted to an equal

dimension by the coefficients Wq and Wv , and then use inner

product followed by the non-linear ReLU activation function

to get the final prediction.

Intuitively, this operation measures for each link how rele-

vant they are under the current network topology and the given

demand set, where the score is given by the inner product.

In our implementation, links with a score higher or equal to a

threshold α will be maintained; otherwise, the links are pruned

from the topology.

Note that α is a hyper-parameter tuned for each dataset.

Because it is not part of the neural network model, it can be

considered as a post-processing parameter. By a binary grid

search, we choose its value by finding one that maximizes the

performance index, which will be defined in section V-A. The

setting of α is listed in algorithm 1. There are valid α values

in (0, 1), and we want to find one best value to 2 decimal

places. We do not try these 100 potential values, so instead

we sample them, evaluate the model performance with these

candidate values and only keep the best half of them to the

next round. Iteratively, this leads to be a single best value.

Although this is not theoretically guaranteed to always find

the best value, it is a good trade-off between time cost and

performance.

The stated neural network structure is different from

works [50] in these important ways. First, the graph convo-

lution is link centric. As our problem is focused on link-

level decisions, and nodes do not provide much informa-

tion other than the specify the flow endpoints, much of the

information is around the links and their neighbors instead

of nodes; second, our neural network structure is chosen on

the nature of interference networks: we do not use a generic

inner-product similarity measure in modeling the interactions

of links, as done in machine learning works. Instead, we take

note that the link interference relationship is 1) range-limited,

so only links within a range are calculated; and 2) ultimately

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9799

Algorithm 1 Setting α Value.

Data: Potential α values from 0.01, 0.02 · · ·0.99
Result: A single α value

Let S0 = {0.01, 0.02, · · · , 0.99};

for k = 0, 1, · · · ,
log |S0|� do

Divide Sk into 10 or fewer uniform subsets;

Randomly select one point in each segment to evaluate

the model performance;

Select the best 5 segments to keep and discard the

rest;

Let Sk be the union of the segments and sort them

from lowest to highest;

end

Return the single value in S�log |S0|�

determined by transmitter and receiver nodes’ interactions,

hence the form of eq. (15).

D. Customized Learning Techniques

As the problem we study is of huge scale and of irregular

form, we take these additional steps to ensure efficient training.

1) Curriculum Training: We take a curriculum training [51]

approach to organize the samples and conduct training. The

training samples obtained over different network sizes with a

different number of commodity demands can be interpreted

as have different levels of difficulty. A smaller network size

or a smaller number of commodity demands implies a lower

level of difficulty. Given a setting with a certain network size

and number of commodity demands, we will generate training

instances by properly arranging the locations of commodity

source and destination node so that the training samples

can cover a plenty variety of traffic patterns showing how

traffic flow needs to be distributed within the network under

different demand and interference scenarios. Furthermore, for

cases with the same network size and the same number of

commodity demands, the difficulty level is differentiated by

the number of independent sets incurred in the optimization

solution, which implicitly reflects the interference relationships

in the case being evaluated.

With all these efforts, we then utilize samples of different

difficulty for different training epochs. The difficulty increases

as the training goes further. Specifically, before the training,

we sort the samples in the training dataset according to how

much time the conventional algorithm takes to solve the

sample instance, from the lowest to highest. The samples

are divided into Nparts = 4 equal parts, representing four

subdivisions of data with increasing difficulty. At first, the

model is trained only with data from the easiest first part.

Every time a given number of epochs is passed, the training

data to be used is joined by the next, more difficult part. In the

last part of the training, the entire training dataset is used,

just like the ordinary training procedure without curriculum

training.

2) Loss Function: Since the ultimate test of learning perfor-

mance, which is the optimum solution to the problem (6) given

the current estimate of link usefulness, is a non-differentiable

function of the model parameters, we instead use a differen-

tiable proxy measure, a modified cross-entropy. It is the sum of

binary cross-entropy of the individual link’s usage distribution

as

L =

|E|
∑

i=1

wi

(

yi log ŷi + (1 − yi) log(1 − ŷi)
)

, (18)

where y and ŷ are respectively the actual and predicted link

values; wi is the link-wise weight coefficient. This value is

calculated on batch sample basis when using SGD (stochastic

gradient descent) algorithm to minimize.

Note that the purpose of (18) is essentially to facilitate

performing a multi-label classification on the links: given a

network topology G and a demand set C, for each of the

link l, the goal is to use neural networks to approximate

the conditional probability ŷl = pl(use = 1|G, C). The

likelihood of observing the link usage pattern is therefore
∏

l ŷyl

l (1− ŷl)
1−yl . Equivalently, its negative logarithm is the

exact form of cross-entropy.

The motivation of incorporating the link-wise weight coef-

ficient is to mitigate the prediction errors over those highly

important links. Specifically, we assign the weight coefficient

over link l as w(l) = β × normalized flow =
β
�

K
k=1 fk(l)
�

K
k=1 rk

.

It means the link weight coefficient for link l is proportional

to the ratio between the total network flow carried over link

l and the total commodity throughput over the network. The

parameter β can be considered as a parameter that can tune the

sensitivity of the weight coefficient in affecting the learning

performance. β can be adjusted in practice; in our experiment,

we find setting β = 10 is a good choice.

3) Feasibility Guarantee: Note that the trained machine

predicts important links in the probabilistic sense. There is

a possibility that inaccurately pruned links might hurt the

network connectivity and thus impact the feasibility of the

network optimization. In our implementation, given a topol-

ogy, we pre-compute a path for each commodity flow. The

subset of links finally selected (which will be fed to the

optimization solver) is the union of the subset of links survived

from machine pruning and the links from all pre-computed

commodity shortest paths. With such an approach, the union

of pre-computed shortest paths ensures network connectivity,

while the incorporation of important links predicted by a

machine ensures the quality of optimization. We would like to

emphasize that the above operations for feasibility guarantee

will not cause any extra cost to the training procedure. The

pre-computation of commodity paths can be interpreted as a

pre-processing step when the trained machine is applied over a

new topology. If there are a large number of application scenar-

ios over the same topology to be evaluated, this pre-processing

is just a one-time cost.

V. NUMERICAL EXPERIMENTS

A. Experiment Setup

To obtain training data in a topology-aware context,

we compute a large number of optimization instances over

various network topologies and commodity flow deployments

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

9800 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

TABLE II

THE LIST OF PARAMETERS USED IN INSTANCE

GENERATION AND TRAINING

by the DCG algorithm [41]. All these instance solutions will

be mixed together to form a training data set to conduct

supervised learning. The trained machine will then be applied

for link prediction over different new topologies and commod-

ity flow cases to examine the topology-aware efficiency and

robustness of our learning methods.

1) Datasets: The network instances are generated following

different rules: in the random dataset, the network topology

forms a random geometric graph: a given number of nodes

are uniformly randomly placed within a square area, with

minimum and maximum distances; in the grid dataset, the

nodes are placed on a rectangular grid with a Gaussian random

perturbation to account for the imperfections of the real-world

deviations. The nodes are considered connected to as many

neighbors as possible, up to a given number representing

the maximum connections per node, within their transmission

range. And any of these nodes can be chosen as the next

hop by the scheduling process. For each case, the nodes with

data demands are selected randomly, and the total number of

demands ranges from 1−5. We generate data samples with 10,

30, 50, and 200 nodes to represent the cases small, medium,

and large networks.

Although the model can be trained from scratch with

purely random network instances, we choose to differentiate

between different types of topology in data preparation. This

is because certain types, e.g., the grid networks, are commonly

encountered in network applications but not well represented

by a random network generator. However, in the training

process, there is no distinction in how the model calculates

the decisions based on the instance generation rules. We list

the parameters used for instance generation in the Table II.

2) Comparisons: We experiment with three additional

methods to compare with our TADL method:
• SAGECONV, the embedding units in TADL are replaced

with the node-based graph invariant embedding model

developed in [50]; The demand information is included

as node labels. It represents the scheme where the embed-

ding vectors only consider node neighborhood informa-

tion without using the demand as the global information

and making link-based decisions. It does not encode

commodity-level information, while our embedding tech-

nique as presented in Section 3 incorporates commodity-

level information.

• ADJ, the learning framework in [8] is enhanced with

adjacency matrix as topology information;

• Blind, a topology-blind scheme where some links are

arbitrarily activated (without machine learning), with a

fixed probability that is equal to the frequency of the

activated links in the training.

For all experiments, these methods’ performance metrics are

calculated from the same training, evaluation, and testing

datasets. The same technique stated in section IV-D3 to ensure

the feasibility is used for all the methods. We examine the

performance mainly by two metrics. Essentially, we aim to

quantify how much speed up the neural model can achieve

by cutting out irrelevant network links and causing how large

a loss in optimality, measured as a fraction of the optimal

value obtained from the conventional method. These metrics

are defined as follows.

a) Approximation Ratio (AR): it is defined as the ratio

between the optimal network flow computed on the reduced

problem instance, denoted as OPTpruned, and that computed

over the original problem, denoted as OPToriginal: rapprox =
OPTpruned/OPToriginal. It shows how the pruned problem

instances approach the optimal network capacity.

b) Computation Time Reduction (TR): given a problem

instance, we use torg to denote the computation time solving

the original problem. When a pruning method is implemented,

the effective computation time will be tML = tsetup +tinference +
treduced instance. In this definition, tsetup is the time for setting

up the model and other bookkeeping tasks. In our case, it is

mainly the time for computing the connected paths in the

network to ensure solution feasibility; tinference is the time for

the trained model to prune links (which is 0 for the Blind

algorithm); treduced instance is the time for solving the reduced-

sized instance. The computation time reduction radio is defined

as rred = (torg − tML)/torg.

c) Performance Index (PI): We use the following formula

as a composite measure of both AR and TR:

PI =
log(1 + rapprox) + log(1 + 0.6 rred)

log(2) + log(1.6)
. (19)

This measure has these convenient properties that are easily

derived from the form: 1) PI is valued between zero and one;

2) PI is monotonously increasing in AR and TR, so improving

either figure contributes to overall performance; 3) PI has a

diminishing return for either AR and TR, encouraging the

system to make a better trade-off between the two measures;

4) PI is biased by the coefficient 0.6 to slightly favor having

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9801

TABLE III

APPROXIMATION RATIO AND TIME REDUCTION RATIO COMPARISON FOR RANDOMLY GENERATED CASES WITH DIFFERENT INSTANCE SIZES.
BOTH PERFORMANCE METRICS ARE THE LARGER THE BETTER. FOR EACH NETWORK SIZE, WE LIST THE SOLUTION TIMES,

IN SECONDS. IN EACH ENTRY, THE FIRST NUMBER IS THE SOLUTION TIME USING TADL AND THE

SECOND NUMBER IS THE CONVENTIONAL ALGORITHM’S SOLUTION TIME

a high approximation ratio because we consider the solu-

tion quality to be more important than additional time cost

reduction.

B. Computation Time Reduction and Approximation Ratio

Trade-off

To give a general idea of how the model performs, we group

the instances into different groups according to their sizes,

and then train and evaluate the models separately. Within

each group, instances have different flow demands, node and

link numbers to observe the performance under different data

configurations. The testing is performed with the samples not

seen by the training process from the same dataset.

In Table III, we demonstrate average values of approxima-

tion ratios and time reduction in testing dataset that is not

seen by the training process. The table is grouped according

to the number of the network nodes and then subdivided by the

number of commodity flows. Each network size corresponds

to a trained model, and we report the performance figures for

each number of flows separately.

With our method TADL, we can observe a significant

solution time reduction, over sixty percent, while maintaining

a high solution quality at a minimum of 75%, across a wide

range of network sizes, up to 200 nodes (with an average

of 2420 links). Compared with other methods, TADL method

robustly achieves a better trade-off between optimization qual-

ity and complexity reduction, as demonstrated by the high PI

across various network sizes and demands. We also notice

that that because the threshold value is tuned for good PI and

because PI is biased to favor good AR, all the methods have

a reasonable level of AR. However, the time reduction for

TADL is markedly higher than the other methods, suggesting

that it is better at identifying relevant links that are truly useful

without adding in other useless links.

Methods with embedding (i.e., TADL and SAGECONV)

technique perform better than the methods without, but our

method of combining link and node embedding achieves an

overall better performance. The BLIND method results in a

low time reduction at around 40% due to the fact lacking the

understanding of the network topology, it cuts off many nec-

essary links, which would have to be added in the feasibility

processing step; the net effect is that the network size is not

reduced by a large proportion. In almost all the scenarios,

the adjacency matrix method ADJ performs similar or even

worse than Blind, in terms of PI. The results confirm our

analysis before that directly using an adjacency matrix as the

neural network input cannot give an accurate indication of the

topology change and thus hard to extract meaningful topology

related information to facilitate link prediction.

From the results, there is a general trend that the approx-

imation ratio is lowered as the number of nodes rises. This

is expected given that the difficulty of the problem is higher

and it is more likely to miss a high quality solution. The

time reduction shows a similar trend, because less important

links may wrongly remain to add to the time cost. We note

that in the domain of high node count (50 and above), the

TR is still quite high (at least 60%), suggesting that removing

unnecessary links results removes a bottleneck in the time

performance.

The impact of the number of traffic demands on the perfor-

mance is similar: generally, lower traffic demand cases perform

better than cases with more traffic demands. This is because,

with a higher number of flow demands, the overall scheduling

is more fragmented, as at any time only a link can only

carry one flow. This causes the scheduling task to take more

iterations to discover a good set of ISs, and that there are more

links that need to be considered in the solution. Accordingly,

the time reduction and approximation ratio in low flow count

cases are the most significant because the model can accurately

infer the needed links.

C. Performance Robustness to Network Scale

To see how the model performs when we use the model

trained from one scale to another, we apply the model trained

on 200-node cases and test them on smaller instances without

re-training, and compare them with the performance from the

models trained on cases with their respective sizes. This is to

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

9802 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

TABLE IV

APPROXIMATION RATIO AND TIME REDUCTION RATIO OF CROSS-NODE

SIZE PERFORMANCE. THE COLUMNS “ORIGINAL” LISTS

PERFORMANCE FIGURES OF THE MODEL TRAINED

SEPARATELY FOR EACH NODE SIZE; THE COLUMNS

“CROSS” COMES FROM THE MODEL

TRAINED ON 200-NODE CASES

see if the model is able to extract useful knowledge of the

problem such that with different sizes the benefit still persists.

We can observe from Table IV that the cross-node size

performance is very close to the separately trained models.

This implies that by training from sufficiently diverse data,

the network scale does not inherently limit the performance

of this scheme. This discovery makes it possible to train from

large and difficult instances and the model can adapt to other

easier cases with no need for retraining.

Moreover, the cross-network size performance is correlated

with the difficulty of the cases: in the small networks where

solution comes easier, the performance is better than the more

difficult cases that correspond to larger networks.

D. A Practical Office Setting

To further examine the robustness of TADL, we apply it

over a wireless mesh topology with 2 commodity flows, in a

practical office setting which was studied in [28] as shown in

Figure 5. In the topology, each edge represents a bi-directional

link, thus giving 96 unidirectional links in total.

This result is obtained directly from the model that was

trained on the dataset with 30-node instances, and the

office setting is not part of the dataset. TADL generates a

reduced problem of 29 links with the approximation ratio

rapprox = 0.97 and the time reduction ratio rred = 0.76.

Figure 5 also indicates the exact set of links that are

activated in the optimal solution from the original problem

to benchmark the prediction accuracy. We can tell that TADL

only incorrectly prunes a few links and include a small set of

redundant links. Note that after link pruning, a sparse problem

instance such as this example can become disconnected due to

the probabilistic nature of the solution; our proposed method

can handle this situation by feasibility processing.

E. Energy Efficiency Benefits

Although multi-commodity flow is a classic topic that

interests network researchers, nowadays the network’s energy

efficiency receives even more attention. In this section,

we examine how the TADL method is of practical benefit in

this aspect.

We define the energy efficiency of the network to be the

ratio of total transmitted bits to the energy consumption of

the network nodes and links, within a unit time. The power

consumption of network is modeled as the sum of dynamic

and static parts. For the static part, each node is assumed

to have a 0.05 mW consumption regardless of its operating

Fig. 5. A wireless mesh topology in an office setting constructed in [28].
TADL link prediction and the optimal link set are shown.

TABLE V

ENERGY EFFICIENCY COMPARISON FOR CASES WITH RANDOM

TOPOLOGY AND A REAL-WORLD DATASET TOPOLOGY, WITH

DIFFERENT AMOUNT OF FLOWS. THE NUMBERS REPRESENTING

THE ENERGY EFFICIENCY ARE IN MBITS/JOULE

AND ARE THE LARGER THE BETTER

condition. This is to model the overhead of each node’s control

circuit and application-specific functionality. The dynamic part

accounts for the activation and deactivation of transmission

links, as a result of the scheduling and routing decisions. For

any given link (u, v) where u is the transmitter node and v is

the receiver node, Pdyn(u) is set to the default transmission

power (this parameter is also used in calculating link capacity),

and Pdyn(v) is set to a fixed amount of 5 mW.4

For better illustration, we introduce another external dataset

featured in a multi-hop network deployment study [53], here-

after referred to as RTD. We make use of the provided network

layout and node positions, which are based on the placement

of wireless transmitters indoors. The source and destination

nodes are randomly assigned, and the model is directly used

from one trained on 30-node instances.

We calculate the energy efficiency achieved on different

types of instances and report the findings in table V. We exper-

imented in randomly generated 50- and 200-node instances,

and also the cases from RTD [53]. From the table one can

see that TADL has a clear advantage in terms of the energy

efficiency over other methods. The row marked as “base”

referred to using the original DCG algorithm. This is due to

the fact it significantly cut down the number of active links

while maintaining a reasonable throughput.

F. Training Convergence

The training loss and the prediction quality of the proposed

method and a closely related scheme based on graph learning,

SAGECONV are illustrated in Figure 6.

4All power consumption values estimated from the manufacturer’s data
sheets of typical wireless sensor modules, e.g. LTP5901-IPM [52].

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9803

Fig. 6. The loss and f1 metric during training.

We use F1 score5 as the figure to represent the model’s

capability to balance between false positive and false negative.

The data was taken when training the model on 50-node

datasets with a mixed number of demands, a scale that is not

trivial for the model to solve and also commonly encountered

in the application.

We can observe that for our method, the descent of loss

and the ascent of prediction F1 score happens at a higher

slope and generally a few epochs earlier than SAGECONV. This

observation indicates that our proposed method combining the

local and global network information is more suited with this

type of problem.

G. Effects of Loss Function Choice and Curriculum Training

In addition, we study whether using a different loss function

and a curriculum training scheme is beneficial for our problem.

For each network size, we compare the performance index

of models trained with a sample weighted loss function and

those trained with an ordinary cross-entropy loss function.

It is clearly observed that the former is a better choice

from Figure 7. Fixing all the parameter settings except the

loss function used, there is an observable performance gap

between the weighted and unweighted loss function. This can

be explained by the fact that the class imbalance in the training

data is serious enough that additional weighting on the links

to be used can help contribute to the final metric which the

user cares the most.

Next, we examine the performance difference to see the

effects of using curriculum learning. In a similar setting,

we train models that use a curriculum training scheme based

5The F1 score is the harmonic mean of precision and recall: F1 =
2

recall−1+precision−1 . Following the typical usage, we consider the precision

“the number of links used by the optimal solution and correctly predicted by
the model / number of links predicted important by the model,” and recall as
“the number of links correctly predicted by the model / the number of links
used by the optimal solution.” A number between 0 and 1, a larger F1 score
indicates that the model identifies more important links without blindly predict
all links to be useful.

Fig. 7. Effects of using a weighted loss function versus without using such a
loss function. By using sample weights, there is an average 4% improvement
in the performance index.

Fig. 8. Effects of using curriculum training. In each label, the first part
shows the amount of network nodes, and the second part shows the amount
of traffic flow demands. The cases with 1 and 3 flows are grouped together
while 5 flow cases are separately plotted.

on sample weights, and also models that randomly select

samples in each batch with no consideration of its difficulty.

We plot the different performance indexes for several network

scales and traffic flows in fig. 8. There is a slight increase

in the overall performance favoring the usage of curriculum

training, especially when the number of traffic s is high. In the

plot we use a separate bar for the cases with 5 traffic flows to

stress the performance difference.

H. Model Performance Versus Sample Volume

Since learning-based prediction is inherently a data-oriented

approach, the model performance generally improves as the

number of training samples increases. To verify this, we train

models under different network sizes, with the same learning

setting but different numbers of sample volumes in the training

dataset. For each network size, the performance of the models

is tested on the same set of non-training cases’ data.

In Figure 9, we plot the performance index (PI) versus

the training dataset size because it is a composite metric of

the model quality. The results confirm that the performance

index improves with the number of training data, but saturates

at levels that decrease as the problem sizes increase. This

observation shows that the model’s capacity is not fully

utilized when the number of training samples is not sufficient.

Before a reaching the plateau, more data leads to significant

performance improvement than tweaks in the model architec-

ture. Beyond that, the model performance benefits little from

additional training data. This can be attributed to the model

becoming unable to improve its estimation of the current data’s

input-output correlation. More data beyond this point is not

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

9804 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

Fig. 9. Model performance with changing number of training samples.
The performance index, a number between 0 and 1, represents both the
time reduction and approximation ratio. The optimum performance and the
corresponding sample size are annotated by the arrow.

useful unless the model’s architecture or parameter settings

are changed.

VI. CONCLUSION

This work contributes a topology-aware approach to train

a DL machine which can robustly predict important links

(and thus prune non-critical links) to facilitate wireless net-

work optimization over dynamic network topologies. Efficient

embedding techniques are developed to address the funda-

mental issue of index-independent topology representation.

Our method can work in a complementary manner with

the traditional theme of approximation algorithms, to further

reduce computation complexity from a new dimension by

leveraging historical computation data. As a next step, we will

conduct a further in-depth topology-aware study in the more

generic setting of multi-radio multi-channel wireless networks.

REFERENCES

[1] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of inter-
ference on multi-hop wireless network performance,” Wireless Netw.,
vol. 11, no. 4, pp. 471–487, Jul. 2005.

[2] K. N. Ramachandran, E. M. Belding, K. C. Almeroth, and
M. M. Buddhikot, “Interference-aware channel assignment in multi-
radio wireless mesh networks,” in Proc. INFOCOM, vol. 6, Apr. 2006,
pp. 1–12.

[3] L. Badia, A. Erta, L. Lenzini, and M. Zorzi, “A general interference-
aware framework for joint routing and link scheduling in wireless mesh
networks,” IEEE Netw., vol. 22, no. 1, pp. 32–38, 2008.

[4] O. Goussevskaia, Y.-A. Pignolet, and R. Wattenhofer, “Efficiency of
wireless networks: Approximation algorithms for the physical interfer-
ence model,” Found. Trends Netw., vol. 4, pp. 313–420, Mar. 2010.

[5] D. Chafekar, V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and
A. Srinivasan, “Approximation algorithms for computing capacity of
wireless networks with SINR constraints,” in Proc. 27th Conf. Comput.

Commun. (INFOCOM), Apr. 2008, pp. 1166–1174.

[6] S. Misra, S. D. Hong, G. Xue, and J. Tang, “Constrained relay node
placement in wireless sensor networks: Formulation and approxima-
tions,” IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 434–447, Apr. 2010.

[7] R. Gandhi, Y. A. Kim, S. Lee, J. Ryu, and P. J. Wan, “Approximation
algorithms for data broadcast in wireless networks,” IEEE Trans. Mobile

Comput., vol. 11, no. 7, pp. 1237–1248, Jul. 2012.

[8] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning meets
wireless network optimization: Identify critical links,” IEEE Trans. Netw.
Sci. Eng., vol. 7, no. 1, pp. 167–180, Mar. 2020.

[9] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, and X. Shen, “Joint RAN
slicing and computation offloading for autonomous vehicular networks:
A learning-assisted hierarchical approach,” IEEE Open J. Veh. Technol.,
vol. 2, pp. 272–288, 2021.

[10] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, and X. S. Shen, “Learning-
based computing task offloading for autonomous driving: A load balanc-
ing perspective,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2021,
pp. 1–6.

[11] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep rein-
forcement learning for dynamic multichannel access in wireless net-
works,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265,
Jun. 2018.

[12] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning mul-
tiple access for heterogeneous wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1277–1290, Jun. 2017.

[13] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep Q-learning model,” IEEE

Trans. Sustain. Comput., vol. 4, no. 1, pp. 132–141, Mar. 2017.

[14] S. Chinchali et al., “Cellular network traffic scheduling with deep
reinforcement learning,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 1–9.

[15] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in Proc. IEEE INFOCOM, Apr. 2018,
pp. 1871–1879.

[16] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. ACM SIGCOMM, 2018, pp. 191–205.

[17] M. A. Wijaya, K. Fukawa, and H. Suzuki, “Neural network based
transmit power control and interference cancellation for mimo small
cell networks,” IEICE Trans. Commun., vol. 99, no. 5, pp. 1157–1169,
2016.

[18] F. Tang et al., “On removing routing protocol from future wireless net-
works: A real-time deep learning approach for intelligent traffic control,”
IEEE Wireless Commun., vol. 25, no. 1, pp. 154–160, Feb. 2017.

[19] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interfer-
ence management,” IEEE Trans. Signal Process., vol. 66, no. 20,
pp. 5438–5453, Oct. 2018.

[20] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “A graph neural network
approach for scalable wireless power control,” in Proc. IEEE Globecom

Workshops (GC Wkshps), Dec. 2019, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/9024538/

[21] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless net-
works,” in Proc. 27th Conf. Comput. Commun. (INFOCOM), Apr. 2008,
pp. 1103–1111.

[22] S. Kwon and N. B. Shroff, “Analysis of shortest path routing for large
multi-hop wireless networks,” IEEE/ACM Trans. Netw., vol. 17, no. 3,
pp. 857–869, Jun. 2009.

[23] L. Liu, Y. Cheng, L. Cai, S. Zhou, and Z. Niu, “Deep learning based
optimization in wireless network,” in Proc. IEEE Int. Conf. Commun.
(ICC), May 2017, pp. 1–6.

[24] L. Babai, “Graph isomorphism in quasipolynomial time,” in Proc. ACM
STOC, 2016, pp. 684–697.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: TOPOLOGY AWARE DEEP LEARNING FOR WIRELESS NETWORK OPTIMIZATION 9805

[25] Z. Han and K. R. Liu, Resource Allocation for Wireless Networks:

Basics, Techniques, and Applications. Cambridge, U.K.: Cambridge
Univ. Press, 2008.

[26] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–144, 2006.

[27] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan,
“Algorithmic aspects of capacity in wireless networks,” in Proc. ACM

SIGMETRICS, 2005, pp. 133–144.

[28] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in Proc. ACM MobiCom, 2004, pp. 114–128.

[29] L. Liu, Y. Cheng, X. Cao, S. Zhou, Z. Niu, and P. Wang, “Joint
optimization of scheduling and power control in wireless networks:
Multi-dimensional modeling and decomposition,” IEEE Trans. Mobile

Comput., vol. 18, no. 7, pp. 1585–1600, Aug. 2018.

[30] D. P. Bertsekas, Network Optimization: Continuous and Discrete Mod-

els. Belmont, NV, USA: Athena Scientific, 1998.

[31] J. Su, S. He, and Y. Wu, “Features selection and prediction for
IoT attacks,” High-Confidence Comput., vol. 2, no. 2, Jun. 2022,
Art. no. 100047.

[32] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning
for edge computing: Research problems and solutions,” High-Confidence

Comput., vol. 1, no. 1, Jun. 2021, Art. no. 100008.

[33] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop
Hot Topics Netw., Nov. 2016, pp. 50–56.

[34] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling data-
driven quality of experience optimization using group-based exploration-
exploitation,” in Proc. USENIX NSDI, 2017, pp. 393–406.

[35] B. Matthiesen, A. Zappone, K.-L. Besser, E. A. Jorswieck, and
M. Debbah, “A globally optimal energy-efficient power control frame-
work and its efficient implementation in wireless interference networks,”
2018, arXiv:1812.06920.

[36] M. Lee, G. Yu, and G. Ye Li, “Graph embedding based wireless link
scheduling with few training samples,” 2019, arXiv:1906.02871.

[37] H. Li, Y. Cheng, C. Zhou, and P. Wan, “Multi-dimensional conflict graph
based computing for optimal capacity in MR-MC wireless networks,”
in Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst., Jun. 2010,
pp. 774–783.

[38] Y. Cheng, H. Li, D. M. Shila, and X. Cao, “A system-
atic study of maximal scheduling algorithms in multiradio
multichannel wireless networks,” IEEE/ACM Trans. Netw.,
vol. 23, no. 4, pp. 1342–1355, Aug. 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6824270/

[39] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE

Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[40] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization,
vol. 6. Belmont, MA, USA: Athena Scientific, 1997.

[41] Y. Cheng, X. Cao, X. Shen, D. M. Shila, and H. Li, “A systematic
study of the delayed column generation method for optimizing wireless
networks,” in Proc. 15th ACM Int. Symp. Mobile ad hoc Netw. Comput.
(MobiHoc), 2014, pp. 23–32.

[42] T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical

Learning, 2nd ed. New York, NY, USA: Springer, 2001.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org.

[44] Q. Zhang, R. Cao, F. Shi, Y. Nian Wu, and S.-C. Zhu, “Interpreting
CNN knowledge via an explanatory graph,” 2017, arXiv:1708.01785.

[45] U. Schöning, “Graph isomorphism is in the low hierarchy,” J. Comput.
Syst. Sci., vol. 37, no. 3, pp. 312–323, Dec. 1988.

[46] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, “Neural message passing for quantum chemistry,” 2017,
arXiv:1704.01212.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[48] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless
scheduling,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–1261,
Jun. 2019.

[49] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep Sets,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 3391–3401.

[50] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proc. ACM SIGKDD, 2018, pp. 974–983.

[51] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. ACM ICML, 2009, pp. 41–48.

[52] SmartMesh IP Wireless 802.15.4e PCBA Module With Antenna Connec-
tor, Analog Devices, Norwood, MA, USA, 2013.

[53] M. R. Souryal, J. Geissbuehler, L. E. Miller, and N. Moayeri, “Real-
time deployment of multihop relays for range extension,” in Proc. 5th

Int. Conf. Mobile Syst., Appl. Services, 2007, pp. 85–98.

Shuai Zhang (Student Member, IEEE) received the
B.Eng. degree from Zhejiang University in 2013,
the M.S. degree from the University of California at
Los Angeles, Los Angeles, in 2015, and the Ph.D.
degree in computer engineering from the Illinois
Institute of Technology in 2022. His research inter-
ests include wireless communication and distributed
learning.

Bo Yin (Student Member, IEEE) received the B.E.
degree in electronic information engineering and the
M.E. degree in electronic science and technology
from Beihang University in 2010 and 2013, respec-
tively, and the Ph.D. degree in computer engineering
from the Illinois Institute of Technology in 2020.
His research interests include networks security, net-
works resource allocation, and ML-based networks
optimization.

Weiyi Zhang (Senior Member, IEEE) is cur-
rently a Principal Inventive Scientist at AT&T
Labs Research, Middletown, NJ, USA. Before join-
ing AT&T Labs Research, he was an Assistant
Professor with the Computer Science Department,
North Dakota State University, Fargo, ND, USA,
from 2007 to 2010. His research interests include
reinforcement learning on networks planning and
optimization, SDN and networks function virtualiza-
tion for carrier networks, networks traffic demand
forecast and analysis, and 5G wireless broadband

strategic design. He has published more than 100 refereed papers in his
research areas. He received the AT&T Labs Research Excellence Award
in 2013, the Best Paper Award from IEEE GLOBECOM in 2007, the Best
Paper Award from IEEE ICC in 2014, and the Best Paper Award from IEEE
ICNP in 2017.

Yu Cheng (Senior Member, IEEE) received the B.E.
and M.E. degrees in electronic engineering from
Tsinghua University in 1995 and 1998, respectively,
and the Ph.D. degree in electrical and computer engi-
neering from the University of Waterloo, Canada,
in 2003. He is now a Full Professor with the
Department of Electrical and Computer Engineering,
Illinois Institute of Technology. His research inter-
ests include wireless networks performance analysis,
information freshness, machine learning, networks
security, and cloud computing. He was an IEEE

ComSoc Distinguished Lecturer from 2016 to 2017. He received the Best
Paper Award at QShine 2007 and the IEEE ICC 2011, and a Runner-Up
Best Paper Award at ACM MobiHoc 2014. He received the National Science
Foundation (NSF) CAREER Award in 2011 and the IIT Sigma Xi Research
Award in the Junior Faculty Division in 2013. He has served as the Symposium
Co-Chair for IEEE ICC and IEEE GLOBECOM; and the Technical Program
Committee (TPC) Co-Chair for IEEE/CIC ICCC 2015, ICNC 2015, and
WASA 2011. He was the Founding Vice Chair of the IEEE ComSoc Technical
Subcommittee on Green Communications and Computing. He is an Associate
Editor of IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE
INTERNET OF THINGS JOURNAL, and IEEE WIRELESS COMMUNICATIONS.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 20:50:26 UTC from IEEE Xplore. Restrictions apply.

