
8074 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

A Self-Supervised Learning Approach for

Accelerating Wireless Network Optimization
Shuai Zhang , Student Member, IEEE, Oluwaseun T. Ajayi , Student Member, IEEE,

and Yu Cheng , Senior Member, IEEE

Abstract—The prevailing issue in multi-hop wireless networking
is interference management, which militates against the efficiency
of traditional routing and scheduling algorithms. We develop a
self-supervised learning approach to address the classic NP-hard
problem of capacity optimization over a multi-hop wireless net-
work, where the routing and scheduling decisions are deeply cou-
pled. Our two-stage design leverages historical computation ex-
periences to accelerate the optimization of new problem instances,
where an instance represents the application-level input containing
network topology, interference model, and other user-level traffic
constraints. The first stage, Scheduling Structure Classification
(SSC), distills the scheduling structure of the historical optimiza-
tion instances into an appropriate number of classes, through a
properly designed clustering algorithm without prior assumption
or knowledge. The second stage uses the instances labelled with
class information from the first stage to train an Application
Identification (AID) neural network model capable of predicting
a future problem instance’s scheduling class given its application-
level information. When solving the new instance, its predicted
scheduling class and the associated scheduling structure are ex-
ploited to compute an efficient approximate solution, avoiding the
time-consuming iterative search for such scheduling structure as
practiced by the conventional approaches. We apply our method to
different types of wireless multi-commodity flow problems across
various network sizes and disparate flow requirements. The results
demonstrate that our method significantly reduces the computation
time robustly by at least 70% with only slight loss in the solution
quality.

Index Terms—Deep learning, wireless network optimization,
topology representation.

I. INTRODUCTION

E
MERGING mobile applications, such as vehicular ad hoc

networks, industrial Internet of Things, and Unmanned

Aerial Vehicles networks, are calling people’s attention to reex-

amine the challenging classic problem of capacity optimization

over a multi-hop wireless network. Despite long-term efforts

in this area, the efficient optimization of large-scale wireless

networks remains a challenging task. This is largely due to the

Manuscript received 2 July 2022; revised 28 October 2022 and 20 January
2023; accepted 28 January 2023. Date of publication 10 February 2023; date of
current version 20 June 2023. This work was supported in part by the National
Science Foundation (NSF) under Grants CNS-1816908 and CNS-2008092. The
review of this article was coordinated by Prof. Hongzi Zhu. (Corresponding

author: Yu Cheng.)

The authors are with the Department of Electrical and Computer Engi-
neering, Illinois Institute of Technology, Chicago, IL 60616 USA (e-mail:
szhang104@hawk.iit.edu; oajayi6@hawk.iit.edu; cheng@iit.edu).

Digital Object Identifier 10.1109/TVT.2023.3244043

fact that many of these tasks can be reduced to NP-hard problems

like independent set problems, graph coloring, and even their

approximation is shown to be infeasible [1], [2].

While the conventional wireless network optimization al-

gorithms have not gained much recent progress, we resort to

an innovative data-driven, learning-based approach to signifi-

cantly reduce the computational overhead in wireless network

optimization as well as maintaining a close-to-optimum perfor-

mance. In this paper, we specifically study the classic wireless

network flow problem, where the network-layer routing issue

and link-layer scheduling issue are coupled together [3]. It

is worth noting that although there are some recent machine-

learning based studies in the context of wireless networks, they

focus on either wired networking or scheduling in the single-hop

networking scenarios [4], [5].

Our study is inspired by the idea of extracting knowledge

from historical problem instances to accelerate the solution of

new instances, proposed in recent works [6], [7]. The goal is that

when a new problem instance is detected to be similar to another

one whose solution was obtained at a previous time, certain in-

formation from that historical case can be leveraged to facilitate

the solution process of this new instance. Although this idea is

intuitive, its implementation is by no means trivial. To achieve

this goal, two fundamental challenges need to be addressed.

The first one is how to effectively identify the similarity

between two problem instances. The similarity evaluation will

not be as simple as directly observing and comparing the

application-level problem input information (e.g., the network

topology or the commodity flow deployment), because a slight

difference in these input items can cause significant changes

to problem outputs, rendering the historical instance’s solution

information less useful. For example, a new instance may deploy

the same number of commodity flows as that in a historical

instance; however, if one flow involves a different source or

destination node in the new instance, the scheduling might be

largely different from the historical one. The other challenge

is the proper usage of the historical instances. Even with a

means to identify the similarity between problem instances,

directly applying the old instances’ solutions is unlikely to give

good performance, neither is it practical to store all the past

solutions due to the huge size of input configuration space. Our

vision is that the historical computation experiences must be

distilled and used in an intelligent way to facilitate solving

new instances without rote-memorization of all experienced

instances.

0018-9545 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8075

This paper addresses these two challenges with an approach

that follows the self-supervised learning paradigm. Our method

does not rely on human knowledge or pre-existing labels to

identify similarity between instances. It consists of two stages.

The first stage is Scheduling Structure Classification (SSC).

Optimization tasks in wireless networks can be generically

formulated as scheduling link subsets that do not interfere

with each other over the same communication channel. Such

subsets are termed independent sets (IS) as they correspond to

the nodes not connected by arcs on conflict graphs representing

the links’ interference relationship [8]. We will demonstrate that

the scheduled independent sets (also called the scheduling struc-

ture) associated with each optimization instance offer a suitable

representation of the internal structure for evaluating the similar-

ity between problem instances with different application-level

inputs. We develop a clustering algorithm to group the training

instances by their scheduled ISs into an appropriate number of

scheduling classes, each representing problem instances that

have the similar scheduling structure. It is worth noting that

the number of such classes is much smaller than the number of

training instances. The clustering outcome can be interpreted as

a scalable extract of the historical computing experiences.

The output from the first stage offers labeled data to train

the second stage, the Application Identification (AID) model,

in a supervised learning manner. The AID model is capable of

predicting a problem instance’s class given its application-level

information, such as the network topology and commodity flow

requirement. When solving a new problem instance, the schedu-

lable independent sets suggested by the AID model will be

directly exploited to compute an approximate solution, obtained

through one-round of linear programming (LP), avoiding the

time-consuming search for such scheduling structure informa-

tion adopted in the conventional algorithms.

With the increasingly wide deployment of emerging appli-

cations such as wireless mesh network [9], [10], [11], space-

air-ground integrated networks [12], [13], and 5G/6G integrated

access and backhaul (IAB) systems [14], [15], our method can

be readily applied in such scenarios, where the past wireless link

interference between the base stations with backhauling needs

can be deduced from data to suggest high-quality independent

sets with less time. For this reason, we apply our method to

the multi-commodity flow optimization problem in wireless

networks under link interference contraints. We demonstrate

through extensive experiments with different-sized networks

and flow requirements that our method significantly reduces the

computation time by at least 70%, and it does so robustly with lit-

tle loss in solution quality. Then to further show that the method

is effective not just with one type of specific flow problem, we

test the performance under a different flow optimization scenario

and have found similarly consistent performance improvements.

The remainder of this paper is organized as follows. We first

formulate the wireless network flow optimization problem to be

solved. We then present all the design and implementation details

of the self-supervised learning based approach. Next comes the

numerical results, followed by a review of more related work and

the conclusion remarks. The main notations used in this paper

together with the list of acronyms are summarized in Table I.

TABLE I
LIST OF SYMBOLS AND ACRONYMS

II. WIRELESS NETWORK FLOW OPTIMIZATION

We consider a generic wireless network (N ,L), with a node

set N and a link set L. Each node has attributes communica-

tion range and interference range, representing the maximum

distances two nodes must be at to communicate or interfere

with each other. There exists a directed link (u, v) ∈ L from a

transmitter nodeu to a receiver node v if and only their Euclidean

distance is smaller than or equal to the communication range of

node v.

The protocol interference model is used. It stipulates that

two links interfere if the transmitter node of one link is within

the interference range of the receiver node of another link.

In this paper, we assume that all nodes of the network have

identical communication and interference ranges, and that the

interference range is greater than the communication range. We

only consider link schedules that are interference-free, and for

convenience, we use independent set (IS) to denote a set of

network links that do not interfere with each other when they

transmit at the same time. The link capacity with no interference

c(u, v) is calculated by the Shannon formula, as a function of the

distance between u and v, transmission power and noise power

which are given as known parameters.

A. Multi-Commodity Flow Optimization

Within the given wireless network, traffic demands

[(src0, dst0), . . ., (srcD−1, dstD−1)]

refer to the list of D pairs of nodes that need to have messages

sent from the source to the destination. Each traffic flow associ-

ated with one pair is referred to as a commodity flow. The nodes

within these pairs are usually not directly reachable by one wire-

less link, so the network traffic may go through multiple hops,

which would further depend on the link scheduling considering

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

8076 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

their interference relationships. We use Nu to refer to the set

of nodes that are neighbors (reachable by a direct link) of node

u, and can be further superscripted by − or + to differentiate

the “in-neighbors” and the “out-neighbors,” i.e., neighbor nodes

connected by a link to u and from u, respectively. Let fd(u, v)
denote the amount of flow carried over link (u, v) for commodity

d. The total flow value rd for commodity d is the sum of all link

flows out of the source node:

rd =
∑

v∈N+
srcd

fd(srcd, v) (1)

Our objective is to optimize the network utility as a function

of the achieved commodity flows. For example, it could be

the weighted sum of the commodity flows:
∑

d wdrd, where

the per-commodity flow weight coefficient wd is given as part

of the problem input, to signify its own service priority. The

optimization is subject to the following constraints.

a) Flow conservation constraints: For each network node that

is neither the source nor the destination of a commodity flow,

the net amount of traffic flows should be zero. Note that this

should hold for each node and for each commodity: the amount

of traffic flow into the node should be equal to that of the flow

out of the node.
∑

u∈N−
v

fd(u, v) =
∑

u′∈N+
v

fd(v, u
′), ∀v �= srcd, dstd; ∀d. (2)

Note that the flow conservation constraints implicitly determine

the routing of each commodity flow.

b) Link capacity constraints: Suppose that all schedulable ISs

are contained in set M, and an IS m gets scheduled a time share

αm. The effective capacity pm(u, v) of link (u, v) when IS m

is active takes value c(u, v) if such link is part of the IS m, and

0 otherwise.

Then the constraints can be defined such that for each link, the

sum of flows belonging to all commodities should not exceed its

achievable capacity under the current scheduling. Because the

system works in a time-multiplexing way, the link’s achievable

capacity is the weighted sum of the effective capacity, i.e.,

weighted by the time portion it is active.

D−1
∑

d=0

fd(u, v) ≤
∑

m∈M

αmpm(u, v), ∀(u, v) ∈ L,

pm(u, v) =

{

c(u, v) if (u,v) is active in m

0 otherwise
(3)

c) Scheduling constraint: Recall that if one forms a conflict

graph whose vertices correspond to the network links and each of

its arcs represents the interference relationship between a pair of

the network links, then a subset of non-interfering network links

correspond to the independent set, i.e., a subset of vertices not

having an arc between any pair, on the conflict graph. To ensure

interference-free transmission, at any given moment, only an IS

can be activated, and different ISs are scheduled for transmission

in a time-sharing manner to satisfy the flow demands over time.

If the network has L (= |L|) links, each IS can be represented

by an L-dimensional binary vector, where each component’s

value taking either 1 or 0 indicates a corresponding link’s active

or inactive status. Specifically, let αm denote the normalized

transmission time allocated to IS m, and the time assignment to

all ISs must sum to 1:
∑

m∈M

αm = 1 (4)

Subject to all the above constraints, a typical multi-

commodity flow (MCF) problem of the weighted sum maxi-

mization type can be formulated as:

Maximize
{fd(u,v)},{am}

D−1
∑

d=0

wdrd

s.t. constraints(2), (3), (4),

fd(u, v) ≥ 0, ∀(u, v) ∈ L, ∀d

αm ≥ 0, m ∈ M (5)

The problem described above has the form of linear program-

ming because the objective and constraints are linear functions.

However, the size of M is exponentially large and cannot be

easily enumerated; and finding sets of non-interfering links is

equivalent to finding a graph coloring of graph edges. Therefore,

the problem is essentially a NP-hard problem.

B. Delayed Column Generation

Credited to its LP format, the optimization problem (5) can

be efficiently solved approximately by delayed column gener-

ation (DCG) method [16]. It is essentially an iterative search

method: starting from an initial set of columns in the constraint

matrix, each round of the algorithm consists of the solving of

a restricted master problem and a sub-problem. The restricted

master problem is the same as the main problem except that the

constraint matrix only consists of the set of known columns so

far. Its dual solution is used as an input to form a sub-problem,

whose purpose is to search for a new constraint column that

can improve the master problem solution. The new column is

then added to the set of known columns and the same iteration

continues until a termination condition is met. As the number

of iteration grows, the solution of the restricted master problem

converges to the optimum value.

The DCG matters in our context, as search for a new column

can be equivalent to searching a scheduable IS [17]. Note that

with DCG, the sub-problem is an NP-hard maximum weighted

independent set problem but can be approximatedly solved with

a greedy solution. We implement the DCG algorithm to compute

training cases and it also serves as the benchmark method to

evaluate the solution quality and time efficiency of our machine

learning (ML) based approach.

III. SELF-SUPERVISED LEARNING BASED OPTIMIZATION

Fundamentally, achieving the optimal commodity flow is

boiled down to searching the right collection of independent

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8077

Fig. 1. The self-supervised learning based optimization framework.

sets. Interestingly, the size of scheduled independent sets is

a small number and has an upper bound determined by the

problem dimension. Specifically, it is shown that the size of

the scheduled independent sets is upper-bounded by the rank of

the constraint matrix of such wireless network flow optimization

problems [18]; using the notation in the previous section, this

upper bound would be on the order of O(D|N |+ |L|).
This collection of the scheduled ISs corresponding to an opti-

mum flow is hereafter referred to as the critical independent sets

(CIS). Hence, the essence of the hardness of wireless network

flow optimization is to search the exponentially many possible

(up to 2|L|) independent sets to find the small CIS, whose size is

a linear function of |L|.
From the computing perspective, an optimization algorithm

can be interpreted as a mapping function, which takes the given

application-level inputs (e.g., commodity deployment, network

topology, interference model, and other user-level traffic con-

straints) and outputs the scheduling decisions and related flow

allocation. If we are to train a model which is able to approx-

imate such an input-output mapping: given an optimization

instance with application-level inputs, it will suggest sets of

non-interfering links M′ ≈ CISs which are reasonably close

to the CISs used by the optimum scheduling, then we may

approximate the original optimization problem by replacing the

constraint (4) as
∑

m∈M′

αm = 1. (6)

The solution to this simplified linear programming problem can

approximate the solution to the original NP-hard problem. No

doubt, how close this solution is to the optimum solution depends

on how closeM′ is to the CIS. WhenM′ is a superset of CIS, the

modified problem should have the same solution as the optimum

solution, with no loss of solution quality.

The major challenge to this approach is that the model is

supposed to output a group of vectors with strict constraints: each

vector needs to be an independent set, representing a valid set of

non-interfering network links. This turns out to be difficult for

current neural network models to directly output. The commonly

used models perform well when training on “dense” data by

learning from a great number of input-output sample pairs,

sufficiently close for the models to extrapolate. However, the

set of scheduled links in networks are represented by sparse

vectors: in a network with hundreds of potential links, typically

fewer than 5% of them are scheduled at a given time. Even

with many training samples, still the output space can hardly be

covered to allow effective learning.

In response to such challenge, our self-supervised learning

model is designed with a two-stage approach, as illustrated in

Fig. 1.

The first stage is Scheduling Structure Classification (SSC),

which distills the scheduling structure (represented as scheduled

independent sets) of historical optimization instances into an

appropriate number of scheduling classes through a properly

designed clustering algorithm without additional supervision

signal. The output from the SSC stage offers labeled data to train

the second stage, the application identification (AID) stage, in

a supervised learning manner. The SSC stage also summarizes

the schedulable ISs associated with each schedule class. The

AID stage is capable of predicting an optimization instance’s

scheduling class given its application level information.

In the usage phase, a new problem instance is directly fed to

the AID model to obtain a suggested scheduling class; the class

label can then be used to retrieve the schedulable ISs learned in

the SSC stage. These retrieved set of schedulable ISs (M′) is an

approximation (predicted by the model) of the target CISs for

this new instance and used in (6) to compute the approximate

solution for the original optimization problem. Fig. 2 gives an

illustration of the idea.

In our approach, a large number of optimization instances are

solved with the traditional DCG method to serve as the training

data (i.e., the historical instances). Each instance contains infor-

mation about network topology, commodity source/destination

deployment, commodity weights and the scheduled ISs. As the

intuition of our method is to extract the mapping relationship be-

tween the application-level commodity traffic requirement and

the supporting scheduling structure, we will train in a setting that

statistically covers the commodity geometric distribution over

the whole network. We then test the trained model in diversified

commodity deployment scenarios to examine the robustness of

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

8078 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

Fig. 2. Problem instances with similar scheduling are identified. G0 and G1

are two problem instances that are different by traffic demands and node location
(not shown in the figure). They have similar scheduled ISs, and with the proposed
algorithm, a mapping f is learned by the AID model so that on a manifold, these
problem instances with similar link usage patterns are mapped to points close
to each other. In this way, the model can help “recall” historical instances that
are helpful to solving future ones.

the performance. Detailed performance evaluations are given in

the numerical experiment section.

We note that the approach is not necessarily limited to the

multi-hop networks. However, because the routing and schedul-

ing in such type of networks limited by interference is much more

difficult than single-hop ones, we have chosen this scenario for

illustrating the power of deep learning methods.

A. Scheduling Structure Classification (SSC)

For any problem instance of this type, its solution is a time-

share scheduling of a collection of CISs, which can be repre-

sented by a point in the convex hull spanned by the CIS vectors.

When the network does not change significantly (e.g., the flow

requirement changes or the nodes shifted in location), different

optimization instances are bound to have largely overlapping

CISs and differ only in the coefficients. The overlapped parts

are the independent sets scheduled in both the machine learn-

ing predicted results and the conventional method’s optimum

results, and the degree of such overlapping can be quantified

with Jaccard similarity measure. In other words, the convex hull,

determined by just one collection of CISs, can contain solutions

to many other problem instances. Thus, although problem in-

stances can look differently on the application level, they are

different only if their scheduled CISs, or scheduling structures

are different.

By this observation, it is beneficial to use historical cases’

scheduling structure for faster optimization of new cases. It is

of course possible that new problem instances need to schedule

different CISs, forming different convex hulls. But if we are

given a sufficiently large number of historical cases, with the

limited number of valid scheduling structures, we intuit that

the unseen future cases can still have significant overlapping

scheduling structures with known one, i.e., their convex hulls

can still be close to convex hulls seen during training. This means

that for two different input problem instances, their optimal

scheduling could have many identical independent link subsets.

The larger the overlapping between their scheduled CISs, the

more similar the two problem instances are considered to be.

Such similarity in scheduling structure is not superficially

observable just by routinely checking application-level problem

inputs; we delegate such task of identifying similarity to a

clustering algorithm. The goal is to group known instances

into clusters that have similar scheduling structures, hereafter

referred to as belonging to the same scheduling class. We take the

union of the CISs from all the instances falling in the same class,

denoted as UCISs, as the approximate critical ISs suggested for

instances in that class. The UCISs for all the scheduling classes

are stored as distilled summary of all historical experiences.

The implementation details of our clustering algorithms are

as follows.

1) Instance Representation: The information from each

problem instance can be seen as two parts: one is the network’s

nodes, links, their capacities and demands, (N , E ,D); the other

is the corresponding scheduled CIS: {IS0, . . . , ISk−1}, where

k is the number of independent sets in CIS and may be dif-

ferent from case to case. Each of the IS is represented by an

|E|-dimensional vector, with |E| as the number of links. The

j-th element of the vector represents whether link j is activated

in this IS: 1 if activated and 0 otherwise.

For clustering, we only use the scheduled CIS as the basis for

clustering without involving the network related information.

The issue is that the problem instances are likely to be scheduled

with CISs of varying sizes; some instances may have CIS twice

as large as others. To obtain a single vector representation,

we use a pooling operation. Pooling refers to the process of

“summarizing” the independent sets information for one prob-

lem instance. It would take as input several independent set

vectors and output a single vector containing information from

them. We require a fixed sized vector representation for ease

of processing. We use averaging for the pooling operation: an

instance’s scheduling structure is calculated as the mean of all

these k CIS: Repr = 1
k

∑k
i=0 ISi. Other ways of pooling is also

possible, for example, taking the summation over those ISs; we

find through our experiments that the mean-based representation

robustly performs well.

2) Dimension Reduction: With the |E|-dimensional vector

obtained for each problem instance, clustering may proceed

based on this alone. However, the dimension of these vectors

increases rapidly with the size of the network. Starting from a

few dozen when there are tens of nodes, their dimension can go

into the range of thousands even when the number of nodes is

at a modest 50.

Such high dimensionality is problematic because it is well-

known that clustering algorithms converge slowly with high-

dimensional data. An even more negative aspect is that the

curse of dimensionality can seriously impact the clustering

performance, because in the high-dimensional regime, the data

points are often equally close to each other, thus rendering the

distance-based clustering method ineffective [19].

Therefore, before the clustering, we use the idea of principal

component analysis (PCA) [20] for dimension reduction. It has

been applied in wireless network problems, including PCA-

guided routing algorithm [21] and anomaly detection in wireless

sensor networks [22], as it transforms interrelated features in a

dataset into a number of uncorrelated features called principal

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8079

Algorithm 1. Dimension Reduction of the Scheduling Struc-

ture.

components (PCs). This in effect transforms the vector represen-

tation of each instance into a vector in a smaller subspace such

that the resulting smaller-sized vectors still preserve the variance

in the original data. This counters the curse of dimensionality

because it preserves the difference among the instance vectors

and discards the dimensions with little variation, and as a result,

distances between the vectors would be more salient for the

clustering step to capture.

The steps of dimension reduction is listed in Algorithm 1.

It takes as input the data matrix T ∈ R
N×do , whose rows are

the original instance vectors, and γ ∈ (0, 1], a tunable parameter

representing the threshold for output principal component selec-

tion. Introducing this parameter is necessary because choosing

an appropriate number of PCs is not straightforward, as it

impacts the optimality of clustering. Keeping fewer PCs (e.g

2D or 3D) causes loss of critical information in the data, and

retaining very large PCs causes clustering complexity using the

K-means algorithm.

To solve this, we use the explained variance ratio (EVR) [23]

of each dimension over all the instance vectors, and take the

largest of them to the point that their combined EVR surpasses

a certain threshold. We select the dimensions starting from the

largest EVR and maintain the minimum number of dimensions

whose cumulative EVR exceeds γ, taken to be 50% in the

experiments unless otherwise noted.

Algorithm 2. Instance Clustering.

3) Clustering Into Scheduling Classes: After dimension re-

duction, the instance vectors are sufficiently far apart of each

other so that clustering can be performed more easily. We use

K-means++ algorithm [24] to cluster the known case data into

several structural classes. This choice is corroborated in our

experiments, and a comparison with the standard K-means is

presented in Section IV-C.

The basic idea is that given the reduced-dimension instance

vectors in Z, the aim is to choose K vectors c1, . . . , cK acting

as centers, so as to minimize the total squared distance between

each point and its closest center point:

minimize
c1,...,cK∈Z

K
∑

k=1

∑

z∈Zk

‖z − ck‖
2,

where Zk is the set of instance vectors that are closest to center

point ck more than other instance vectors. In this way, each

point is assigned one of the K clusters, and in this problem, it

represents the structural class it belongs to.

This problem is NP-hard if it is to be solved exactly, but in

typical usage scenarios, an iterative heuristic update process is

used to approximate the solution. Our clustering mechanism is

thus, based on it, as shown in Algorithm 2.

Such an algorithm is chosen for the following reasons. First is

that it has a low runtime: for each iteration it only costsO(KN),
where K is the number of clusters and N is the number of

total instances. The other reason is that when updating, only

the distance between each case to its cluster center is needed.

This suits the network problems, because most of the scheduling

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

8080 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

Fig. 3. Illustration of the clustering of scheduling structure.

patterns, in the reduced dimensions, are quite disparate and

they naturally form small clusters. Hence it is not necessary

to compare each case against all others; only the closest ones

are necessary.

In our context, we do not have the prior knowledge of what

the proper number of clusters to classify the scheduling structure

should be. Choosing the number of classes in the SSC stage

follows a heuristic process: we conducted experiments with

different values of K and choose the best one. There are existing

methods such as the elbow method [25] to find a reasonable num-

ber; but because the final performance metrics we are interested

in are not easily determinable at this stage as a single number,

we instead try out several candidate values before settling on

a specific number. For the effects of number of classes on the

performance figures, there is more discussion in Section IV-C.

In Fig. 3, we illustrate the clustering of scheduling structure

over the historical instances from a 30-node network, the topol-

ogy of which is given in the numerical experiments section. In

order to give a clear visualization, we project all the vectors to

the three dimensions associated with the top-3 dominant PCA

components, and just display three scheduling classes from the

clusters. Note that all the training instances will be attached

with an appropriate class label based on the clustering results,

and serve as labelled data to train the AID model.

B. Application Identification

The AID model is to be trained with labelled instances ob-

tained by the SSC stage. We define a network incidence matrix

M ∈ R
|N |×|N | to encode the application-level information re-

quired for optimization, including the network topology, link

capacities, and commodity flow source/destination deployment.

Its element Mij is equal to the link’s capacity if there exists

one from node i to node j, and 0 otherwise. The commodity

flow demand nodes are represented on its diagonal elements:

Msrci,srci is set to −i and the corresponding Mdsti,dsti is set to

i. Since the network nodes are indexed as n ∈ {0, 1, . . .,N-1},

and each element in the matrix (except diagonal ones) equal 0

or the capacity of the link, it will be conflicting to represent the

source and destination nodes of multi-commodity flows with

0’s and 1’s, instead we represent each Msrc,src and Mdst,dst in the

matrix as −i and i, where i ∈ {1, . . ., D} and D is the number

of commodity flow deployments.

Fig. 4. The data flow of AID model.

The weights of these commodity flows, w =
(w0, . . . , wDi−1) with Di denoting the number of commodity

flows in instance i, will also be part of the input. In sum, the

problem instance is represented as a vector x obtained by

x = Concat(Vec(M),w), (7)

where Concat is a vector concatenation operation and Vec con-

verts a 2-D matrix into a 1-D vector in the row-major order.

The input will pass through several fully-connected layers,

and the final layer is to output the estimated probability distri-

bution for each scheduling class, as shown in the Fig. 4. With the

softmax activation function, the output ŷ can be summarized as

follows:

FCi(x) � ReLU(Wix+ bi) (8)

ŷ = softmax(W5(FC4(FC3(FC2(FC1(x))))) + b5)
(9)

During inference, the class with the maximum predicted proba-

bility is used. The cross-entropy loss is used for minimizing the

distance between predicted and actual class label distribution.

Note that because the dimensions of the neural network param-

eters correspond to the network dimensions, this means that our

solution assumes that no new nodes should join the network, or

any existing nodes should leave the network.

IV. NUMERICAL EXPERIMENTS

In this section, we present the numerical results to evaluate

the performance of the proposed self-supervised learning based

optimization. Our method will be applied to solve optimization

instances with different number of commodity flows and differ-

ent commodity weights over the same topology.

A. Experiments Settings

We consider a network formed by nodes randomly distributed

within a fixed 1 Km by 1 Km square area with a minimum

distance of 30 m. The communication range and interference

range are set to be the same for all nodes, at 50 m and 70 m,

respectively. Each link capacity is calculated based on the Shan-

non formula using a preset signal power 17 dBm and noise

power -127 dBm. We specifically study two network topology,

one medium-sized with 30 nodes and one large-sized with 100

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8081

Fig. 5. A 100-node network topology with 6 commodity flows.

nodes. The large 100-node topology is shown in Fig. 5, with

illustration of a deployment instance of 6 multi-hop commodity

flows; the source/destination nodes of different commodities are

differentiated with colors.

The training data along with the scheduled CIS are computed

with DCG algorithm, under different settings of 1 to 6 commod-

ity flow requirements. However, the testing data consist of larger

commodity flow deployments ranging from 1 flow to 10 flows.

The source and destination nodes are randomly selected and

commodity weights are changed crossing different instances.

The consideration is to give a good geometric coverage to the

whole network in the statistical sense. The trained model is tested

in diverse commodity deployment scenarios to examine the ro-

bustness of the performance. The dataset contains over 100,000

problem instances and 10% of them are used as dedicated testing

set. Even though this is not a trivial number, it is possible by using

multiple servers running over a period of time. Also note that the

DCG algorithm is only executed during the data generation and

not in the training, so the training itself is not slowed down by

the use of DCG. We note that it is possible to add additional data

after the training is complete by following the same procedures

in clustering and label generation, but there is the limitation

that the number of classes cannot dynamically scale with more

data. The experiments are run on Google Colab, equipped with

Nvidia K80 GPUs and Intel Xeon processors @ 2.3 GHz. Python

software packages Numpy [26] and Tensorflow [27] are used.

The configurations of hyperparameters for training the AID

model are listed in Table III.

For all experiments under either medium- or large-sized net-

work setting, we aim to quantify the solution time reduction and

the loss in the solution quality by using the proposed method.

Towards this end, the following measures are defined:

AR =
SOLML

SOLDCG

CTR =
tDCG − tML

tDCG

(10)

a) Approximation ratio (AR): defined as the ratio between the

optimal network flow computed using the proposed approach,

denoted as SOLML, and that computed using the conventional

DCG algorithm, denoted as SOLDCG. Note that this definition

is different from the conventional use of the term because the

solutions from DCG algorithm are not always guaranteed to the

optimum. Nevertheless, the solutions of DCG are high quality

enough that we consider them to be sufficient for benchmark

purposes.

Computation time reduction (CTR): the ratio between the

computation time reduction (benefiting from the proposed

method), indicated as tDCG − tML, and that by the conventional

method denoted as tDCG. In calculating the former, we consider

the total computation time, which accounts for both the AID

model’s inference time and the LP computation time with the

suggested UCISs.

B. Performance Evaluation in a Medium-Sized Network

We apply the proposed method to solve the testing instances

within the prepared dataset, and record the computation time and

the optimum flow for each case. To demonstrate the robustness

of our method, we test in different commodity flow deployment

scenarios. The results for the 30-node network are reported in

Table II.

As shown from the CTR and AR figures, we can see that

our method achieves a significant time reduction consistently

across different settings. Across the different number of flows,

the approximation ratio remains over 84%, meaning that the

optimum values are almost the same to the original solution,

with computation time reduction at least 77%. Such robust

performance is because our method can learn and exploit the

internal scheduling structure.

From Table II, in the scenarios of high traffic flow regime,

we do observe slight degrading in the AR performance (from

98% to 84%). This is expected given that the problem gets more

difficult and the solution structures become richer as the number

of flows increases, and it is not avoidable to have better solutions

not covered by the model’s capability.

C. Effects of Clustering Algorithms and the Number of

Structural Classes

In this subsection, we document the performance differences

under the influence of three design choices: the used clustering

algorithm, the number of structural classes, and the effects of

vector dimension reduction. We conducted the experiments on

problem instances with different traffic demands, collected the

performance metrics data and plotted the results in Figs. 6 and

7.

First, we can observe that using the dimension reduction

technique results in an observable time benefit, as shown in

Fig. 7 where the PCA-enabled curves are generally higher than

those that are not, suggesting that on average this is indeed

faster in the solution process. And this benefit is achieved at a

small price, demonstrated in Fig. 6 that the approximation ratio

remained over 96% at low-flow demand regime. In high flow

demand scenarios, however, the PCA-enabled method leads to

even higher approximation ratio, showing that the benefit goes

beyond saving the time for processing long vectors, and can lead

to a more representative vector for the structural information in

the data.

A main reason of favoring K-means++ over the standard

K-means is that its initialization scheme could make the re-

sulting clustering process easier and the clustering may be of

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

8082 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

TABLE II
THE APPROXIMATION RATIO (AR) AND THE COMPUTATION TIME REDUCTION RATIO (CTR) COMPARISON FOR DIFFERENT COMMODITY FLOW DEPLOYMENT

SCENARIOS IN THE 30-NODES NETWORK USING KMEANS++ WITH 500 CLASSES. BOTH PERFORMANCE METRICS ARE THE LARGER, THE BETTER. COMPUTATION

TIME IS IN THE UNIT OF SECONDS. THE OPTIMAL FLOW IS IN THE UNIT OF MBITS/S

TABLE III
LIST OF PARAMETERS AND HYPERPARAMETERS FOR TRAINING THE AID

MODEL

Fig. 6. Approximation ratios for problem instances with different number of
structural classes and number of flow demands. The number is the higher the
better. (a) 200 classes, (b) 300 classes, (c) 400 classes, (d) 500 classes.

Fig. 7. Computation time reductions for problem instances with different
network sizes the number of flow demands. The number is the higher the better.
(a) 200 classes, (b) 300 classes, (c) 400 classes, (d) 500 classes.

a higher quality. This is shown by the higher approximation

ratios achieved by K-means++ in Fig. 6, especially when the

number of traffic demands is high. And this benefit is gained

with very little loss in the computation time, evidenced by the

almost overlapping dotted green and black curves in Fig. 7.

The effect of the number of structural classes to be used is

clearly demonstrated in these plots. We observe that as for the

approximation ratio, there is no indication that more classes are

better: in the high flow demand regime (greater than 6 traffic

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8083

TABLE IV
PERFORMANCE COMPARISON OF OBCR AND PROPOSED SOLUTION

demand pairs), the average approximation ratio has an about

5% decrease between the instances predicted on 200- and 500

classes. This can be explained by the fact that with the larger

number of classes, each class now have less information from

the related instances, so choosing a single class can lead to

a less informed start. However, for reducing the computation

time, a higher number of structural classes is beneficial. An

improvement as high as 10% in computation time reduction

can be achieved for the lower traffic demand regime. This is

also expected because with more classes, each structural class

is smaller and it means less time in processing high dimensional

calculations.

D. A Testimony to ML Intelligence

To further test that ML model in our approach indeed extracts

valuable knowledge that could not be available otherwise, we use

a fast, simple heuristic method as a baseline for the performance

comparison. We know that our proposed method suggests a

UCIS with a certain average size to a new instance, which

will be directly used for one-round LP to get the high-quality

approximate results with much reduced computation time, com-

pared to the traditional DCG. To get evidence that such UCIS

recommendation is not just good by chance, we randomly search

the same amount of ISs and use them as the CISs to test the

performance.

The performance under the random search method is reported

in Fig. 8 indicated as the red curve. As a testimony of ML intel-

ligence, SOLRand is significantly less than the ML performance

SOLML in all the scenarios. This shows that the the ML model

predicts the ISs that are highly relevant to the current problem,

and good performance is very unlikely to be gained from chance.

Next, we compare our method with another sophisticated

heuristic algorithm (hereafter called OBCR) for generating

maximal independent set [28]. This method uses a randomized

approach to achieve distributed execution with provably efficient

message exchange, making it a practical algorithm that can be

used in a networking setting for obtaining independent sets.

For each instance, we use this algorithm to obtain as many

as maximal independent sets as possible under a certain time

budget, and then use them for the LP solver to generate a solution

with one round of linear programming. This is the same process

Fig. 8. Comparison of proposed method to random IS. (a) 30-nodes network,
(b) 100-nodes network.

as our ML-based approach, with the only difference that the

UCIS are purely generated from OBCR instead of machine

learning steps.

We perform the experiments with samples from 100-node

networks with different flow demands, and allow OBCR twice

the execution time of our method’s, to allow any inefficiency in

the implementation. We list the computation time and solution

quality in Table IV. Again, the solution quality of OBCR is

noticeably lower than that of our method even with more time

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

8084 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

Fig. 9. Performance in the 100-nodes network. On the horizontal axis, we
group the performance by scenarios according to the number of deployed
commodity flows. Performance figures for the proposed method and the DCG
method are marked on the plot. The AR and CTR values are also shown.

budget. This confirms that the patterns captured by the neural

network model are indeed more powerful and subtle than what

can be described by designer’s intuitive heuristic.

E. Performance in a Large-Sized Network.

We also conduct the testing in a large-sized network with

100 nodes. The results are plotted in Fig. 9 for illustration. The

computed optimal flow and the computation time are marked on

top of the bar and the AR and CTR values are listed at the top

of the plot. All the positive performance evaluation statements

obtained in the 30-node network also apply to this large-sized

network. When we compare the performance between the 100-

nodes network and the 30-nodes one, under a similar setting with

the same number of commodity deployment, we notice that the

CTR in the large-sized network is moderately better than that

from the smaller network; it is due to the fact that searching for

ISs in the conventional DCG does takes up a greater portion of

solution time in a larger network, but is avoided with the our

ML based method, reducing the per-case time from minutes to

seconds. The AR is however slightly degraded in the larger-

network case, it is because the larger network has more complex

scheduling structure to deal with.

F. Performance Evaluation on Max-Min Type Flows

In this section, we consider the effects of our solution for

a related but different type of problem. Instead of finding the

maximum of the weighted sum of all commodity flows, this

problem seeks to maximize the minimum of flows. In terms of

the notations used in (5), the problem is turned into

maximize
{fd(u,v)},{αm}

mind rd

s.t. constraints(2), (3), (4),

fd(u, v) ≥ 0, ∀(u, v) ∈ L, ∀d

αm ≥ 0, m ∈ M. (11)

This problem is still a linear programming problem, because

the minimization in the objective can be turned into a linear

constraint by introducing an auxiliary variable r′:

maximize
{fd(u,v)},{αm}

r′

s.t. constraints (2), (3), (4),

r′ ≤ rd, ∀d

fd(u, v) ≥ 0, ∀(u, v) ∈ L, ∀d

αm ≥ 0, m ∈ M. (12)

We choose this because such a scenario is practical in flow

optimization. Rather than maximizing the weighted sum of all

types of flows, this is a fairness-oriented system goal, focusing

on improving the lower-bound of all the commodity flows. Such

difference induces a different type of solution space and its

structure, and can provide a good viewing angle for how the

algorithm is generally applicable.

To start, we generate the training dataset separately from the

other parts by using this new problem setting. For simplicity,

instances featuring 100-node network sizes and 2-4 demands

are featured. Other than the optimization objective, all the pa-

rameters for generation are not altered. During the training, the

instance representation does not contain commodity weights as

they are not needed. The results are shown in Fig. 10, and we

can see a similar pattern that the solution time is reduced greatly

at only a fraction of the solution quality loss.

The choice of this example here is by no means due to that

our method only applies to cases with different optimization

objectives, but more of a practical concern: because of the limit

of the paper’s scope, it would be confusing to introduce an

entirely new type of problem. In fact, our method can be applied

in a wide variety of applications, including integrated access

and backhaul and wireless sensor networks, because our model

makes very generic assumptions of the network and that the

solution is entirely data-driven.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8085

Fig. 10. Performance in the 100-nodes network optimizing the max-min
type of flows. On the horizontal axis, we group the performance by scenarios
according to the number of deployed commodity flows. Performance figures for
the proposed method and the DCG method are marked on the plot. The AR and
CTR values are also shown.

V. RELATED WORK

A. Conventional Wireless Network Optimization.

Wireless network optimization had been a key research area

in the recent two decades. The basic methodology is to compute

the resource allocation aspects such as channel assignment, base

station association, scheduling, and power control using various

mathematical programming algorithms [29]. Due to the complex

interference relationship, wireless network optimization is NP-

hard in general, and the major thread of efforts in the community

is the development of various approximation algorithms [30],

[31]. The studies had also been extended from single-radio

single-channel context to complex multi-radio multi-channel

context [32], [33], [34]. A particular issue inspiring the machine

learning study in [6] and this paper is that a new optimization

problem instance is always solved either from scratch or with

a trivial re-optimization approach [35]; machine learning aims

to exploit the historical computation effort to benefit new opti-

mization instances.

B. Neural Network Approaches for Combinatorial Problems.

Deep learning-based methods are used to efficiently solve

combinatorial optimization problems. The major line of research

is to use sequential modeling and graph neural networks to obtain

end-to-end solutions. Pointer network [36], a model based on

multi-headed attention mechanism, solves variable-sized com-

binatorial problems by using the attention scores as selection

criteria, and this approach is shown to achieve reasonable per-

formance level with classic problems including Traveling Sales-

man Problem and Delaunay triangulation. This idea is further

expanded to solve a vehicle routing problem [37]. The basic

pattern of an encoder-decoder setup has found applications for

solving problems under similar circumstances [38], [39], [40].

C. Machine Learning in Wireless Networking

In recent years, there have been studies on developing

machine-learning based approaches to tackle wireless network-

ing related problems. The existing studies can be roughly cate-

gorized into two themes, depending on the angle to exploit the

advantages of machine learning. One theme is to leverage the

capability of machine learning to identify the complex mapping

relationships among a large number of parameters, essentially

treating the learning model as a black-box approximator. These

tend to focus on a purely data-driven end-to-end approach [5],

[41], [42]. Specially, the work [43] is applied in traffic prediction

for proactive resource allocation, and [44] uses deep learning

for executing network functions. Another theme is to adopt

the deep reinforcement learning (DRL) technique for on-line

control problems. Indeed, many resource allocation problems in

wireless networking can be cast as a Markovian decision process

and can significantly benefit from the DRL techniques [4].

While the capacity optimization or the optimal resource allo-

cation in the context of multi-hop wireless networks had been a

key research area in recent two decades [30], [31], the state of

arts was limited to the development of approximation algorithms

and had limited recent progress [45], [46]. ML related studies

on multi-hop wireless networking are also very limited. The

work in [6] proposed the idea to leverage historic computing

experiences by ML to facilitate multi-hop wireless network

flow optimization. However, the ML implementation there was

limited to trimming unimportant links off the network topology

to reduce the problem scale, instead of contributing a new

optimization method. The work [47] was recently enhanced with

the graph embedding technique to make the trimming technique

applicable to different topologies. However, these papers make

use of the past experience in an indirect way: they do not improve

the solution process through a partial reuse of the historical

solutions, which is the angle taken of this work that is not

yet reported in the related literature, to the best of the authors’

knowledge.

VI. CONCLUSION

In this paper, we present a self-supervised learning approach

to accelerate optimization in multi-hop wireless networks. Ex-

tensive numerical results have shown significant gain in the

trade-off between computation overhead and the solution qual-

ity. Our study demonstrates that machine learning has great po-

tential in enabling disruptive methods to address certain classic

NP-hard problems. It is expected that our study can attract more

attention into this exciting direction of research.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

8086 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 6, JUNE 2023

REFERENCES

[1] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in sen-
sor networks: Distributed edge coloring revisited,” in Proc. IEEE 24th

Annu. Joint Conf. IEEE Comput. Commun. Societies, vol. 4, 2005,
pp. 2492–2501.

[2] D. Zuckerman, “Linear degree extractors and the inapproximability of max
clique and chromatic number,” in Proc. 38th Annu. ACM Symp. Theory

Comput., 2006, pp. 681–690.
[3] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop

wireless networks,” in Proc. 43rd IEEE Conf. Decis. Control, 2004, vol. 2,
pp. 1484–1489.

[4] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep reinforcement
learning for datacenter-scale automatic traffic optimization,” in Proc. Conf.

ACM special Int. Group Data Commun., 2018, pp. 191–205.
[5] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless schedul-

ing,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–1261, Jun. 2019.
[6] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning meets

wireless network optimization: Identify critical links,” IEEE Trans. Netw.

Sci. Eng., vol. 7, no. 1, pp. 167–180, Jan./Mar. 2020.
[7] Y. Cheng, B. Yin, and S. Zhang, “Deep learning for wireless networking:

The next frontier,” IEEE Wireless Commun., vol. 28, no. 6, pp. 176–183,
Dec. 2021.

[8] S. Basagni, “Finding a maximal weighted independent set in wireless
networks,” Telecommun. Syst., vol. 18, no. 1, pp. 155–168, 2001.

[9] M. Cao, X. Wang, S.-J. Kim, and M. Madihian, “Multi-hop wireless
backhaul networks: A cross-layer design paradigm,” IEEE J. Sel. Areas

Commun., vol. 25, no. 4, pp. 738–748, May 2007.
[10] M. E. Rasekh, D. Guo, and U. Madhow, “Joint routing and resource allo-

cation for millimeter wave picocellular backhaul,” IEEE Trans. Wireless

Commun., vol. 19, no. 2, pp. 783–794, Feb. 2020.
[11] M. A. Al-Jarrah, E. Alsusa, A. Al-Dweik, and M.-S. Alouini, “Perfor-

mance analysis of wireless mesh backhauling using intelligent reflecting
surfaces,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3597–3610,
Jun. 2021.

[12] J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground inte-
grated network: A survey,” IEEE Commun. Surv. Tut., vol. 20, no. 4,
pp. 2714–2741, Oct./Dec. 2018.

[13] D. Liu, J. Zhang, J. Cui, S.-X. Ng, R. G. Maunder, and L. Hanzo, “Deep
learning aided routing for space-air-ground integrated networks relying on
real satellite, flight, and shipping data,” IEEE Wireless Commun., vol. 29,
no. 2, pp. 177–184, Apr. 2022.

[14] Y. Liu, A. Tang, and X. Wang, “Joint incentive and resource allocation
design for user provided network under 5G integrated access and back-
haul networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 2, pp. 673–685,
Apr./Jun. 2020.

[15] M. Pagin, T. Zugno, M. Polese, and M. Zorzi, “Resource management
for 5G NR integrated access and backhaul: A semi-centralized approach,”
IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 753–767, Feb. 2022.

[16] L. R. Ford Jr., and D. R. Fulkerson, “A suggested computation for maximal
multi-commodity network flows,” Manage. Sci., vol. 5, no. 1, pp. 97–101,
1958.

[17] Y. Cheng, X. Cao, X. S. Shen, D. M. Shila, and H. Li, “A systematic
study of the delayed column generation method for optimizing wireless
networks,” in Proc. 15th ACM Int. Symp. Mobile ad hoc Netw. Comput.,
2014, pp. 23–32.

[18] H. Li, Y. Cheng, C. Zhou, and P. Wan, “Multi-dimensional conflict graph
based computing for optimal capacity in MR-MC wireless networks,” in
Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst., 2010, pp. 774–783.

[19] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data:
A survey on subspace clustering, pattern-based clustering, and correlation
clustering,” ACM Trans. Knowl. Discov. from Data, vol. 3, no. 1, pp. 1–58,
2009.

[20] R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods,
vol. 6, no. 9, pp. 2812–2831, 2014.

[21] G. Chen, L. Tan, Y. Gong, and W. Zhang, “PCA-guided routing algorithm
for wireless sensor networks,” J. Comput. Netw. Commun., vol. 2012, 2012,
Art. no. 427246.

[22] D. Brauckhoff, K. Salamatian, and M. May, “Applying PCA for traffic
anomaly detection: Problems and solutions,” in Proc. IEEE : Int. Conf.

Comput. Commun.2009, pp. 2866–2870.
[23] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet, “A direct

formulation for sparse PCA using semidefinite programming,” SIAM Rev.,
vol. 49, no. 3, pp. 434–448, 2007.

[24] D. Arthur, “K-means++: The advantages of careful seeding,” in Proc. 18th

Annu. ACM-SIAM Symp. Discrete Algorithms, 2007, pp. 1027–1035.
[25] F. Liu and Y. Deng, “Determine the number of unknown targets in open

world based on elbow method,” IEEE Trans. Fuzzy Syst., vol. 29, no. 5,
pp. 986–995, May 2021.

[26] C. R. Harris et al., “Array programming with numpy,” Nature, vol. 585,
no. 7825, pp. 357–362, 2020.

[27] M. Abadi et al., “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems,” 2016, arXiv:1603.04467 .

[28] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari, “An
optimal bit complexity randomized distributed mis algorithm,” Distrib.

Comput., vol. 23, no. 5, pp. 331–340, 2011.
[29] Z. Han and K. R. Liu, Resource Allocation for Wireless Networks: Basics,

Techniques, and Applications. Cambridge, MA, USA: Cambridge Univ.
Press, 2008.

[30] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference
on multi-hop wireless network performance,” Wireless Netw., vol. 11, no. 4,
pp. 471–487, 2005.

[31] L. Georgiadis et al., “Resource allocation and cross-layer control in
wireless networks,” Foundations Trends Netw., vol. 1, no. 1, pp. 1–144,
2006.

[32] V. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan,
“Algorithmic aspects of capacity in wireless networks,” in Proc.

ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., 2005,
pp. 133–144.

[33] R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics for static
multi-hop wireless networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 133–144, 2004.

[34] L. Liu, Y. Cheng, X. Cao, S. Zhou, Z. Niu, and P. Wang, “Joint optimization
of scheduling and power control in wireless networks: Multi-dimensional
modeling and decomposition,” IEEE Trans. Mobile Comput., vol. 18, no. 7,
pp. 1585–1600, Jul. 2019.

[35] D. Bertsekas, Network Optimization: Continuous and Discrete Models,
vol. 8. Nashua, NH, USA: Athena Scientific, 1998.

[36] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. Int.

Conf. Neural Inf. Process. Syst., 2015, vol. 28, pp. 2692–2700.
[37] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing

problems!” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–25.
[38] L. Xin, W. Song, Z. Cao, and J. Zhang, “Multi-decoder attention

model with embedding glimpse for solving vehicle routing prob-
lems,” in Proc. AAAI Conf. Artif. Intell., 2021, vol. 35, no. 13,
pp. 12042–12049.

[39] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. 32nd Int. Conf.

Neural Inf. Process. Syst., 2018, pp. 537–546.
[40] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Ex-

act combinatorial optimization with graph convolutional neural net-
works,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 15580–15592.

[41] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling data-
driven quality of experience optimization using group-based exploration-
exploitation,” in Proc. 14th USENIX Symp. Networked Syst. Des. Imple-

mentation, 2017, pp. 393–406.
[42] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management

with deep reinforcement learning,” in Proc. 15th ACM Workshop Hot

Topics Netw., 2016, pp. 50–56.
[43] J. Wang et al., “Spatiotemporal modeling and prediction in cellular net-

works: A Big Data enabled deep learning approach,” in Proc. IEEE Int.

Conf. Comput. Commun., 2017, pp. 1–9.
[44] H. Ye, L. Liang, G. Y. Li, and B.-H. Juang, “Deep learning-based end-to-

end wireless communication systems with conditional GANs as unknown
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133–3143,
May 2020.

[45] P. Dutta, V. Mhatre, D. Panigrahi, and R. Rastogi, “Joint rout-
ing and scheduling in multi-hop wireless networks with direc-
tional antennas,” in Proc. IEEE Int. Conf. Comput. Commun., 2010,
pp. 1–5.

[46] B. Ji, C. Joo, and N. Shroff, “Throughput-optimal scheduling in multihop
wireless networks without per-flow information,” IEEE/ACM Trans. On

Netw., vol. 21, no. 2, pp. 634–647, Apr. 2013.
[47] S. Zhang, B. Yin, W. Zhang, and Y. Cheng, “Topology aware deep learn-

ing for wireless network optimization,” IEEE Trans. Wireless Commun.,
vol. 21, no. 11, pp. 9791–9805, Nov. 2022.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SELF-SUPERVISED LEARNING APPROACH FOR ACCELERATING WIRELESS NETWORK OPTIMIZATION 8087

Shuai Zhang (Student Member, IEEE) received the
B.Eng. and M.S. degrees from Zhejiang University,
Hangzhou, China, and the University of California,
Los Angeles, Los Angeles, CA, USA, in 2013 and
2015, respectively, and the Ph.D. degree in computer
engineering from the Illinois Institute of Technol-
ogy, Chicago, IL, USA, in 2022. His research inter-
ests include wireless communication and distributed
learning.

Oluwaseun T. Ajayi (Student Member, IEEE) re-
ceived the B.Sc. degree in telecommunication science
from the University of Ilorin, Nigeria, in 2018. He
is currently working toward the Ph.D. degree with
Illinois Institute of Technology. His research interests
include machine learning in wireless networks, infor-
mation freshness optimization, and vehicular com-
munications.

Yu Cheng (Senior Member, IEEE) received the B.E.
and M.E. degrees in electronic engineering from Ts-
inghua University, Beijing, China, in 1995 and 1998,
respectively, and the Ph.D. degree in electrical and
computer engineering from the University of Water-
loo, Waterloo, ON, Canada, in 2003. He is currently a
Full Professor with the Department of Electrical and
Computer Engineering, Illinois Institute of Technol-
ogy, Chicago, IL, USA. His research interests include
wireless network performance analysis, information
freshness, machine learning, network security, and

cloud computing. He was the recipient of Best Paper Award at QShine 2007,
IEEE ICC 2011, and a Runner-Up Best Paper Award at ACM MobiHoc 2014,
National Science Foundation (NSF) CAREER Award in 2011 and IIT Sigma
Xi Research Award in the junior faculty division in 2013. He has served as
several Symposium Co-Chairs for IEEE ICC and IEEE GLOBECOM, and
Technical Program Committee (TPC) Co-Chair for IEEE/CIC ICCC 2015, ICNC
2015, and WASA 2011. He was a founding Vice Chair of the IEEE ComSoc
Technical Subcommittee on Green Communications and Computing. He was an
IEEE ComSoc Distinguished Lecturer in 2016–2017. He is an Associate Editor
for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE INTERNET OF

THINGS JOURNAL, andIEEE WIRELESS COMMUNICATIONS.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2023 at 04:00:20 UTC from IEEE Xplore. Restrictions apply.

