
Securely Solving Linear Algebraic Equations
in a Distributed Framework Enhanced With

Communication-Efficient Algorithms

Bo Yin , Student Member, IEEE, Wenlong Shen, Student Member, IEEE, Xianghui Cao , Senior Member, IEEE,

Yu Cheng , Senior Member, IEEE, and Qing Li,Member, IEEE

Abstract—Solving linear algebraic equations (a.k.a., an
LAE problem) distributedly in a network with multiple agents
has wide applications in distributed control, estimation, and
signal processing. A consensus-based distributed computing
framework is studied in this paper. Specifically, each agent
knows only a subproblem of the LAE, i.e., a subset of all
equations, and then all agents apply a consensus-based
algorithm to update their estimates of the correct solution of the
LAE problem iteratively. Under certain conditions, it has been
shown that all the estimates converge to the exact solution
exponentially fast. However, such a distributed paradigm is
vulnerable to malicious behaviors in an adversarial
environment. In this paper, we indicate a number of security
threats in this process, and thus develop robust computing
solutions against those attacks. With particular attention to low
storage overhead, we develop a new alternating projection
method to enhance the consensus algorithm. Furthermore, we
design an innovative misbehavior detection mechanism by
exploiting the homomorphic signature technique. Our method
can detect misbehaving agents without the common, yet
sometimes infeasible, assumption of local good majority.
Another significant contribution presented in this paper is an
original component dropping approach for mitigating the
communication overhead during the consensus process. From
both theoretical and engineering perspectives, we study how the
consensus can still be reached when a big portion of elements in
exchanged message vectors are dropped. In our preliminary
numerical results, roughly 80% data transmission can be
reduced per epoch at the expense of 35% extra epochs to reach
the consensus, implying 73% reduction in terms of the
communication overhead.

Index Terms—Distributed consensus, linear algebraic
equations, security.

I. INTRODUCTION

SOLVING linear algebraic equations (LAE) Ax ¼ b is a

fundamental mathematical problem, which frequently

arises in a large variety of real-world engineering and scientific

computations. In recent years, due to their potential application

in distributed tracking, network localization, parameter estima-

tion and page ranking, distributed algorithms for solving LAE

have evoked much research attention [1]–[5]. Many of such
algorithms exploit a projected consensus framework, the basic

idea of which stems from the seminal studies in [6], [7]. The
projected consensus framework allows multiple agents in a net-

worked system to align their estimates to a consensus value

which lies in the intersection of constraint sets imposed by indi-
vidual agents. Specifically, within a consensus-based distrib-

uted framework, each agent is assigned a subproblem of the
LAE formed by one row (or possibly multiple rows) of A
and b. Starting with a feasible solution to its subproblem, each

agent iteratively updates its local estimate based on estimates
received from the neighboring agents. It is shown that the final

consensus that all local estimates reach is the exact solution of
the original LAE and the convergence process is exponentially

fast over static connected network topology [1]. The results

have been extended to other network topologies and communi-
cation patterns, e.g., time-varying repeatedly connected graph

and asynchronous communications [2], [8].

While distributed computing allows exploiting the compu-

tation power of multiple agents in a collaborative manner [9],

a common concern is the robustness of the system when mis-

behaving agents exist. In fact, consensus-based algorithms are

vulnerable to erroneous updates. For example, false estimates,

even if occasional, could result in an incorrect final consensus.

In addition, a malicious agent can easily disrupt the progress

of consensus by continuously misreporting its local estimate,

which prevents normal agents from converging to the correct

solution. The focus of this paper is to develop a robust consen-

sus based computing framework that can solve the LAE prob-

lem securely in a distributed manner.

Securely solving the LAE problem has been studied in

the context of outsourcing the problem to a remote centralized

cloud [10]–[12]. Those solutions mainly focus on preventing

cloud from probing private information contained in the out-

sourced LAE, rather than on vulnerabilities in a distributed set-

ting. There are studies on the performance of consensus-based

Manuscript received June 6, 2018; revised January 23, 2019; accepted Feb-
ruary 18, 2019. Date of publication February 27, 2019; date of current version
September 2, 2020. This work was supported in part by the NSF of USA
under Grant ECCS-1610874, in part by the National Natural Science Founda-
tion of China under Grant 61573103, and in part by the Outstanding Youth
Fund of Jiangsu Province under Grant BK20180012. Recommended for
acceptance by S. Xu. (Corresponding author: Yu Cheng.)

B. Yin, W. Shen, and Y. Cheng are with the Department of Electrical and
Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616,
USA (e-mail: byin@hawk.iit.edu; wshen7@hawk.iit.edu; cheng@iit.edu).

X. Cao is with the School of Automation, Southeast University, Nanjing
210096, China (e-mail: xhcao@seu.edu.cn).

Q. Li is with Symantec Corporation, Mountain View, CA 94043, USA (e-
mail: qing_li@symantec.com).
Digital Object Identifier 10.1109/TNSE.2019.2901887

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020 1027

2327-4697 � 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
mailto:
mailto:
mailto:
mailto:
mailto:

distributed algorithms under adversarial agents in a variety of

scenarios such as parameter estimation, time synchronization,

and distributed optimization [13]–[17]. However, these

approaches cannot be easily adapted for solving an LAE prob-

lem. For example, some of the aforementioned studies target on

consensus of a scalar variable while the LAE problem usually

encounters the consensus of vectors. Moreover, some algorithms

only assure that the final agreement lies in the convex hull of the

inputs of normal agents; such algorithms are hard to be applied

for distributedly solving LAE, to be shown later in this paper.

In [18], we conducted some pioneering studies on develop-

ing a distributed outsourcing scheme for solving an LAE prob-

lem securely in a consensus-based framework. While the work

in [18] established some general principles for developing a

secure distributed framework for solving LAE problem, it did

not fully address some important issues. 1) The proposed algo-

rithm in [18] considers a special case that each agent handles

only one row of the LAE problem. The case in which each

node stores multiple rows is not well investigated. 2) The

monitoring algorithm in [18] for detecting malicious agents

requires local good majority and suffers from large communi-

cation overhead. 3) The scheme in [18] does not address the

communication overhead in the consensus procedure. Note

that agents need to exchange hundreds of high dimensional

vectors for solving a large scale LAE problem.

In this paper, we develop a distributed framework where mul-

tiple agents collaborate to securely solve an LAE problem. The

framework consists of both a robust consensus-based algorithm

and a misbehavior detection mechanism, which together protect

the integrity and availability of the final solution. Comparing to

our initial work [18], this paper considers a general heteroge-

neous model that each agent may handle different number of

rows in the consensus framework. By leveraging a homomor-

phic signature scheme, we develop a communication-efficient

monitoring mechanism that removes the assumption of the local

goodmajority. Shifting and scaling operations are used to ensure

the applicability of the homomorphic signature scheme.We also

develop a component dropping technique that can significantly

mitigate the communication overhead in the consensus process.

The main contributions of this paper are summarized as follows:

1) We enhance the consensus algorithm in [18] for a gen-

eral setting where each agent may be associated with

multiple rows of the original LAE and different agents

may have different number of rows. In particular, the

new consensus algorithm at each round updates the

local estimates according to an alternating projection

method, which not only perform robustly against mali-

cious local results but also brings storage savings.

2) We design an innovative misbehavior detection mecha-

nism by leveraging a homomorphic signature primitive.

The detection mechanism circumvents the assumption

of local good majority and allows normal agents to

monitor the progress of the consensus process with

moderate communication overhead.

3) We develop a component dropping method for mitigat-

ing communication overhead. With such an algorithm,

each element of a message vector is transmitted (or

equivalently dropped) with a probability. That is, some

randomly selected elements are transmitted and others

are dropped. From both theoretical and engineering per-

spectives, we study how the consensus can still be

reached with random dropping applied.

The remainder of this paper is organized as follows. Section II

overviews the related work. Section III describes preliminaries

of solving LAE in a distributed framework and presents threat

models and the system model. Section IV presents the fault-tol-

erant consensus-based algorithm and Section V develops the

misbehavior detection mechanism. Section VI studies the ran-

dom dropping technique and numerical results are provided in

Section VII. Finally, Section VIII concludes the whole paper.

II. RELATED WORK

Developing efficient methods to solve LAE has received

sustained research efforts in the past few decades. One cred-

ited philosophy is to decompose the original problem into

smaller ones which can be solved in parallel [19], [20]. Many

parallel algorithms, however, either are only valid on LAE

with special structure or require a central controller to coordi-

nate the results of decomposed problems. Such requirements

hinder the applicability of conventional parallel approaches in

fully distributed scenarios, which arise naturally in ad-hoc net-

works or sensor networks. The seminal work in [7] presents a

distributed computing framework to address constrained con-

sensus and optimization problem in multi-agent networks.

Considering LAE as a special case, several projected consen-

sus algorithms have been proposed to distributedly solve an

LAE [1]–[4]. Those works focus on developing algorithms

that work properly under different assumptions about network

topologies, e.g., static connected graph [1], [4] or time-varying

repeatedly connected graph [2], as well as communication pat-

terns, e.g., synchronous [1] or asynchronous [2]. Potential fail-

ures of the proposed distributed algorithms in the presence of

malicious nodes are not considered in these works.

Existing studies on how to solve LAE securely concentrate on

computation outsourcing, where privacy preserving is the pri-

mary concern. To this end, various schemes have been designed,

enabling a resource-constrained user to outsource the computa-

tion involved in solving LAE to powerful cloud without disclos-

ing the information of the LAE [10]–[12], [21]. The work in

[21] introduces a series of mechanisms for the secure outsourc-

ing of scientific computations, among which is a disguising

scheme targeting LAE. The secure outsourcing scheme for LAE

proposed in [10] applies homomorphic encryption scheme to

protect user’s privacy. The work in [11] hides the problem infor-

mation through perturbation-based approach, by adding a ran-

dom noise to the original problem. The work in [12] develops a

generic transformation method to disguise the original problem.

It is worth noting that schemes proposed in these exiting studies

work in centralized manners as the LAE is outsourced to a

single cloud server. Endeavors to develop privacy preserving

approaches in those works are orthogonal to our work in this

paper, where we assume the information of the LAE is well pro-

tected and focus on mitigating the vulnerabilities caused by

1028 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

node misbehaviors in a distributed setting. In fact, privacy-pre-

serving outsourcing and secure distributed computing can be

integrated in a complementary manner, as demonstrated in [18].

Efforts to investigate the resilient issues of distributed consen-

sus algorithms have been made for a long time [22]–[24]. The

recent work [13] and [14] study resilient consensus protocols

under different threat models, exploiting traditional graph theo-

retic properties to characterize the resilience of algorithms. The

work in [15] designs a threshold-based parameter checking

mechanism to dynamically constrain the misbehaving space of

malicious nodes by leveraging the two-hop neighboring infor-

mation. Although achieving asymptotic consensus, resilient sol-

utions in these works are not suitable to constrained consensus

problem, in which the final agreement makes little sense if spe-

cific constraints are violated. An impossibility result on the per-

formance of any distributed optimization algorithm is derived in

[25] and [16], claiming that “the price paid for resilience is a

loss in optimality”. The local filtering algorithm proposed in

these two works provides provable guarantee with respect to the

final agreement of non-adversarial nodes in terms of converging

to the convex hull of local optimal points. Nevertheless, the

applicability of this method is restricted to scalar optimization

problems. The state of each node in such problem is character-

ized by a scalar variable, which is not the case for solving an

LAE. Byzantine vector consensus problems are studied in [17]

and [26], where each agent has a multi-dimensional state. The

objective of such problems is to drive non-adversarial agent to

agree on a point lies in the convex hull of normal inputs, which

does not apply in the case of solving LAE.

Our previous work [18] studies a distributed secure outsourc-

ing scheme which is based on the consensus-based distributed

algorithm in [1] for solving LAE in ad-hoc clouds. In addition to

capability of privacy preserving, that outsourcing scheme is

robust against the identified security attacks. Two disadvantages

of that scheme motivate this work. For one thing, the scheme in

[18] focuses on the setting that each row of the LAE is assigned

to one node. The algorithm that can handle multiple rows has

yet to be explored. For another, the straightforward checking

mechanism for misbehavior detection needs two-hop neighbor

estimates to conduct verification, which will incur huge commu-

nication overhead. In the work of [5], improvement is made to

the LAE-solving algorithm presented in [2] such that less com-

munication between agents is required. However, method in [5]

is only applicable to LAE problems with special structure. Spe-

cifically, it assumes that zero blocks exist in the matrix A.

Inspired by our observation that the misbehavior detection can

be considered as integrity verification, we employ a signature-

based technique to avoid the requirement for two-hop neighbor

estimates. Homomorphic signature scheme has been used in

conjunction with network coding to prevent malicious modifica-

tion of data in the literature [27]–[29]. This cryptographic primi-

tive allows any node to sign a linear space, e.g., linear

combination of a set of data, directly without knowing the signa-

ture key. In this paper, we will exploit this property to design a

monitoring scheme which incurs lower communication over-

head. In addition, we also explore the potential of dropping tech-

nique for mitigating the communication overhead in the

consensus procedure, which imposes no requirement on the

structure of the LAE problem.

III. PROBLEM STATEMENT

In this paper, we consider the scenario that m agents form a

connected network and collaboratively compute the solution x�

of an LAE problem in a distributed manner. Throughout this

paper, we use boldface letters to represent column vectors and

matrices. We denote an LAE problem Ax ¼ b by FF , ½A b�,
whereA 2 Rn�n and b 2 Rn�1. This paper focuses on the situ-

ation that the LAE problem has a unique solution. That is, A is

an n� n non-singular matrix. In our system, the LAE parame-

ter FF is fully partitioned into m disjoint subsets of rows which

are respectively stored in m agents. More precisely, node i
stores ri out of n rows of FF, denoted by FFi , ½Ai bi�, where
Ai 2 Rri�n, b 2 Rri�1 and

Pm
i¼1 ri ¼ n. Note that such a set-

ting is more generic than that of considered in [18] where each

agent is assigned with only one row ofFF. The network topology

of the m agents is characterized by an undirected graph

G ¼ fV;Eg, where V and E denote the node set1 and edge set,

respectively. Node i and node j can communicate with each

other if they have an edge inE. We assume that the connectivity

information is known by the nodes, e.g., all nodes can launch a

secure neighbor discovery process to obtain the information of

their neighborhood [30], [31].

A. Preliminaries on Consensus

The work in [1] proposed a consensus-based algorithm which

allows multiple agents to collaboratively solve an LAE. Specifi-

cally, each agent maintains a local estimate of the solution and

iteratively updates this estimate based on the latest estimates of

its neighbors. The updating rule of agent i can be expressed as

xiðtþ 1Þ ¼ xiðtÞ � Pi xiðtÞ � 1

di

X
j2N i

xjðtÞ
0
@

1
A (1)

where N i denotes the set of neighbor agents of agent i
(including agent i itself) and di is the number of neighbors of

agent i. Pi 2 Rn�n is the computable orthogonal projection on

the kernel of Ai such that AiPiy ¼ 0;8y 2 Rn�1. The projec-

tion matrix can be computed as Pi ¼ I�AT
i ðAiA

T
i Þ�1Ai,

where I is the identity matrix. Each agent chooses an initial
estimate xið0Þ such that Aixið0Þ ¼ bi. According to the updat-
ing rule, it can be seen that AixiðtÞ ¼ bi always holds during
the iterations. Intuitively, by the computation (1), each node
tries to drag its local estimate in the kernel space of Ai to the
average of all the estimates within its neighborhood. It has
been proved in [1] that, as long as the network topology is con-
nected, local estimates of all agents would converge exponen-
tially fast to the exact solution of problem FF.

In practice, the termination condition for node i could

be that maxj2N i
kxjðtÞ � xiðtþ 1Þk1 � � holds for cons-

ecutive L steps, where k��k1 denotes the infinity norm. A

1In this paper, we use node and agent interchangeably.

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1029

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

conservative choice of L is the diameter of the underlying

graph. Such stopping criteria is based on the bounded conver-

gence time of maximum and minimum consensus protocols

(see [32], [33] for details).

B. Threat Model

The distributed nature of the above algorithm makes it highly

vulnerable to various malicious attacks, e.g., the false data injec-

tion attacks [34]. Consider the complexities associated with

adversarial behaviors, we assume that the problem parameters

FFi that are stored in each node are tamper-resistant. For example,

subproblems of the LAE problem in the nodes are assigned by a

trusted third party (TTP), e.g., a crowdsourcing platform. In this

case, the TTP can sign all the subproblems properly such that a

malicious node cannot modify the parameters of the LAE prob-

lem. We also assume that the malicious nodes cannot collude

with each other. In this paper, we focus on the vulnerabilities of

the basic consensus algorithm in [1] to erroneous updates per-

formed by malicious nodes. We consider that the normal nodes

strictly follow the algorithm to do the required computation. The

malicious nodes, however, tend to update their local estimates in

an arbitrary fashion to interrupt the consensus procedure. The

effects of the false estimates can be categorized into two types:

� Preventing the consensus: Malicious nodes can easily

prevent the consensus, sabotaging the convergence pro-

cess. For example, a malicious node can act as a stubborn

agent which never updates its local estimate, instead of

updating according to the algorithm (1). It can be seen

that a consensus will not be reached if this stubborn local

estimate is not the exact solution of the LAE problem.

� Manipulating the solution: Besides preventing the con-

sensus, malicious nodes also have the capability tomanip-

ulate the final result through error injection. Specifically,

a malicious node can modify its intermediate local esti-

mates during the consensus process, and thus trick all

nodes to agree on an incorrect solution. The effect of such

attack is further explained in the following lemma.

Lemma 1. A finite number of error injections will not pre-

vent the consensus but can deviate the final solution.

Proof. Without loss of generality, we first analyze how a

one-time error injection can affect the final result. Consider

that at a certain moment, say the t-th iteration, the local esti-

mate of node i is modified from xiðtÞ to x0iðtÞ ¼ xiðtÞ þ q,
where q is in the row space of Ai such that Piq ¼ 0 and

Aiq 6¼ 0. Otherwise, we consider the orthogonal projection of

q onto row space of Ai as the error vector since its orthogonal

complement vanishes in the iteration. In the following itera-

tions, node i strictly obey the updating rule. According to (1),

the local estimate of node i at the ðtþ 1Þ-th iteration becomes

x0iðtþ 1Þ ¼ x0iðtÞ � Pi x0iðtÞ �
1

di

X
j2N i

xjðtÞ � 1

di
q

0
@

1
A

¼ xiðtþ 1Þ þ q� di � 1

di

� �
Piq

¼ xiðtþ 1Þ þ q

(2)

Thus Aix
0
iðtþ 1Þ ¼ bi þAiq ¼ b0

i. The value of x0iðtþ 1Þ
can be considered as the valid local estimate of node i with
respect to LAE problem FF0 , ½A b0�, where b0

i ¼ bi þAiq
and b0

j ¼ bj; 8j 6¼ i, if node i follows the algorithm (1) in all

the remain iterations. If no further error is introduced in the

system in the following computations, estimates of all nodes

can still reach a consensus and the final result will be the exact

solution of FF0. If a node launch error injection for multiple

(but a finite number) rounds or there are multiple misbehaving

nodes, it is not difficult to see that the impact is just that a cer-

tain b0i is changed for multiple rounds or multiple bis (i can
take different index values) are changed to b0is, respectively.
After the last-time modification and when every node resumes

to the normal algorithm (1), the local estimates of all nodes

will converge to the solution of the modified LAE problem. &

Based on Lemma 1, a malicious node can change the con-

sensus by sending one-time (or multiple) false update and

then behaving normally. In this paper, we term this kind of

misbehavior as camouflage attack.

C. System Overview

Regarding the threats indicated above, although a series of
countermeasures were developed in [18] to ensure the avail-

ability and correctness of the final result, some fundamental

issues are yet to be considered. First, the scheme in [18]
mainly focuses on the setting that one row of FF is assigned to

each node. A more general and practical setting is that each
node in the network may be assigned with different number of

rows fitting its computation capability. Second, the proposed

misbehavior detection algorithm in [18] requires the assump-
tion of local good majority. Such assumption is strong and

may be invalid in practice. Due to the random distribution of

misbehaving nodes, the number of malicious nodes may
exceed the number of normal nodes in a certain neighborhood.

Third, the communication overhead was not considered in
[18] for neither the consensus procedure nor the misbehavior

detection scheme. The communication overhead is in fact an

important issue, especially when the size of the LAE is large.
In this paper, we present a set of innovative techniques to

address such three aspects of fundamental issues.

The robust distributed computing framework to be developed

is illustrated in Fig. 1. The basic computing model is that each

agent is assigned with a subproblem that may have different

rows from the original LAE problem FF. The central computing

component is a robust consensus-based algorithm. It can protect

the correctness of the final solution, if any, under camouflage

attack. Such a property can avoid incurring unnecessary compu-

tation and communication overhead, compared to a straightfor-

ward design trying to defending against possible attacks at each

step. The misbehavior detection mechanism provides another

layer of protection, considering that some persistent attackers

may continue injecting false estimates without stopping. In such

a situation, the robust consensus algorithm itself cannot ensure

the availability of a correct final result. Our security design phi-

losophy here is to explicitly detect such persistent attackers. We

are to present an innovative design based on a homomorphic sig-

nature, which does not require the strong assumption of local

1030 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

good majority. The proposed computing framework also incor-

porates a random dropping mechanism, which can greatly miti-

gate the communication overhead in both the consensus

procedure and misbehavior detection algorithm while maintain-

ing the performance.

IV. ROBUST CONSENSUS-BASED ALGORITHM

In this section, we first analyze the root reason of the vul-

nerability of the original consensus algorithm in [1], which

makes it suffering from the camouflage attack. We then

describe a new version of the updating rule which is robust

against such attack. The robust updating rule is further imple-

mented with an alternating projection method, which reduces

the storage overhead required in computing.

A. Robust Updating Rule

Analysis in Section III-B demonstrates that false updates

can mislead all nodes converging to a wrong solution. Such

vulnerability stems from the updating rule (1), where the cur-

rent local estimate xiðtÞ (at a certain node i) is explicitly prop-

agated to next round value xiþ1ðtÞ, with an updating value in

the kernel space of Ai; note that the local updating in the ker-

nel space has no way to correct any errors or malicious attacks

directly applied on xiðtÞ.
In order to overcome the vulnerability, we first reformulate

the updating rule (1) as follows,

xiðtþ 1Þ ¼ xiðtÞ � PixiðtÞ þ Pi�xiðtÞ (3)

where �xiðtÞ ¼ 1
di

P
j2N i

xjðtÞ represents the average estimate

of neighbors of node i. Let zi ¼ xiðtÞ � PixiðtÞ. The projec-

tion matrix has idempotent property that P2
i ¼ Pi. Thus, we

can get that

Pizi ¼ PixiðtÞ � P2
i xiðtÞ ¼ 0 (4)

With AiPi ¼ 0, we then have

Aizi ¼ AixiðtÞ �AiPixiðtÞ ¼ bi (5)

Note that Pi ¼ I�AT
i ðAiA

T
i Þ�1Ai. Plugging in this result to

the left hand side (LHS) of (4) and then further applying (5),
we obtain

zi ¼ AT
i ðAiA

T
i Þ�1bi (6)

With the steps above, the updating rule is transformed to

xiðtþ 1Þ ¼ zi þ Pi�xiðtÞ (7)

In the right hand side (RHS) of updating rule (7), zi is deter-
mined only by problem parameterFFi , and independent of local

estimates. The updating at each round is the sum of a constant

vector zi with the updating part in the kernel space of Ai. With

updating rule (7), injected errors will be always confined in the

kernel space of Ai. The influence of erroneous update is thus

limited to impacting the initial value for starting the consensus

procedure, refer to the proof of theorem 1 below.

Lemma 2. With updating rule (7), each node can start the

consensus algorithm with an arbitrary initial value.

Proof. In updating rule (7), the error introduced by xiðtÞ is
confined in the kernel space of Ai. Thus, AixiðtÞ ¼ bi always

holds for t > 0, regardless of the value of xið0Þ. Since xið1Þ
satisfies the requirement for the initial value imposed by the

original consensus algorithm, updating rule (7) has the same

convergent property as the algorithm (1). &

Theorem 1. The proposed updating rule (7) is robust

against the camouflage attack. That is, as long as all nodes

(including malicious nodes) update their local estimates

according to (7) from a certain moment on, these local esti-

mates will not converge to an incorrect solution.

Proof. Consider that all the malicious nodes stop injecting

false updates by time t. Afterward, the dynamic of node i’s
local estimate is equivalent to its counterpart with initial value

xiðtÞ. According to Lemma 2, all the local estimates will con-

verge to the exact solution with updating rule (7). &

Remark. Compared to the updating rule (1), the updating

rule (7) has no requirement on the xið0Þ. Based on Theorem 1,

an algorithm is robust against the camouflage attack if it works

properly with arbitrary initialization. Basically, the algorithm

with updating rule (7) is the plain generalization to the robust

algorithm proposed in [18], which achieves the aforementioned

condition by confining the injected errors in the kernel space of

Ai. In parallel with [18], we find that the work in [35] also devel-

oped an initialization-free algorithm by adding one additional

term to (1). With appropriate expression manipulation, the

approach proposed in [35] coincides with the updating rule (7).

B. Alternating Projection Based Algorithm

When examining the computational complexity of updating

rule (7), it can be seen that the average of neighbors’ latest

estimates can be calculated easily and the computational com-

plexity of (7) is dominated by the projection operation Pi�xiðtÞ.
If Pi is precomputed and stored in node i, the straightforward
matrix-vector multiplication takes time Oðn2Þ. Note that stor-
ing Pi incurs the storage overhead Oðn2Þ. The projection may

be calculated more efficiently by exploiting the orthogonal

Fig. 1. An illustration of the distributed computing framework for solving
LAE.

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1031

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

decomposition. That is, Piy ¼ y�AT
i ðAiA

T
i Þ�1ðAiyÞ. If the

n� ri matrix AT
i ðAiA

T
i Þ�1

is computed in advance, the pro-

jection operation has time complexity OðrinÞ. However, such
a method still incurs OðrinÞ storage overhead to store the

n� ri matrix AT
i ðAiA

T
i Þ�1

. Such a size is comparable to the

problem parameter FFi.

We develop a more efficient local updating algorithm,

which is executed on the fly without extra storage overhead.

Our inspiration comes from special case where ri ¼ 1. Let
aT 2 R1�n be a row vector and Pa be the corresponding

orthogonal projection matrix on the kernel of aT. Through
orthogonal decomposition, for an arbitrary vector y, Pay ¼
y� aðaTaÞ�1aTy. It can be observed that the projection on

the kernel of a row vector only incurs computation time com-

plexityOðnÞ. With this point in mind, we next develop an effi-

cient fault-tolerant algorithm based on the alternating

projection technique [36]. The algorithm requires no precom-

puted results and thus incurs no extra storage overhead.

The basic idea of alternating projection based algorithm is

to replace the projection on the kernel of Ai in (7) by projec-

ting �xiðtÞ alternately onto the kernel of each row in Ai. For

ease of presentation, FFi is represented as

Ai bi½ � ¼
aTi;1 bi;1

..

. ..
.

aTi;ri bi;ri

2
64

3
75; (8)

where aTi;j and bi;j are the j-th row and component of Ai and

bi, respectively. Let Pi;j be the orthogonal projection matrix

on the kernel of aTi;j. Thus, in the alternating projection based

algorithm, Pi is replaced by ~Pi ¼ Pi;riPi;ri�1 � � �Pi;1. In a nut-

shell, the updating rule of alternating projection-based algo-

rithm is

xiðtþ 1Þ ¼ ~zi þ ~Pi�xiðtÞ; (9)

where the invariant vector zi is adapted correspondingly to

~zi ¼ ðI� ~PiÞx�, which is analogous to zi ¼ ðI� PiÞx� in (7).

While ~zi is defined over x�, we are to show that it in fact can

be computed without the knowledge of x�. In the following,

we will first study the computation complexity of (9) and then

theoretically analyze the convergence property and robustness

under false updates.

It can be seen that calculating ~Pi�xiðtÞ takes time OðrinÞ
with alternating projection through Pi;1 to Pi;ri . Next, we are

to show that ~zi can also be computed with computational com-

plexity OðrinÞ. Since x� is the exact solution, aTi;jx
� ¼ bi;j

holds for each row. Thus, we have

~zi;j ¼ ðI� Pi;jÞx� ¼
aTi;jx

�

aTi;jai;j
ai;j ¼ bi;j

aTi;jai;j
ai;j: (10)

Note that the computation in (10) requires only the informa-

tion in FFi and has time complexity OðnÞ.

Consider further that I� ~Pi can be represented as

I� ~Pi ¼ I� Pi;riPi;ri�1 � � �Pi;1

¼ I� Pi;ri þ Pi;ri � Pi;riPi;ri�1

þ Pi;riPi;ri�1 � Pi;riPi;ri�1Pi;ri�2

þ � � �
þ Pi;riPi;ri�1 � � �Pi;2 � Pi;riPi;ri�1 � � �Pi;1

¼ ðI� Pi;riÞ þ Pi;riðI� Pi;ri�1Þ
þ Pi;riPi;ri�1ðI� Pi;ri�2Þ
þ � � �
þ Pi;riPi;ri�1 � � �Pi;2ðI� Pi;1Þ

(11)

thus, ~zi ¼ ~zi;ri þ Pi;ri~zi;ri�1 þ � � � þ Pi;riPi;ri�1 � � �Pi;2~zi;1. We

introduce auxiliary vectors uðrÞ; r 2 ½1; 2; . . . ; ri�, to demon-

strate the implicit recursive structure of above equation. Let

uð1Þ ¼ ~zi;1

uð2Þ ¼ ~zi;2 þ Pi;2~zi;1

� � �
uðriÞ ¼ ~zi;ri þ Pi;ri~zi;ri�1 þ � � � þ Pi;riPi;ri�1 � � �Pi;2~zi;1

It can be seen that uðrÞ satisfies
uðjþ 1Þ ¼ ~zi;jþ1 þ Pi;jþ1uðjÞ (12)

Computing ~zi;jþ1 has time complexityOðnÞ, and the projection
with respect to Pi;jþ1 takes timeOðnÞ. Thus, given uðjÞ, calcu-
lating uðjþ 1Þ takes time OðnÞ. According to (10) and (11), it

is worth noting that ~zi ¼ uðriÞ. Therefore, the invariant part ~zi
can be calculated by iteratively updating uðrÞ, with time com-

plexityOðrinÞ. Recall that computing the alternating projection

part ~Pi�xiðtÞ also takes timeOðrinÞ, the computational complex-

ity for updating xiðtÞ based on (11) and (12) isOðrinÞ.
In summary, the alternating projection based algorithm

involves two-level of iterations. The outer level is responsible

for updating local estimates, i.e., updating xiðtÞ to xiðtþ 1Þ
iteratively. For ease of presentation, hereinafter, we use the

term “epoch” to describe one outer iteration. Within an epoch,

the inner level of iteration runs according to (12) to obtain the

value ~zi. By the end of each epoch, nodes emit their local esti-

mates to their neighbors for next round update.

Definition 1. (Mixed Matrix Norm [2]) Given a block

matrixQ 2 Rmn�mn, the mixed matrix norm ofQ, denoted by

Qk k, is defined as

Qk k ¼ Qh ij j1; (13)

where Qh i represents a matrix in Rm�m whose ijth entry is

Qij

�� ��
2
. �j j2 and �j j1 denotes the induced two norm and infin-

ity norm, respectively.

The consensus algorithm over the whole system, with

updating rule (9) at each agent, can still converge exponen-

tially fast with arbitrary initial values at each agent. We have

the following Theorem.

Theorem 2. Suppose each node i updates the local estimate

xiðtÞ according to (9). If the network topology is connected,

1032 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

then there exists a positive constant � < 1 such that all xiðtÞ
converges to the x� as t ! 1, as fast as �t converges to 0.

Proof. The exponential convergence property of alternating

projection based algorithm can be derived by applying the

proof techniques in [2]. Suppose that the local estimate at

node i, after tþ 1 iterations, deviates from x� with a vector of

eiðtþ 1Þ. According to (9), we have
eiðtþ 1Þ ¼ xiðtþ 1Þ � x�

¼ ðI� ~PiÞx� þ ~Pi�xiðtÞ � x�

¼ ~Pi

P
j2N i

ðxjðtÞ � x�Þ
di

¼ ~Pi

P
j2N i

ejðtÞ
di

:

(14)

Let eðtÞ ¼ ½eT1 ðtÞ; eT2 ðtÞ; . . . ; eTmðtÞ�T and D be the adjacency

matrix of network topology. According to (14),

eðtþ 1Þ ¼ ~PðH	 IÞeðtÞ; (15)

where

~P ¼
~P1 � � � 0

..

. . .
. ..

.

0 � � � ~Pm

0
B@

1
CA; H ¼

1
d1

� � � 0

..

. . .
. ..

.

0 � � � 1
dm

0
BB@

1
CCAD;

with 	 denoting the Kronecker product.

The basic idea of the proof is to show that an infinite sequence

of matrix products of the form ð~PðH	 IÞ � � � ~PðH	 IÞÞ
converge to zero matrix exponentially fast. Let M ¼
~PðH	 IÞ � � � ~PðH	 IÞ.M 2 Rmn�mn is am�m block matrix

with the ijth entryMij 2 Rn�n. In alternating projection based

algorithm, ~Pi is the product matrix of a series of projection

matrix, which is a projection matrix polynomial. Since the set of

projection matrix polynomials is closed under matrix addition

and multiplication, it can be checked that Mij is also a projec-

tion matrix polynomial.

By leveraging the Lemma 2 in [2], similar result to the

Proposition 1 in [2] can be derived. That is, when the network

topology is a connected graph, a sufficiently long sequence of

matrix product in the form of M is a contraction in the mixed

matrix norm, which implies the exponential convergence of

the alternating projection based algorithm. &

Remark. Recall that, with the help of matrix caching, the

computational complexity of updating rule (7) is OðrinÞ. The
alternating projection based algorithm has the same per epoch

computational complexity without the extra OðrinÞ space.

Intuitively, projecting �xiðtÞ in an alternating manner degrades

the convergent performance of the consensus algorithm. It

will be shown in Section VII-B that such degradation is negli-

gible for certain types of LAE problem. In other words, com-

pared to the algorithm with updating rule (7), the alternating

projection based algorithm can bring storage savings with

commensurate computational overhead.

Corollary 1. The proposed updating rule (9) is robust

against the camouflage attack.

Proof. We have shown that, with updating rule (9), the

deviation of xi from x� will converge to 0. Each node can start

the alternating projection based algorithm with arbitrary initial

value. Thus, the robustness of (9) can be proved by the same

reasoning in Theorem 1. &

V. MISBEHAVIOR DETECTION MECHANISM

The algorithm proposed in Section IV is robust against the

camouflage attack. However, a malicious agent may fully pre-

vent the consensus process by refusing to update its local esti-

mate or keep injecting arbitrary local values at every epoch. In

this section, we investigate how to defend the consensus algo-

rithm against such kind of divergence attack. The basic idea is

to enhance the consensus algorithm with a monitoring mecha-

nism that can detect those persistent injection attackers. Spe-

cifically, each node will monitor its neighbors’ updates by

double checking whether they obey the updating rule in (9).

Notice that at ðtþ 1Þ-th epoch, for node j to verify the local

estimate xiðtþ 1Þ of node i, node j requires the knowledge of
AT

i , bi, and �xiðtÞ. AT
i and bi can be acquired by node j during

the network discovery or the problem distribution phase, in a

secure manner (e.g., protected with digital signatures). If the

correctness of �xiðtÞ is also verifiable, node j can verify the

integrity of xiðtþ 1Þ by directly evaluating the equation (9).

Therefore, the key problem in monitoring is to make sure that

node i reports an authentic �xiðtÞ in its ðtþ 1Þth update.

A. The Monitoring Structure

In the distributed computing framework, each agent will be

monitored by all its neighbors. To facilitate the detection

mechanism, a mTESLA-like protocol [37] is considered. All

the monitoring neighbors share a one-way key chain2, MK ¼
½sðT Þ ! sðT � 1Þ ! � � � ! sð0Þ�, where sðt� 1Þ can be

computed through sðtÞ with a one-way function. The elements

in the chain will be used in homomorphic signature operation

as monitoring keys. We assume that a key distribution infra-

structure is available for safely distributing the keys for infor-

mation security related operations in the distributed

computing framework. The assignment of key chains is illus-

trated in Fig. 2. All the neighbors of node i share the key chain
MKi, i.e., node j; k; l;m; n shareMKi. In this way, each node

keeps a chain for each of its neighbors, i.e., node i keepsMKj,

MKk,MKl,MKm,MKn.

It is worth noting that each node plays double roles in the

monitoring structure: while a node is being monitored by its

neighbors, it holds monitoring keys to monitor those neighbors

too. Let siðtÞ to denote a homomorphic signature key for moni-

toring node i at epoch t. To facilitate the verification, along with
�xiðtÞ, node i is supposed to broadcast a proof that the �xiðtÞ is
computed correctly. We here use node i as a tagged node to

explain our monitoring methodology. The local estimates that

node i receives from its neighbors will be signed by siðtÞ accord-
ing to the homomorphic signature. After collecting the updates,

2We assume that the system has a predefined maximum number of epochs,
denoted by T .

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1033

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

node i can compute the summation of its neighbors’ latest esti-

mates and the corresponding signature without knowing siðtÞ.
For monitoring, node i needs to report both the summation and

the corresponding signature to all the monitoring neighbors. The

protection provided by homomorphic signature is that if node i
does not honestly compute the summation of local estimates

from neighbors (which is required to obtain �xiðtÞ), it will not be
able to forge the corresponding signature as node i does not

have the current monitoring key. On the other hand, node i needs
to have the capability to check whether the local estimates from

its neighbors are signed properly. To this end, node i’s neighbors
are required to disclose the monitoring key used in previous

epoch siðt� 1Þ to node i. Based on the idea of mTESLA proto-

col [38], node i can easily verify that siðt� 1Þ is a part of the
key chain MKi. Furthermore, with siðt� 1Þ, node i can verify

the validity of the signatures received in previous epoch. In this

way, nodes that do not follow the signature scheme will be

detected by a normal neighboring node. In the next subsection,

we assume that all the signatures are legitimate and present the

verification scheme with respect to the local estimates.

B. Monitoring by Homomorphic Signature

The proposedmisbehavior detection mechanism is built upon

a homomorphic signature algorithm introduced in [39]. By that

algorithm, the signature of message addition equals to the multi-

plication of the individual signatures, say, Sigðm1 þm2Þ ¼
Sigðm1Þ � Sigðm2Þ. Specifically, the homomorphic signature

key for monitoring node i is si ¼ ðg; gi1; gi2; . . . ; ginÞ. Note that
g is a public number known to every node for the modular oper-

ation. With siðtÞ, node i’s neighbor, say node j, can sign its

local estimate xjðtÞ as follows3

SigiðxjðtÞÞ ¼
Yn
l¼1

g
xl
j
ðtÞ

il mod g; (16)

where xl
jðtÞ is the l-th component of xjðtÞ. Actually, node j

needs to generate totally dj � 1 signatures for its neighbors,

where the signature for a certain neighbor k 2 N j is generated

with the monitoring key skðtÞ. All these signatures will be

sent out by node j at the end of the t-th epoch.

At node i, let ssiðtÞ ¼
P

j2N ini xjðtÞ. At epoch tþ 1, after

receiving SigiðxjðtÞÞ; j 2 N i, node i can generate the signa-

ture of ssiðtÞ by

SigiðssiðtÞÞ ¼
Y

j2N ini
SigiðxjðtÞÞ mod g (17)

The integrity of ssiðtÞ is assured by SigiðssiðtÞÞ and can be veri-
fied by any neighbor of node i that knows the monitoring key
siðtÞ. To this end, the broadcast message of node i at each
epoch, e.g, epoch tþ 1, contains its latest update, the signa-
tures of this update, ssiðtÞ it uses to update the local estimate,
and the signature of ssiðtÞ generated according to Eq. (17). We
denote such a message by Qiðtþ 1Þ,

Qiðtþ 1Þ ¼ fxiðtþ 1Þ; ssiðtÞ; SigiðssiðtÞÞ;
fSigjðxiðtþ 1ÞÞjjsjðtÞ; 8j 2 N inigg:

(18)

Upon receiving uiðtþ 1Þ, the correctness of xiðtþ 1Þ can

be verified by the neighbors of node i via a two-step verifica-

tion process:

(i) Check whether or not ssiðtÞ has been honestly computed

according to
P

j2N ini xjðtÞ via SigiðssiðtÞÞ. More pre-

cisely, ssiðtÞ can pass this step if

SigiðssiðtÞÞ ¼
Yn
l¼1

g
ssl
i
ðtÞ

il mod g (19)

holds, where ssl
iðtÞ denotes the l-th component of ssiðtÞ.

(ii) If the integrity of ssiðtÞ is validated, verify the correct-

ness of xiðtþ 1Þ by testing

xiðtþ 1Þ ¼? ~zi þ ~PiððssiðtÞ þ xiðtÞÞ=diÞ: (20)

Note that condition (19) holds if ssiðtÞ is honestly computed,

since condition (19) is equivalent to

SigiðssiðtÞÞ ¼
Y

j2N ini
SigiðxjðtÞÞ mod g

¼
Y

j2N ini

Yn
l¼1

g
xl
j
ðtÞ

il mod g

¼
Yn
l¼1

g
ð
P

j2N ini x
l
j
ðtÞÞ

il mod g

¼
Yn
l¼1

g
ssl
i
ðtÞ

il mod g:

On the other hand, according to [39], the hardness of finding two

different messages with the same signature is based on the hard-

ness of the discrete logarithm in groups of prime order.

If Qiðtþ 1Þ does not pass the verification procedure

launched by node j, then any future update from node i will be
discarded by node j. Node j will also take the workload of node
i to ensure the convergence of the distributed algorithm. That is,

in addition to rows in FFj, rows in FFi will be used by node j in
the alternating projection operation to calculate its subsequent

updates. In this way, estimates of normal nodes will converge to

Fig. 2. Signature key structure.

3For ease of presentation, we omit the index t in the parameters of the moni-
toring key since one-shot update is presented here.

1034 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

the correct solution as long as the induced subgraph formed by

the normal nodes is connected. To pass the future verifications

from its neighbors, node j is supposed to send the information

of FFi to its neighbors via a local broadcasting procedure. It is

worth noting that while we mainly focus on algorithm design in

this paper, a full development of all implementation details will

be an interesting study to pursue.

Consider the robustness of the proposed consensus algo-

rithm, it is unnecessary to find out all erroneous estimates,

which indicates that the verification of xiðtÞ can be conducted

in a probabilistic manner. Therefore, the computation over-

head incurred by the estimate validation can be further miti-

gated. Formally, a node will verify a received message from

its neighbors with a preset verification probability p at each

epoch. Let F denote the number of incorrect updates a mali-

cious node can inject, indicating that, after updating F false

estimates, messages from a malicious node will be blocked by

all its normal neighbors. The cumulative distribution function

of F is manifested as

PrðF � tÞ ¼ ð1� ð1� pÞtÞd (21)

where d is the number of normal neighbors. As t goes to infinity,
the impact of a malicious node will be eliminated almost surely.

Consider that the system works in a finite-time manner, T is

supposed to be a large number such that not only the malicious

nodes will be detected with high probability but also the nodes

that behave normally have enough time to derive a solution with

acceptable accuracy. In addition, the discrepancy between theo-

retical analysis and practical application can be mitigated by

introducing an extension scheme. Roughly speaking, when the

system runs out of time without obtaining an acceptable solu-

tion, another collection of key chains will be generated. All the

normal nodes can then continue the consensus process with their

current estimates for another T epochs.

Remark. The proposed detection mechanism is based on

neighbor monitoring, which implicitly assumes that the neigh-

boring malicious nodes cannot collude with each other. Other-

wise, a malicious node i can obtain MKi from its neighbor

and forge the local estimates as well as signatures without

being detected. A promising idea to cope with the collusion

attacks is the common neighbor cross-validation [40], [41],

where honest common neighbors are in charge of the legiti-

macy check of the data. However, incorporating such idea

into the signature-based detection mechanism is a non-trivial

task. We leave the misbehavior detection mechanism that can

defend against collusion attacks as our future work.

C. Operation With Real Numbers

The applicability of existing homomorphic signature

schemes are constrained to specific domains, e.g., finite field.

With a sufficiently large field size, they can also be used to

sign positive integer values. In practical applications, how-

ever, the computation results are normally real numbers. To

cope with this, our method is to apply appropriate shifting and

scaling to related real numbers, termed as mapping operation,

so that the homomorphic signature computations are still

conducted over nonnegative integers which are mapped from

the original real values.

We assume that the values of numbers involved in the LAE

are finite, falling in the range �M;M½ �, with M being a large

enough positive integer value. For the signature generation and

verification, we can map all numbers to the nonnegative interval

0; 2M½ � by adding M to each number. For the whole system,

each node just needs to do suchmapping for related values when

it initially starts the consensus process, and then all following

steps just normally follow the updating rule (9). When the con-

sensus process converge, the original solution value can be

obtained by subtractingM from the converged value. To handle

the real values, we can employ the scaling approach [10], [42]–

[44]. Specifically, let s be a positive integer and 10s be the scal-
ing factor. Given a real number x (after the M-mapping in our

context), ~x ¼ b10s � xc is used in the signature-related opera-

tions. It can be seen that the value s indicates the number of dig-

its behind the decimal points that will be mapped to the integer

value. With the scaling operation, each node is supposed to

broadcast following message at each epoch

~Qiðtþ 1Þ ¼ fxiðtþ 1Þ; ~ssiðtÞ; Sigið~ssiðtÞÞ;
fSigjð~xiðtþ 1ÞÞjjsjðtÞ; 8j 2 N inigg

(22)

where ~ssiðtÞ ¼
P

j2N ini ~xjðtÞ.
When one neighbor node receives the message, it will con-

duct the two-step verification operations as discussed in section

V-B. It is not difficult to see that the integrity of ~ss can be

checked by the homomorphic signature, as it just involves sum-

mation operation. Since the consensus updating is still based on

the real numbers, for second-step verification, we need to scale

down ~ssiðtÞ by 10�s to recover the real value. Here we need to

consider the value deviation induced by the flooring operation

in the scaling. Specifically, letting x̂iðtþ 1Þ denote the consen-
sus updating value after scaling down ~ssiðtÞ, we have,

x̂iðtþ 1Þ ¼ ~zi þ ~Pi
ð10�sÞ~ssiðtÞ þ xiðtÞ

di

� �
(23)

For normal nodes, the gap between xiðtþ 1Þ and x̂iðtþ 1Þ is
bounded. It can be seen that the difference between ð10�sÞ~x and

x is bounded above by 10�s. By generalizing this result, we have

ð10�sÞ~ssiðtÞ
di

� ssiðtÞ
di

����
����
1
� 10�s (24)

Since orthogonal projection is a non-expansive operation,

the above result leads to

xiðtþ 1Þ � x̂iðtþ 1Þk k1� 10�s (25)

Condition (25) is supposed to be satisfied by messages from

normal nodes, which therefore can be used as the criteria for

the second step of the verification procedure. Condition (25)

also indicates that a malicious node misreporting its local esti-

mates with an error range of 10�s will pass the verification

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1035

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

procedure without being detected. However, the missed detec-

tion ratio can be well controlled by s.

VI. CONSENSUS WITH COMPONENT DROPPING

Recall that, within each epoch of the consensus algorithm,

each node needs to receive several local estimates from neigh-

bors to update its own local estimate. And by the end of that

epoch, each node will broadcast its latest local estimate. When

the dimension of the LAE grows, the communication over-

head incurred by the algorithm may become too huge. A natu-

ral improvement to reduce the communication overhead is to

let neighbors only exchange the most effective information.

For instance, if the estimate vector is sparse, only transmitting

its nonzero components along with their corresponding indices

can lower the size of transmitted data. Such an intuition cannot

be extended to non-sparse situation. In this section, however,

we demonstrate that we can still exchange information in a

sparse manner, even if most of the components of an estimate

vector are non-zero.

A. Dropping Strategy

We consider a dropping strategy with which each node inten-

tionally discards a portion of components when broadcasting its

estimate. When we incorporate such dropping strategy into con-

sensus, we need extra caution. Consider a tagged node with di
neighbors. For the component k of �xiðtÞ, the tagged node

receives information from dikð� diÞ neighbors (as some neigh-

bors dropped the k-th component of their local estimate). For

distinct j and k, the values of dij and dik are probably different.
In this situation, computing �xiðtÞ with a standard manner gives

an incorrect value and may ultimately damage the convergence

of the consensus algorithm. More precisely, �xiðtÞ which node i
uses to update its local estimate at t-th epoch should be the com-

ponent-wise average of the received estimates.

Formally, the dropping behavior of node j at epoch t can be

characterized by a diagonal matrix VjðtÞ with the k-th diago-

nal entry defined as follows:

vjkðtÞ ¼ 0 if node j drops its k th component at epoch t
1 otherwise

�

When receiving the local estimate from its neighbor j with

dropped components, node i can approximately reconstruct

xjðtÞ by padding zeros at the missing indices. In this way,

node i receives VjðtÞxjðtÞ at epoch t. Let dikðtÞ ¼P
j2N ini vjkðtÞ þ 1 denote the number of the kth components

that node i receives at epoch t (including the one of its own).

The calculation of �xiðtÞ should be calibrated as follows,

�xiðtÞ ¼ WiðtÞ
X

j2N ini
VjðtÞxjðtÞ þ xiðtÞ

0
@

1
A; (26)

whereWiðtÞ ¼ diagð 1
di1ðtÞ ; . . . ;

1
dinðtÞÞ.

Consider the toy LAE example of Ix ¼ 1, where I 2 R3 and 1
are identity matrix and all-ones vector, respectively. Obviously,

x� ¼ 1. Three agents with a complete graph topology solve

this problem distributedly. Without loss of generality, let

x1ð0Þ ¼ ½1; 1=2; 2�T , x2ð0Þ ¼ ½1=3; 1; 1=4�T , and x3ð0Þ ¼
½10; 5; 1�T . While exchanging estimates, agent i only sends out

the i-th component of its estimate. That is, V1 ¼ diagð1; 0; 0Þ,
V2 ¼ diagð0; 1; 0Þ, andV3 ¼ diagð0; 0; 1Þ. With respect to the

calculation of �xiðtÞ, agent 1 can exploit the received fragmented

estimates as follows

�x1ðtÞ ¼
1

1
2

1
2

0
@

1
A V2x2ðtÞ þV3x3ðtÞ þ x1ðtÞð Þ (27)

The other two agents can also apply similar approach to

perform the consensus operation and then update their esti-

mates according to the algorithm. One can check that, with

this kind of dropping strategy, x� can still be reached while

only one third information is exchanged at each epoch. In

general case, the agents may change their dropping pat-

terns periodically, or even at each epoch, in order to con-

verge to x�.

B. Theoretical Analysis on Dropping

Similar to the analysis in Theorem 2, we analyze the con-

sensus algorithm with dropping by characterizing the dynam-

ics of the deviation vector eðtÞ. For node i,

eiðtþ 1Þ ¼ xiðtÞ � x� ¼ ~Pið�xiðtÞ � x�Þ

¼ ~PiWiðtÞ
X

j2N ini
VjðtÞejðtÞ þ eiðtÞ

0
@

1
A (28)

Therefore, we have eðtþ 1Þ ¼ ~PG0ðtÞeðtÞ. Here G0ðtÞ ¼
½gijðtÞ�m�m is an mn�mn matrix, with block entry gijðtÞ
being an n� n matrix:

giiðtÞ ¼ WiðtÞ; gijðtÞ ¼ DijWiðtÞVjðtÞ 8i 6¼ j

where Dij is the corresponding entry in the adjacency matrix

D. WiðtÞ represents the weights node i uses to average the

estimates from its neighbors, which is determined by the drop-

ping patterns of its neighbors.

With a fixed network topology, G0ðtÞ is determined by the

dropping patterns of the nodes. For arbitrary dropping pat-

terns, G0ðtÞ is a right stochastic matrix. Consider that

kPG0ðtÞk is bounded above by a constant, say a. Ideally, if

there exists an oracle controller which has the knowledge

about a and assigns each node ðI� ~Pi
a0 Þx� as its invariant vector

~zi in (9), where a0
 a. Then all the nodes can obey the fol-

lowing rule to update their estimates

xiðtþ 1Þ ¼ ~zi þ 1

a
~Pi�xiðtÞ; (29)

1036 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

With (29), the deviation vector of node i can be expressed as

eiðtþ 1Þ ¼ ~zi þ 1

a
~Pi�xiðtÞ � x�

¼ 1

a
~Pi�xiðtÞ � 1

a0
~Pix

�

¼ 1

a
~Pið�xiðtÞ � x�Þ � a0 � a

a0a
~Pix

�

¼ 1

a
~PiWiðtÞ

X
j2N ini

VjðtÞejðtÞ þ eiðtÞ
0
@

1
A� ci

(30)

where ci ¼ a0�a
a0a

~Pix
� is a constant vector. And let c ¼ ½cT1 ;

cT2 ; . . . ; c
T
m�T, we have

eðtþ 1Þ ¼ PG0ðtÞ
a

eðtÞ � c (31)

Let � ¼ kPG0ðtÞk=a and � < 1, then

lim sup
t!1

keðtÞk � 1

1� �
kck (32)

This implies that all the estimates will converge to a neigh-

borhood of the exact solution, which can be controlled by the

oracle through adjusting a0. Particularly, if a0 ¼ a, the final

consensus will be x�.

C. Random Dropping

According to above analysis, driven by the initialization-free

updating rule (29), estimates of all the nodes can converge to the

exact solution in the scenario of components dropping. In prac-

tice, such an oracle controller is not available since each node

cannot obtain ~zi without explicitly knowing x�. If there exists a
series of dropping patterns fV1ðtÞ;V2ðtÞ; . . . ;VmðtÞg; t ¼ 1;

2; . . . ; k, such that the spectral radius rðQk
t¼1ðPG0ðtÞÞÞ < 1,

then each node can employ its corresponding pattern series
cyclically to guarantee a final agreement via updating rule
(9). However, finding out feasible series, if any, is non-
trivial, particularly in distributed network settings. We
notice through numerical calculations that random dropping
is a promising approach. That is, each component in the
estimate vector will be dropped independently with proba-
bility pd. In our cases of numerical calculations, the number
of epochs needed to reach the consensus will not increase
very much even a big portion, to some extent, of elements
in exchanged message vectors are dropped. This implies
that such a random dropping strategy has the potential to
maintain the convergence property of the consensus algo-
rithm while reducing the communication overhead.

Remark. In our cases of numerical calculations, the consen-

sus algorithm also converges when the missing components

are padded with their most recent values and �xi is calculated
as usual. However, the empirical convergence performance of

this approach is inferior to that achieved by approach of cali-

brating �xi, i.e., Eq. (26). Therefore, we focus on the later

approach in this work.

Regarding the random dropping mechanism, the calibrated �xi
can be considered as the noise-corrupted �xi in the case that the

whole estimates are exchanged. Intuitively, driven by the con-

sensus algorithm, estimates of neighboring nodes get closer

after an epoch. As the estimates get closer, the noise introduced

by component dropping diminishes, which vanishes if all the

estimates are exactly the same. To theoretically characterize the

effects of random dropping, however, is very challenging. For

one thing, themodel that can bound the magnitudes of the noises

is complicated, depending on not only the closeness of the esti-

mates but also the dropping probability. For another, the

dynamic equations with respect to the estimate errors, e.g.,

Eq. (14), need to be adapted carefully such that the dynamics of

the noises are taken into account. We plan to explore the full

analysis in our future work.

D. Rethinking the Detection Mechanism

With the dropping strategy, �xiðtÞ is evaluated in a compo-

nent-wise manner according to Eq. (26). The misbehavior

detection mechanism needs to be tailored accordingly to be

compatible with the dropping strategy. Let diðtÞ ¼ ½di1ðtÞ; . . . ;
dinðtÞ�. To verify the correctness of �xiðtÞ, not only the sum of

neighbors’ estimates
P

j2N i
VjðtÞxjðtÞ but also the weight vec-

tor diðtÞ should be protected via the homomorphic signature

scheme. For the former, at the end of an epoch, each node can

directly apply the signature scheme to sign the fragment (due to

component dropping) of its estimate and then broadcasts it out.

The signature of
P

j2N i
VjðtÞxjðtÞ should be equal to the prod-

uct of the received fragments’ signatures. The applicability of

the homomorphic signature scheme described in Section V is

based on the observation that padding zeros onto the missing

components does not change the signature. Let vjðtÞ ¼
½vj1ðtÞ; . . . ; vjnðtÞ� be the indicator vector corresponding to the

dropping pattern of node j at epoch t. Obviously, diðtÞ is a lin-
ear combination of vjðtÞ; 8j 2 N i, i.e., diðtÞ ¼

P
j2N i

vjðtÞ.
Along with the estimate, the nodes can broadcast the indicator

vector at the end of each epoch and diðtÞ can be protected by

the signature scheme similarly as above. It is worth noting that,

although viðtÞ is a n-dimension vector, its size can be consid-

ered as negligible compared with a n-dimension estimate. This

is because each component in viðtÞ is a binary value which is

less than 2% of the size of a double-precision value, typically

used to represent the component in the estimate vector. In this

sense, the extra communication overhead introduced to the

detection mechanism is negligible.

VII. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

schemes in terms of both robustness and efficiency using

MATLAB simulations. We employ a PC with Intel i7 CPU of

3.6 GHz and 8 GB memory to run the consensus-based LAE

solving process. Due to the hardware limit, we build a parallel

implementation of the proposed algorithm in the case of only

5 nodes via the MATLAB parallel computing toolbox. The

results are consistent with the serial implementation and

we omit them due to space limit. In this sense, serial

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1037

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

implementations are applied to evaluate the performance of

the proposed algorithm in solving different LAEs with differ-

ent number of nodes. Recall that the algorithm with updating

rule (7) is the plain generalization to the algorithm proposed

in [18], we use it as a baseline for evaluating the alternating

projection based algorithm in this section. We call it plain

robust consensus algorithm. Throughout our calculations,

rows of the LAE are distributed to the nodes evenly.

Theoretically, the consensus algorithm converges as long asA
is nonsingular and the network topology is connected. The con-

dition number of A and the network topology are two factors

which influence the convergence rate. In our simulations, we

notice that a randomly generated nonsingularA probably yields

poor convergence rate. Diagonally dominant matrix is a type of

matrix on which the consensus algorithm can achieve an accept-

able convergence performance. It is worth noting that this type

of matrix is also the target of the well-known Jacobi method [45]

and arises in many real-world applications. In [18], we study the

impact of network topology on the convergence performance of

the proposed consensus algorithm using Erdo��s-R�enyi (ER) ran-
dom graphs. The alternating projection based algorithm produ-

ces similar results. Roughly speaking, for ER random graphs,

the convergence performance will not degrade significantly as

long as the adjacency probability is not too small, e.g., less than

0.2. Consider that this work focuses on the security issues of the

consensus-based algorithm, analyzing which types of matrix are

suitable to the proposed algorithm or an in-depth investigation

of the impact of network topology on the convergence perfor-

mance is out of scope of this work. In this section, all the

algorithms are evaluated with diagonally dominant matrix of A
and complete network graph. Random diagonally dominant

matrices are generated via the method in [10] to construct the

LAE. The size of an LAE problem is defined to be n.

A. Robust Convergence

As discussed in Section III-B, one-time false update which

occurs on one node is able to deviate the outcome of all nodes

to an incorrect one. In order to illustrate such kind of vulnera-

bility as well as the robustness property of our proposed

algorithms, we introduce two metrics to characterize the con-

vergence process. The first is maximum pairwise difference

(MPD), which is expressed as

MPD ¼ max
i6¼j

kxi � xjk1 (33)

The second is maximum deviation (MD), which is expressed as

MD ¼ max
i

kxi � x�k1 (34)

where x� is the exact solution of the LAE.
We run different algorithms, including the original one in [1],

the plain robust consensus algorithm and the alternating projec-

tion based algorithms, on an LAEwith size 1000 over a 50-node

complete network. False update is modeled as a zero vector.

NormalizedMPD andMD of all local estimates with these three

algorithms are illustrated in Fig. 3 and Fig. 4, respectively. For

the original algorithm, an aforementioned false update occurs at

Fig. 3. MPD of all local estimates with different algorithms.

Fig. 4. MD of all local estimates with different algorithms.

1038 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

the 100-th epoch. As shown in Fig. 3(a), the algorithm can still

reach consensus in the presence of that fault as the MPD

decreases to zero eventually. However, the MD with original

algorithm shown in Fig. 4(a) indicates that all local estimates

converge to an incorrect solution other than x�. For the other

two robust algorithms, three false updates are introduced by dif-

ferent nodes at different epochs. Fig. 3 and Fig. 4 show that our

proposed algorithms tolerate these faults successfully. All local

estimates agree on the same vector which is the exact solution.

In Fig. 3(a), although the false update cannot prevent nodes

from reaching consensus, the injected error influences the
progress of the consensus process. In contrast, the values of

MPD decrease significantly after the attacks in the cases of

robust algorithms, implying that effects of the attacks on the
convergence process can be alleviated. This is because that

errors of the estimates on node i can only influence �xj; j 2 N i

in the robust algorithms. After averaging and the following

projection operation, errors that propagate to the subsequent

estimates decay significantly.

B. Algorithm Comparison

We employ the fault-tolerant algorithms described in Section

IV to solve LAE with different size via different number of

nodes. The number of epochs needed for each algorithm to

reach consensus under different settings are summarized in

Table I. Since the types of LAE (diagonally dominant matrixA)

and the network topology are fixed, the number of epochs

required for the plain robust consensus algorithm is mainly

determined by the number of participating nodes. It experiences

a slow growth from 270 to 336 when the problem size increases

from 1000 to 10000 in the 50-node case. These results are also

consistent with the analysis with respect to the original algo-

rithm in [2] that the upper bound of the convergence rate

approaches to 1 as the number of agents increases.4 As shown in

Table I, although extra number of epochs are required to reach

consensus, the alternating projection does not degrade the con-

vergent performance significantly. For these LAE problems, the

alternating projection based algorithm achieves commensurable

convergent performance to the plain robust consensus algorithm

while bringing extra storage savings.

C. Misbehavior Detection

We evaluate the performance of our misbehavior detection
mechanism by investigating the relationship between elimina-

tion probability of a malicious node and the number of false

updates it can inject. Since a malicious node can be considered
as being eliminated from the network if its message is blocked

by all normal neighbors, the aforementioned relationship is char-
acterized by Eq. (21). The results are shown in Fig. 5. That rela-

tionship under different verification probability is illustrated in

Fig. 5(a), where the number of normal neighbors is fixed at 50.
The performance in the case of p ¼ 0:1 is significantly inferior

to other cases. When p ¼ 0:2, a malicious node would be elimi-
nated almost surely after conducting 40 times of attack. For a

higher detection probability, e.g. p ¼ 0:3 and p ¼ 0:4, almost

no malicious node is able to update more than 20 times of false
estimates. Fig. 5(b) shows the relationship under different num-

ber of normal neighbors, where the verification probability is
fixed at 0.2. Performances in three cases are quite close. This

result implies that, if the numbers of normal neighbors of mali-

cious nodes do not vary too much, e.g., within the range from 50
to 100, the numbers of attacks the malicious nodes can conduct

are almost the same. Results in Fig. 5(c) further validates this

TABLE I
NUMBER OF EPOCHS NEEDED TO REACH CONSENSUS

Fig. 5. Performance of the misbehavior detection mechanism.

4Without false updates, convergent dynamics of the original algorithm and
the plain robust consensus algorithm are exactly the same.

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1039

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

conjecture. It illustrates the times of false updates a malicious
node can conduct such that it will be eliminated with probability

0.9. The elimination probability ismainly determined by the ver-

ification probability. For a fixed p, the detection mechanism
achieves similar performance. Therefore, although a malicious

node can degrade the detection performance by increasing d, if
possible, such advantage has marginal impact on the monitoring
mechanism.

D. Impact of Random Dropping

We simulate the case where an LAE with size 10000 is

solved by multiple nodes and homogeneous random dropping

strategy is applied by these nodes. Epochs required for the

alternating projection based algorithm under different drop-

ping rate is shown in Fig. 6(a). It shows that applying the ran-

dom dropping strategy will not slow down the consensus

process significantly. For example, in the case of 100 nodes,

number of epochs that the algorithm takes to reach consensus

increases from 677 to 916 as the dropping rate increases from

0 to 0.8. With dropping rate 0.8, roughly 80% data

transmission can be reduced per epoch at the expense of 35%
extra epochs to reach the consensus. As shown in Fig. 6(b),

more communication overhead can be reduced with higher

dropping rate. An approximate 73% reduction in terms of

communication overhead can be achieved when the dropping

each component with probability 0.8. It is worth noting that

the benefit of random dropping vanishes when the dropping

components too aggressively. For example, when the dropping

rate equals to 0.9, the convergence performance of the algo-

rithm degrades significantly, i.e., an agreement cannot be

reached after 10000 epochs, which results in higher communi-

cation overhead than the case without dropping.

VIII. CONCLUSION

In this paper, we have proposed a distributed computing

framework to securely solve LAE in a networked system

which consists of multiple agents. The proposed framework

consists of fault-tolerant consensus-based algorithm and mis-

behavior detection mechanism. An efficient robust consensus

algorithm based on alternating projection are developed to

guarantee the correctness of final consensus while a coopera-

tive verification mechanism is designed to detect the false

updates from malicious nodes. In addition, a random dropping

strategy is introduced to reduce the communication overhead

involved in the consensus process. The efficiency and robust-

ness of our proposed framework are validated by performance

analysis as well as numerical results.

REFERENCES

[1] S. Mou and A. Morse, “A fixed-neighbor, distributed algorithm for solv-
ing a linear algebraic equation,” in Proc. IEEE Eur. Control Conf.,
2013, pp. 2269–2273.

[2] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving a
linear algebraic equation,” IEEE Trans. Autom. Control, vol. 60, no. 11,
pp. 2863–2878, Nov. 2015.

[3] K. You, S. Song, and R. Tempo, “A networked parallel algorithm for
solving linear algebraic equations,” in Proc. IEEE Conf. Decis. Control,
2016, pp. 1727–1732.

[4] G. Shi, B. D. Anderson, and U. Helmke, “Network flows that solve linear
equations,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2659–2674,
Jun. 2017.

[5] S. Mou, Z. Lin, L. Wang, D. Fullmer, and A. S. Morse, “A distributed
algorithm for efficiently solving linear equations and its applications
(special issue JCW),” Syst. Control Lett., vol. 91, pp. 21–27, 2016.

[6] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.

[7] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Trans. Autom. Control,
vol. 55, no. 4, pp. 922–938, Apr. 2010.

[8] J. Liu, S. Mou, and A. S. Morse, “An asynchronous distributed algo-
rithm for solving a linear algebraic equation,” in Proc. IEEE Conf.
Decis. Control, 2013, pp. 5409–5414.

[9] D. M. Shila, W. Shen, Y. Cheng, X. Tian, and X. S. Shen, “Amcloud:
Toward a secure autonomic mobile ad hoc cloud computing system,”
IEEE Wireless Commun., vol. 24, no. 2, pp. 74–81, Apr. 2017.

[10] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for
securely outsourcing large-scale systems of linear equations,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1172–1181, Jun. 2013.

[11] S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure outsourcing of
large-scale linear systems of equations,” in Proc. IEEE Conf. Comput.
Commun., 2015, pp. 1035–1043.

[12] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. S. Wong, “New algo-
rithms for secure outsourcing of large-scale systems of linear equations,”
IEEE Trans. Inf. Forensics Security, vol. 10, no. 1, pp. 69–78, Jan. 2015.

Fig. 6. Impact of random dropping.

1040 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

[13] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 4, pp. 766–781, Apr. 2013.

[14] H. J. LeBlanc and F. Hassan, “Resilient distributed parameter estimation
in heterogeneous time-varying networks,” in Proc. ACM Int. Conf. High
Confidence Netw. Syst., 2014, pp. 19–28.

[15] J. He, P. Cheng, L. Shi, and J. Chen, “SATS: Secure average-consensus-
based time synchronization in wireless sensor networks,” IEEE Trans.
Signal Process., vol. 61, no. 24, pp. 6387–6400, Dec. 2013.

[16] S. Sundaram and B. Gharesifard, “Distributed optimization under adver-
sarial nodes,” 2016, arXiv:1606.08939.

[17] N. H. Vaidya and V. K. Garg, “Byzantine vector consensus in complete
graphs,” in Proc. ACM Symp. Princ. Distrib. Comput., 2013, pp. 65–73.

[18] W. Shen, B. Yin, X. Cao, Y. Cheng, and X. S. Shen, “A distributed secure
outsourcing scheme for solving linear algebraic equations in ad hoc
clouds,” IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 415–430, Apr.-Jun.
2019.

[19] P. J. Eberlein and H. Park, “Efficient implementation of jacobi algo-
rithms and jacobi sets on distributed memory architectures,” J. Parallel
Distrib. Comput., vol. 8, no. 4, pp. 358–366, 1990.

[20] J. G€otze, “On the parallel implementation of jacobi and kogbetliantz algo-
rithms,” SIAM J. Scientific Comput., vol. 15, no. 6, pp. 1331–1348, 1994.

[21] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. E. Spafford,
“Secure outsourcing of scientific computations,” Advances Comput.,
vol. 54, pp. 215–272, 2002.

[22] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACMTrans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[23] F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion detection
for secure consensus computations,” in Proc. IEEE Conf. Decis. Con-
trol, 2007, pp. 5594–5599.

[24] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via
linear iterative strategies in the presence of malicious agents,” IEEE
Trans. Autom. Control, vol. 56, no. 7, pp. 1495–1508, Jul. 2011.

[25] S. Sundaram and B. Gharesifard, “Consensus-based distributed optimi-
zation with malicious nodes,” in Proc. IEEE Annu. Allerton Conf. Com-
mun., Control, Comput., 2015, pp. 244–249.

[26] N. H. Vaidya, “Iterative byzantine vector consensus in incom-
plete graphs,” in Proc. Int. Conf. Distrib. Comput. Netw., 2014,
pp. 14–28.

[27] D. Charles, K. Jain, and K. Lauter, “Signatures for network coding,” in
Proc. IEEE Annu. Conf. Inf. Sci. Syst., 2006, pp. 857–863.

[28] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear sub-
space: Signature schemes for network coding,” in Proc. Int. Workshop
Public Key Cryptography, 2009, pp. 68–87.

[29] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure network cod-
ing over the integers,” in Proc. Int. Workshop Public Key Cryptography,
2010, pp. 142–160.

[30] R. Stoleru, H. Wu, and H. Chenji, “Secure neighbor discovery and
wormhole localization in mobile ad hoc networks,” Ad Hoc Netw.,
vol. 10, no. 7, pp. 1179–1190, 2012.

[31] M. Fiore, C. E. Casetti, C.-F. Chiasserini, and P. Papadimitratos, “Discovery
and verification of neighbor positions in mobile ad hoc networks,” IEEE
Trans. Mobile Comput., vol. 12, no. 2, pp. 289–303, Feb. 2013.

[32] V. Yadav and M. V. Salapaka, “Distributed protocol for determining
when averaging consensus is reached,” in Proc. IEEE Annu. Allerton
Conf., 2007, pp. 715–720.

[33] J. Cort�es, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726–737, 2008.

[34] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, 2011, Art. no. 13.

[35] X. Wang, S. Mou, and D. Sun, “Improvement of a distributed algorithm
for solving linear equations,” IEEE Trans. Ind. Electron., vol. 64, no. 4,
pp. 3113–3117, Apr. 2017.

[36] R. Escalante and M. Raydan, Alternating Projection Methods.
Philadelphia, PA, USA: SIAM, 2011.

[37] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins:
Security protocols for sensor networks,” Wireless Netw., vol. 8, no. 5,
pp. 521–534, 2002.

[38] A. Perrig, D. Song, R. Canetti, J.D Tygar, and B. Briscoe, “Timed effi-
cient stream loss-tolerant authentication (TESLA): Multicast source
authentication transform introduction,” IETF RFC4082, June 2005.

[39] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptogra-
phy: The case of hashing and signing,” in Proc. Annu. Int. Cryptology
Conf., 1994, pp. 216–233.

[40] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network aggre-
gation in sensor networks,” in Proc. ACM Conf. Comput. Commun.
Secur., 2006, pp. 278–287.

[41] Q. Yan, M. Li, T. Jiang, W. Lou, and Y. T. Hou, “Vulnerability and protec-
tion for distributed consensus-based spectrum sensing in cognitive radio
networks,” inProc. IEEE Conf. Comput. Commun., 2012, pp. 900–908.

[42] P.-A. Fouque, J. Stern, and G.-J. Wackers, “Cryptocomputing with
rationals,” in Financial Cryptography. New York, NY, USA: Springer,
2003, pp. 136–146.

[43] C.Orlandi, A. Piva, andM. Barni, “Oblivious neural network computing via
homomorphic encryption,” EURASIP J. Inf. Secur., vol. 7, pp. 1–11, 2007.

[44] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Manual for using homomorphic encryption for bio-
informatics,” Proc. IEEE, vol. 105, no. 3, pp. 552–567, Mar. 2017.

[45] Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82.
Philadelphia, PA, USA: SIAM, 2003.

Bo Yin (S’14) received the B.E. degree in electronic
information engineering and the M.E. degree in elec-
tronic science and technology from Beihang
University, Beijing, China, in 2010 and 2013, respec-
tively. He is currently working toward the Ph.D. degree
with the Department of Electrical and Computer Engi-
neering, Illinois Institute of Technology, Chicago, IL,
USA. His research interests include edge computing,
wireless networking, and network security.

Wenlong Shen (S’13) received the B.E. degree in
electrical engineering from Beihang University, Bei-
jing, China, in 2010, and the M.S. degree in telecom-
munication from the University of Maryland,
College Park, MD, USA, in 2012. He is currently
working toward the Ph.D. degree with the Depart-
ment of Electrical and Computer Engineering, Illi-
nois Institute of Technology, Chicago, IL, USA. His
current research interests include wireless network-
ing, cloud computing, and network security.

Xianghui Cao (S’08–M’11–SM’16) received the
B.S. and Ph.D. degrees in control science and engi-
neering from Zhejiang University, Hangzhou, China,
in 2006 and 2011, respectively. From July 2012 to
July 2015, he was a Senior Research Associate with
the Department of Electrical and Computer Engineer-
ing, Illinois Institute of Technology, Chicago, IL,
USA. Currently, he is an Associate Professor with
the School of Automation, Southeast University,
Nanjing, China. His research interests include cyber-
physical systems, wireless network performance

analysis, wireless networked control, and network security. He is the Organi-
zation Co-Chair for The Youth Academic Annual Conference of Chinese
Association of Automation (YAC 2018), the Symposium Co-Chair for ICNC
2017, the Publicity Co-Chair for ACM MobiHoc 2015 and IEEE/CIC ICCC
2015, and the TPC Member for a number of conferences. He is also an Associ-
ate Editor for ACTA Automatica Sinica, the IEEE/CAA JOURNAL OF AUTOMA-

TICA SINICA, and the International Journal of Ad Hoc and Ubiquitous
Computing. He was the recipient of the Best Paper Runner-Up Award from
ACM MobiHoc in 2014 and the First Prize of Natural Science Award of
Ministry of Education of China in 2017.

YIN et al.: SECURELY SOLVING LINEAR ALGEBRAIC EQUATIONS IN A DISTRIBUTED FRAMEWORK ENHANCED WITH... 1041

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

Yu Cheng (S’01–M’04–SM’09) received the B.E. and
M.E. degrees in electronic engineering from Tsinghua
University, Beijing, China, in 1995 and 1998, respec-
tively, and the Ph.D. degree in electrical and computer
engineering from the University of Waterloo, Water-
loo, ON, Canada, in 2003. He is now a Full Professor
with the Department of Electrical and Computer Engi-
neering, Illinois Institute of Technology, Chicago, IL,
USA. His research interests include wireless network
performance analysis, network security, big data, and
cloud computing. He was the Symposium Co-Chair

for the IEEE ICC and the IEEEGLOBECOM, and the Technical Program Com-
mittee Co-Chair for WASA 2011 and ICNC 2015. He is a founding Vice Chair
of the IEEE ComSoc Technical Subcommittee on Green Communications and
Computing. He was an IEEE ComSoc Distinguished Lecturer during 2016–
2017. He is an Associate Editor for the IEEE TRANSACTIONS ON VEHICULAR TECH-

NOLOGY. He was the recipient of the Best Paper Award at QShine 2007, IEEE
ICC 2011, and a Runner-Up Best Paper Award at ACMMobiHoc 2014. He was
also the recipient of the National Science Foundation CAREER Award in 2011
and IIT Sigma Xi Research Award in the junior faculty division in 2013.

Qing Li (M’02) is a Vice President of Engineering
with the Network Protection Products business unit,
Symantec, Mountain View, CA, USA. He is an Indus-
try Veteran with more than 20 years of experience,
with 24 issued patents and many more pending. Prior
to the acquisition by Symantec, hewas the Chief Scien-
tist with Blue Coat Systems, where he is a well-known
V1.0 technology and product innovator. He is a pub-
lished author of five first-of-its-kind books, by
Springer-Verlag, Morgan Kaufmann, and Wiley. His
books have been translated into multiple foreign lan-

guages and are serving as reference texts in universities and in the industry
around the world.

1042 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 03:53:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

