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Abstract—With the superior capability of discovering intricate structure of large data sets, deep learning has been widely applied in

various areas including wireless networking. While existing deep learning applications mainly focus on data analysis, the role it can play

on fundamental research issues in wireless networks is yet to be explored. With the proliferation of wireless networking infrastructure

and mobile applications, wireless network optimization has seen a tremendous increase in problem size and complexity, calling for a

paradigm for efficient computation. This paper presents a pioneering study on how to exploit deep learning for significant performance

gain in wireless network optimization. Analysis on the flow constrained optimization problems suggests the possibility that a

smaller-sized problem can be solved while sharing equally optimal solutions with the original problem, by excluding the potentially

unused links from the problem formulation. To this end, we design a deep learning framework to find the latent relationship between

flow information and link usage by learning from past computation experience. Numerical results demonstrate that the proposed

method is capable of identifying critical links and can reduce computation cost by up to 50 percent without affecting optimality, thus

greatly improve the efficiency of solving network optimization problems.

Index Terms—Optimization, machine learning, deep learning

Ç

1 INTRODUCTION

MACHINE learning, an artificial intelligence technology
that learns patterns from empirical data, has found its

applications in classification, regression, prediction and
control. Fueled by the exploding data complexity, and
enabled by the advancements in computing hardware, deep
learning, a branch of machine learning, has received recog-
nition in both academia and industry for its potential for
efficiently extracting intricate structures in large data sets
[1]. Deep learning techniques have been reported to assist
detection or classification in the wireless networking scenar-
ios [2], [3], [4], [5]. However most of the existing attempts
only apply deep learning as an auxiliary tool, detecting fea-
tures in scenarios similar to those in computer vision or rec-
ommendation system; it has yet to be seen how deep
learning would fundamentally impact performance optimi-
zation in wireless networks.

Modern wireless networks are tremendously more com-
plex than before and the traditional approach to resource
allocation problems by optimization theory has become
more tenuous than ever. Today’s networks are designed to
support a large and diverse user base, with the deployment
and interplay of multi-layer and heterogeneous structures.
The optimal allocation and scheduling of these various

network resources raises a critical concern in the computa-
tional efficiency [6], [7]. Therefore, developing efficient algo-
rithms to solve large-scale optimization problems becomes
an emerging task for future networks. It could be observed
that a part of the computing efforts is “wasted” due to repeat-
edly solving for similar conditions. For example, in a flow
scheduling problem under a given topology, a slight change
in flow demand or location may not lead to significant
change in the results, yet a new optimization problem has to
be formulated and the expensive iterative computations
repeated. It is more efficient if the results are “memorized”
somehow such that the historical information can contribute
to solving future problem instances with similar conditions.
In other words, through solving these problems and digest-
ing the solutions, the system could gain “experience”, which
as an example could be the structural features of the network
or agent distribution, to facilitate future decision-making.
Considering its recent success, deep learning could be a key
technology in carrying out such a task.

In the existing works dealing with the large scale optimi-
zation problems, decomposition and distributed solution
are the main approaches. Delayed column generation
(DCG) [6], [8], [9] has been exploited as a decomposition
technique in solving optimization problems. However, in
these works, DCG is not able to reduce the number of con-
straints, leading to considerable time consumption in solv-
ing the decomposed problems. Game theoretical distributed
approach is suitable for solving the problems where a large
number of users/players share or compete for network
resources [10]. Since the players take actions in parallel and
in a distributed manner where each one only needs to con-
sider a small scale problem locally, the original problem can
be solved efficiently. But due to the price of anarchy, it
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usually leads to incentive compatible but not socially effi-
cient solutions. On the other hand, distributed algorithms
such as reinforced learning [11] and dual decomposition
[12] are able to provide optimal solution, but a common
issue faced by these approaches is the convergence time. In
order to converge to the optimal solution or to satisfy a pre-
defined performance requirement, it usually takes long
time of iteration or a large number of rounds, especially for
the problems with large scale. Moreover, even when the
original problem is decomposed to sub-problems or distrib-
uted for parallel computations, the resulting sub-problem
will still be of large size if the number of variables or ele-
ments involved in the problem is large, which is the usual
case in large scale optimization problems. That is to say,
if the number of elements in the original problem is
not changed, it will finally contribute to an increased com-
putation cost either in computational complexity or compu-
tation time.

Motivated by this, we seek a novel solution procedure by
reducing the problem size itself, i.e., formulating an optimi-
zation problem with smaller size while solving it yields the
same solution as that of the original. By analyzing the solu-
tions of flow-constrained optimization problems in [6], we
observe that many links are not involved in the optimal
solution. This observation indicates the possibility to cut off
part of the elements (in this case, links) to reduce problem
size without changing the solution. Then the goal is to iden-
tify useful links before solving the problem. A similar
approach for link evaluation is discussed in [13] and [14],
but the methods proposed in these works are based on heu-
ristics and cannot be well adapted to changing flow
demands. Therefore, the target is to design an adaptive
method that is able to identify critical links under different
flow input. To this end, we adopt deep learning to perform
link evaluation, which is capable of extracting highly
abstracted features from input and finding complicated
latent relationships between input (flow demand) and out-
put (link values) [1]. As mentioned previously, the learning
framework is designed to learn from computation experien-
ces and extract structural information from the network,
which is then utilized to identify critical links in the optimi-
zation problems.

In this paper, we develop the learning based approach on
a typical optimization problem in wireless networks, which
is demand constrained energy minimization problem in
generic multi-dimensional networks. Results from our pre-
vious work [6], [8], [9] indicate that it may not be necessary
to include all the links into formulation since some of them
will not be used in the optimal solution. With training data
generated from off-line pre-computations of sample prob-
lems, we adopt deep learning algorithm to find the relation-
ship between multi-commodity flow demand information
and link usage in optimal solution. Since the learning task
in our problem largely differs from those in the existing
works, a learning framework that is suitable for link evalua-
tion is designed. Based on the learning result, we then iden-
tify the link criticalness under different flow input, and
links that are not likely to be scheduled will be excluded
from the problem formulation to reduce problem size.
Numerical results demonstrate that the proposed method is
able to reduce the computation time to at most 50 percent

compared with that of the original problem, without
degrading the optimality of solution.

The idea of applying learning algorithm for link evalua-
tion and computation reduction was first introduced in our
previous work [15], where some preliminary but limited
results are presented to demonstrate the validity of this
novel approach. In this paper, with considerations of differ-
ences between our learning task and the typical classifica-
tion tasks, we re-design the learning structure so that the
unique features in the link evaluation tasks can be accom-
modated, including revised input and output layers and the
cost function in training. A complete algorithm is provided
in this paper to cover the generation of training set, selection
of threshold, and how to obtain the final feasible solution.
Further, different from [15], the training set and testing set
in this paper are generated separately without overlapping
to ensure integrity of the test, and more learning results are
presented and analyzed to demonstrate different aspects of
the learning scheme.

Our contributions are summarized as follows:

1) We propose a novel approach of exploiting machine
learning in wireless network optimization which
identifies structural level information such as link
criticalness from computation experiences and the
learned information is utilized to improve computa-
tional efficiency;

2) Through the analysis on a class of wireless network
optimization problems, we identified parts of the
solution space are not commonly represented in the
solutions, such as unscheduled links in the flow con-
strained optimization problem, suggesting the possi-
bility that a smaller-sized problem can be solved
while sharing equal optimal solutions with the origi-
nal, by excluding the potentially unused links from
the problem formulation;

3) We exploit deep learning to investigate the latent
relationship between flow demand and link usage
by designing a learning framework that is suitable to
address the unique issues in link evaluation, with
which a learning based algorithm is proposed to
identify critical links under different flow demands
and reduce optimization problem scale for wireless
networks;

4) Through numerical results, we demonstrate that the
proposed learning based method is valid in estimat-
ing link criticalness, based on which the computa-
tional cost in solving optimization problems can be
reduced by up to 50 percent while optimality of solu-
tion remains intact, thus greatly increases the effi-
ciency of solving optimization problems in wireless
networks.

The remainder of this paper is organized as follows.
More related works are surveyed in Section 2. Section 3
describes the system model and formulation of the optimi-
zation problem, as well as the analysis on problem size.
Section 4 introduces the learning framework for link evalua-
tion and the proposed learning based algorithm for problem
size reduction. Numerical results and performance evalua-
tions are presented in Section 5. Finally, Section 6 gives the
conclusion remarks.
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2 RELATED WORK

Good at discovering intricate structures in high-dimensional
models, deep learningmethods are demonstrating great suc-
cess on tasks such as image classification, speech recognition,
and language translation [1]. The key advantage of deep
learning is the ability to learn complex functions from raw
data, e.g., pixel values of an image,which relaxes the require-
ment of good feature extractors, conventionally designed by
hand, and thus boosts its adoption in many domains of sci-
ence [1]. For example, the work in [16] trained a deep neural
network (DNN) for prospective predictions in quantitative
structure-activity relationships (QSAR) and showed the
superior performance of the DNN generalizes well to large
diverse QSAR data sets. The work in [17] also employed the
DNN to characterize the high level representations of mouse
RNA-Seq data with respect to the splicing patterns of tissues.

Recent years have also witnessed an increasing adoption
of machine learning techniques in the network optimization
with respect to various tasks, such as dynamic optimal chan-
nel assignment approximation in cellular telephone systems
[18], localization inwireless sensor networks [19], and reduc-
ing the number of unsatisfied cellular users [20]. With the
advent of deep learning, data-driven approach is becoming a
promising attempt to explore the optimal network resource
allocation. The work in [21] analyzed the spatio-temporal
structure of cellular user traffic load and discovered the exis-
tence of temporal autocorrelation and spatial correlation
between neighboring base stations, which were then mod-
eled by leveraging the state-of-the-art deep learning techni-
ques, i.e., autoencoder and Long Short-Term Memory units
(LSTMs), respectively. The resultant spatio-temporal model
improved the prediction accuracy in terms of traffic load,
making the resource allocation more flexible. As in the other
fields, the existing applications of learning in networking
largely rely on the features of data and target on the process-
ing of data itself. It is not yet fully exploited that whether the
powerful learning tools can benefit wireless networking in a
fundamental way, such as to identify core information
implied in the network structure.

Efforts to investigate the optimization problems in wire-
less network resource allocation, especially channel assign-
ment, scheduling and power control, have been under way
for a long time [22], [23]. Scheduling schemes are proposed in
[24] and [25] to balance network performance with energy
consumption in power-constrained sensor networks. Arising
naturally in many wireless network resource allocation prob-
lems, the wireless network utility maximization (WNUM)
model has been studied intensively. Thanks to algorithmic
and technological advances, a series of methods for WNUM
problems have been proposed in the last decade [26]. Among
those solutionmethodologies, distributed algorithms are par-
ticularly attractive due to its capability to address large-scale
network problems. The idea of exploiting the decomposabil-
ity structure ofWNUMproblems, either in the primal or dual
problems, has stimulated a large number of research work,
which result in various of distributed algorithms targeting on
different network resource allocation problems [27]. With
superior convergence performance, the alternating direction
method of multipliers (ADMM) has been recognized as an
efficient algorithm for solving large-scale machine learning
problems [28] and sparked a tremendous attention from

networking community recently [29], [30], [31], [32]. In addi-
tion, game theory provides another distributed control para-
digm in wireless network, especially in large wireless ad hoc
network (WANET), which is summarized in [33]. As the
problem scale increases along with the development of wire-
less networks, an inevitable issue inmost of these approaches
is the trade-off between convergence time and algorithm per-
formance in terms of optimality. It is promising to design
algorithms to reduce problem scale without degrading the
performance of solution by identifying critical network ele-
ments, which is to be investigated in this paper.

3 PROBLEM FORMULATION AND ANALYSIS

Our previous work on wireless network optimization iden-
tified a general abstraction that the resource allocation can
be viewed as an independent set or transmission pattern
based scheduling [6] problem, where in both cases transmis-
sion links are the core subjects in the problems. Therefore,
an effective approach of improving the algorithm efficiency
of network optimization is to evaluate the usefulness of
links out of the optimization framework, where learning
technique can be applied to discover such information
based on computation experiences. To this end, deep learn-
ing will be exploited to extract structural level information
from the network and identify critical links, and the learned
knowledge will then be utilized to improve the efficiency of
network optimization. In this section, we will elaborate the
system model and formulation of general resource alloca-
tion problem as a transmission pattern based optimization
problem, and discuss the feasibility of learning link values
for computational complexity reduction.

3.1 System Model

3.1.1 Network Model

Consider a generic wireless network with the set of nodes
N . Each node can be equipped with one or multiple radio
interfaces, with the set of all radios denoted as R. The set of
available channels in the network is defined as C. A node
can set up a transmission link to its neighbors, i.e., nodes
within its transmission range. Denote all the links in the net-
work as L. An optimization problem in wireless network
may involve various aspects and resources, such as link
scheduling, throughput maximization, power control, chan-
nel assignment, etc. In this paper, we will take the optimiza-
tion problem presented in [34] as an example,1 where the
objective is to minimize total energy consumption in the
network while guaranteeing the flow demands of multiple
commodities can be satisfied. Each commodity flow is speci-
fied by the corresponding source and destination nodes as
well as the flow demand. The optimization is done by alter-
nately activating sets of links to fulfill multi-hop transmis-
sions from sources to destinations, accompanied with the
allocation of other resources.

In wireless network optimization problems, a common
cause of large problem scale is the joint optimization over
multiple dimensions of resource space, which is constructed
by different types of resources. For example, most wireless

1. The proposed approach can be generalized to different types of
optimization problems, as will be discussed in Section 4.5.
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networks can be abstracted as a multi-radio multi-channel
network [6], where each node is equipped with one or mul-
tiple radio interfaces that can exploit one or multiple non-
overlapping channels for transmission. In such a network, a
comprehensive allocation of all types of resources is
required to obtain the optimal solution, which means the
coupled issues of link scheduling, routing, power control,
radio and channel assignment should be jointly optimized.

The multi-dimensional modeling technique in [34] pre-
sented away to decouple different resource dimensions. Par-
ticularly, the concept of tuple-linkmaps each physical link to
several tuple-links, where each tuple-link is a transmission
link specified by the transmitter radio, receiver radio and the
utilized channel. Further, a transmission pattern is defined
as a possible power allocation on all the tuple-links in the
network. With these techniques, the joint optimization prob-
lem is transformed to a transmission pattern based schedul-
ing problem, which facilitates LP formulation.

3.1.2 Interference Model

We adopt a physical interference model to characterize the
interference relationships among links. Simultaneous trans-
missions of multiple links (or tuple-links if in a multi-
dimensional model) may incur different types of interfer-
ence or conflict to each other. If two links sharing the same
radios are scheduled for transmission at the same time, then
neither of them can work due to radio conflict. For two links
with no radio conflict but working in the same channel, co-
channel interference will be incurred, which affects the
SINR at receiver side. In addition, if two links with no radio
conflict are working in different channels, there will not be
any mutual influence. Based on the above definitions, we
can obtain the SINR at the receiver of link i as

SINRi ¼
0; if i has radio conflict

with other active links;
gipiP

j2Ii gjipjþs2
; otherwise,

8>><
>>:

where gi is the channel gain of link i, gji is the interference
coefficient from link j to link i, pi is the transmit power of
link i, Ii is the set of links working on the same channel as
that of link i, and s2 is the random noise. Further, according
to the Shannon-Hartley equation, the achievable transmis-
sion rate of link i can be expressed as

ri ¼ BW log 2ð1þ SINRiÞ; (1)

where BW denotes the bandwidth.
With the above modeling, it can be seen that if the status

(on or off) of all the links are given, the transmission rate of
links as well as the total power consumption in the network
can be obtained. Based on this, we define a possible status
of all the tuple-links in the network as a transmission pat-
tern, and the optimization problem can be transformed to a
scheduling problem over all the patterns (denoted as A).
The solution of this scheduling problem can also imply
routing and radio/channel assignment, which means we
are able to obtain the desired joint solution.

3.2 Problem Formulation

The pattern based scheduling problem is to assign active
time ta for each pattern a 2 A, with the total scheduling
time bounded by one normalized slot

X
a2A

ta � 1: (2)

To minimize the total energy consumption in the network,
the objective function will be formulated by summing up
energy consumption of all the patterns, which is

min E ¼
X
a2A

Pata: (3)

where Pa is the total power consumption of pattern a, which
can be obtained by Pa ¼

P
i2L pi;a. pi;a is the transmit power

of link i in pattern a, which is 0 if i is in off state and pi
otherwise.

Denote the flow of commodity c on link i as fi;c, and the
set of all commodities as C. Since the sum flow of all com-
modities on a link is limited by the link capacity, which is
determined by the transmission rate and transmission time.
Based on this, we can obtain the following constraint

fi ¼
X
c2C

fi;c �
X
a2A

ri;ata; (4)

where ri;a is the transmission rate of i in pattern a.
In addition, considering the flow balance, we have the

following constraint for each internal node n

X
i2Lnþ

fi;c ¼
X
j2Ln�

fj;c; 8c 2 C; 8n 2 N n fns
c; n

d
cg; (5)

where Lnþ denotes the set of incoming links to node n and
Ln� denotes the set of outgoing links from n.

Similarly, at a source or destination node, we have

X
i2Lnsc�

fi;c ¼
X

j2L
ndcþ

fj;c � dc; 8c 2 C; (6)

where dc is the flow demand of commodity c.
Therefore the optimization problem will be formulated

as

min
ffi;c;tag

Objective (3)

s:t: Constraint (2),(4),(5)

fi;c � 0; 8i 2 L; 8c 2 C
(7)

ta � 0; 8a 2 A: (8)

3.3 Analysis on Problem Scale and Solution

While the modeling in [34] successfully decoupled multiple
dimensions of resources and facilitated LP formulation,
another cost is introduced, which is the exponentially grow-
ing problem scale. As the scheduling object is changed from
link to tuple-link, and further to transmission pattern, the
solution space grows to a size with exponent equal to the
number of tuple-links. For example, suppose all nodes have
the same number of radios jR0j, the number of channels
and transmit power levels are jBj and jPj, respectively.
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Then the size of the solution space is roughly jPjðjLj�jR0j2�jBjÞ,
where jLpj is the number of physical links in the network
and is in the order of jN 2j. It is computationally impractical
to find all the patterns in the optimization problem due to
the exponentially large size, therefore we follow the solu-
tion proposed in [34] to solve the formulated problem,
which is based on delay column generation that works on a
selected subset of patterns instead of the entire set. With
DCG method, although there is no need to find all the pat-
terns, it is still time-consuming in selecting patterns, which
is one of the major contributions of computation time.

The computation time in solving the optimization prob-
lem also depends on the size of the optimization problem,
which is related to the dimension of optimization variables
and the number of constraints. In this case, it is mainly
determined by the number of tuple-links and the number of
transmission patterns, while both of them are determined
by the number of links jLj. From a more general point of
view, transmission link is an essential element in network
optimization problems. In a generic scheduling and
resource allocation problem, the solution is indeed to select
links to activate and allocate transmission time to the acti-
vated links, as is done in our previous work [34]. With fur-
ther analysis on the results, it can be shown that the number
of links has a great impact on the computational cost of the
solution, which affects both the convergence time and sub-
problem scale. Therefore, reducing the number of links
involved in the formulation will be an efficient way to
reduce the complexity.2

In fact, not all the links are used in the optimal solution.
Fig. 1 shows two examples of link usage in the optimal solu-
tion from sample problems solved by the algorithm pro-
posed in [34]. We calculated the amount of traffic carried on
each physical link in the optimal solution and drew the his-
togram of flow traffic as the percentage of the total amount
of traffic in the network. It can be observed that the flow
demands are fulfilled by a small number of links, while the
others remain idle. Whether a link will be used in the opti-
mal solution is determined by many factors. For example, if
a link is not on the paths between source and destination
pairs or far away from the source or destination nodes, it
will not be covered in the solution. In addition, if a link has
poorer transmission quality (in terms of link capacity) com-
pared to a nearby link, it will be unlikely to be scheduled.

Inspired by the above observation of link usage, if the
unused links can be excluded from the formulation, the
optimization solution can remain unchanged. This will fur-
ther lead to enhanced computational efficiency for reduced
computation time and storage cost. However, the previous
observations on link usage are made after the solutions are
obtained. In order to reduce computational complexity, we
need to develop a technique to predict the link usage before
solving the optimization problem.

For a fixed network topology (physical locations of
nodes), the main factor that determines whether a link will
be scheduled in the optimal solution is the flow information,
which includes the locations of source and destination
nodes and flow demand for each commodity. Then the link
usage prediction problem is to perform link evaluation
based on the flow information. Equivalently, the problem is
to find the relationships between the input flow information
and the output link evaluations.

Generally, flow information affects link usefulness in an
indirect way and there is no explicit relationship between
them. One approach is to leverage the knowledge obtained
from solutions of sample computations, based on which we
can predict the usage of links for a new problem, i.e., new
input flow information. This motivates us to exploit
machine learning techniques to predict link usage, which is
to be elaborated in the next section.

4 DEEP LEARNING BASED LINK EVALUATION

In Section 3.3 we have shown that the link usage are partly
determined by the quality and node locations with respect
to the flow path, and because of this, intermediate character-
izations may be extracted to link the flow information to

Fig. 1. Histogram of flow traffic (percentage of the total amount of traffic
in the optimal solution).

Fig. 2. Basic learning framework.

2. The reason that we are targeting at reducing the number of links
instead of that of tuple-links is, tuple-links corresponding to the same
link are equivalent in their criticalness in our optimization problem,
which is determined by the geographical locations. Besides, the number
of tuple-links is determined by that of links, therefore reducing the
number of links will also reduce the number of tuple-links.
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link usage. To give an intuitive example, given node loca-
tions and a flow demand with both source and destination
nodes located in the upper part of the network, then links
in the upper half of the network are more likely to be used
than the lower part. The information “upper half of network
should be given more consideration” can be derived
through problem inputs, and such intermediate informa-
tion, or features are what we hope to extract. In engineering
practice such heuristic approaches are widely used for
manual optimization, however with learning techniques it
is possible to discover them in a systematic manner. Among
the various existing learning frameworks, many of them
are built with classification tasks in mind and feature
selection and optimization take up a significant portion of
effort, which are undesirable in our scenario where these
unknown combination of features may make a difference in
scheduling performance. To address this, we leverage deep
learning framework to perform such tasks. An illustration
of the algorithm is shown in Fig. 3.

4.1 Basic Learning Framework

Fig. 2 shows a general structure of deep learning frame-
work, where the input layer represents the flow informa-
tion, and the output layer represents the link evaluations.
The input and output layers are connected by multiple hid-
den layers through internal adjustable parameters, i.e., the
weights, and the value of each unit in each layer (except for
the input layer, whose values are given) is determined by
the units in its previous (lower) layer. In the commonly
used supervised learning model, we first collect a set of
input and output (label) value pairs as the training set.
When an input is fed to the learning network, it produces
an output which may differ from the desired value (label)
in the training set. Then the weights are adjusted to mini-
mize the difference, which is characterized by a cost func-
tion. The adjustment can be done with the back propagation
(BP) method which modifies the weights layer by layer
backward. The learning network is trained as the weights

are adjusted according to all the training samples. Then
when a new input, the test sample, is applied, the learning
framework will produce an output which is an estimation
on the true value. Then the difference between the learning
network’s output and the true output can be used to evalu-
ate the performance of the learning network.

4.2 Deep Belief Net

Generally the weights in learning networks are randomly
initialized. In deep learning framework, it would be benefi-
cial to initialize them to sensible values through pre-training,
which is to apply unsupervised learning on the lower layers
of the network [1]. To this end, we exploit deep belief net
(DBN) [35] method to build the learning framework in our
link evaluation problem.3

DBN consists of multiple stacks of restricted Boltzmann
machine (RBM), which is a generative network with only
one stochastic hidden layer (single layer). In RBM, there is
no connections between the units within the same layer,
and the units in the hidden layer are connected to the input
layer by undirected and symmetric weights. The units in
both layers are binary-valued, while the probability of turn-
ing on a unit hi in the hidden layer is determined by

pðhi ¼ 1Þ ¼ 1

1þ expð�bi þ SjxjwjiÞ ; (9)

which is a sigmoid function of the weighted sum of the
input values xj with a bias bi.

Since the weights are all symmetric, in addition to infer-
ring the states of hidden layer units from the input layer,
RBM is also able to reconstruct the input from the hidden
layer. The training of RBM is then to minimize the recon-
struction error by adjusting the weights and repeating the
inferring and construction.

A single layer of RBM is not enough to fulfill the task of
extracting complicated and intricate information from the
input (such as the task of predicting link usage based on
input flow information in this paper). Therefore, multiple
RBMs are stacked to form a deep structure, the DBN [35]. In
DBN, each RBM takes the output from the previous level of
RBM as input, as shown in Fig. 4.

With this structure, the top layer of DBN is able to extract
abstracted features from the input data, and the level
of abstractions is determined by the number of layers.
Although multiple layers are combined in DBN, the training

Fig. 3. Algorithm illustration. Given the topology, source/destination nodes and flow demands of multiple commodities in the network, the learning
framework is supposed to automatically find which links are more likely to be used in the optimal resource allocation solution.

Fig. 4. DBN structure (unsupervised): stacking of RBMs.

3. Generally, there is no limitation on what learning algorithm
should be used in the proposed link identification task. DBN is chosen
for not relying on specific input data structure and good generalization
ability.
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can be done greedily by training each layer of RBM at a
time [35].

DBN can be used as an unsupervised learning model,
since it does not rely on output labels of training samples.
However, it can also be used for supervised learning by
adding the layer of labels on top of the trained DBN. In
order to match the top layer of DBN with the real output
layer of labels, BP method can be applied to obtain the con-
necting weights, and then applied to all the weights in the
learning framework for fine-tuning, as shown in Fig. 5. The
fine-tuning will adjust the parameters to match each input
sample to its corresponding label by minimizing the cost
function.

With the DBN pre-training, the extracted features can be
used for better discriminating different inputs and mapping
inputs to the corresponding output labels. In fact, the DBN
based supervised learning framework can be viewed as a
traditional deep learning network with BP method, while
the initial values of parameters are carefully assigned with
pre-training to improve the learning performance.

4.3 Learning Framework Design

4.3.1 Input Layer

Since the learning task is to infer link usage based on the
input flow information, the input layer should be designed
to fully express the information of multiple commodity
flows, including the locations of source and destination
nodes, along with the flow demand for each flow. To this
end, we define a jN j � jN j flow information matrix M, whose
entries are assigned as

Mij ¼
dc if ði; jÞ are the (source, destination) nodes

of flow c with demand dc

0 otherwise

8><
>: ;

(10)
The flow information matrix is then reshaped to a 1� jN j2
flow information vector4 x, which is to be applied to the learn-
ing framework as the input layer.

In order to be consistent with the property of probability
and sigmoid function, the input layer of DBN only accepts
values between 0 and 1, which means a normalization needs
to be done on the input vector that shrinks the range of
input values to the interval ½0; 1�. Since the minimum value
of x is 0, the normalization can be done by dividing the

original values with the maximum value in the input vector.
To avoid bias among cases, the maximum value should not
vary with different input, therefore we take the global maxi-
mum value of flow demand dmax as the normalizer, which is
the maximal demand that can be set to a flow. In practice,
dmax is usually predefined in the network optimization
problem in order to obtain feasible solutions since the net-
work capacity is bounded. In summary, the normalized
flow information vector will act as the input layer, which is

~x ¼ x

dmax
: (11)

4.3.2 Output Layer - Training Samples

The target of the learning networks is to predict the usage or
usefulness of each link in the network given the input and
topology. Therefore the output layer can be designed as a vec-
tor with length equal to the number of links in the network.

For the output layer of a training sample, the link value
should be defined based on the actual usage, which can be
obtained by calculating the amount of traffic it carries in the
optimal solution, as done in Section 3.3. It should be noticed
that a link with more traffic than others is not necessarily
more “useful”. In this sense, if we directly take the traffic
amount to represent the link value, some actually used links
with light traffic might be overwhelmed by those with large
values. In order to avoid such situation and cover all the
links present in optimal solution, we use binary values to
define the link value vector, which is

yi ¼
1 if link i is used in the optimal solution

0 otherwise

�
: (12)

The binary definition indicates that we focus more on
whether a link will be involved in the optimal solution,
rather than how often it will be used, since the former is crit-
ical in deciding the size of problem formulation.

For a general learning based classification model, the out-
put vector represents the label corresponding to the input
data. If there are K categories, the output vector will be a
K-dimensional vector with only one element of 1 represent-
ing the correct class and all the other elements zero. How-
ever, our problem is not a classification problem, which can
be seen from both the physical meaning and the output vec-
tor, which may contain multiple 1’s.

4.3.3 Output Layer - Test Samples

While the link values for training samples are known to us
and thus defined as binary, the link values of test samples,
which is the output of the learning framework and predic-
tion of whether a link will be used, will be continuous val-
ues within the interval ½0; 1�.

This abovementioned difference with classificationmodel
is also reflected in the output with test samples. Recall that in
DBN, the value of each unit falls between 0 and 1, so does the
output values. In classification problem, the output is usually
transformed to probability distribution by applying normali-
zation or softmax function, and the transformed values indi-
cate the possibilities that the test sample belongs to each
class, which can be interpreted as the confidence that the clas-
sifier has in categorizing the input into each class. Similarly,

Fig. 5. DBN with BP fine-tuning (supervised).

4. The entries on diagonal can be removed since they are always
zero and carrying no information. Then the corresponding vector will
be of size 1� jN jðjN j � 1Þ.
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in our problem, the output can be used to express the proba-
bility of whether a link will be used. However, different from
classification problems whose output values sum to 1, in our
model, the sum may exceed 1 since multiple links may be
considered useful. Therefore normalization is not applied in
our model, and the raw output is taken as evaluation of
links.5

4.3.4 Training Set

Having defined the input and output layers, the training set
can be built as pairs of flow information vectors and binary
link values obtained from optimal solutions. The training
data can be gathered from either the historic solutions or
offline solving sample problems, and can be further aug-
mented with newly solved problems. In our case, we gener-
ate a large number of sample problems to build the training
set. Particularly, each training sample is obtained by solving
the optimization problem formulated with a randomly gen-
erated flow information matrix (vector), and recording the
links that are used in optimal solution as the link value vec-
tor. The training process is summarized in Algorithm 1.

Algorithm 1. Generating Training Set

Initialization: i ¼ 0;
while i < training set size do
i ¼ iþ 1;
Randomly generate a set of flow commodities and demands,
convert to flow information vector x;
Formulate the optimization problem with the flow
information;
Solve the optimization problem with method in [34];
Record the link used in the optimal solution, calculate output
link value vector, denoted as y;
Add input/output pair ðx; yÞ to the training set;

end

4.3.5 Cost Function

While we still use cross entropy as the cost function, since
the output values are no longer a probability distribution,
we modify the cost function as

� 1

S

XS
i¼1

XjLj
i¼1

y ln ŷþ ð1� yÞ lnð1� ŷÞ½ �; (13)

where S is the batch size in training, y stands for the true
value of a link and ŷ is the output value of the learning
framework. Then the parameter of the learning framework
will be adjusted with conjugate gradient method layer by
layer to minimize the cost function in a back prorogation
manner, which starts from the top layer and goes through
the bottom layer.

It is worth noted that the value of S will have an effect on
the learning performance. The target of making training

samples into batches instead of dealing with the entire train-
ing set is to reduce the computational complexity. In a clas-
sification problem, the batch size is set so that roughly each
batch contains samples from all classes to avoid bias. There-
fore the size of a batch can be set to equal or larger than the
number of classes. In our problem, if the number of links is
viewed as the number of classes, the batch size should be
set to the number of links (or slightly larger).

4.3.6 Training

The training of the learning framework is summarized in
Algorithm 2. First, the training set is built with Algorithm 1.
Then the DBN is trained as multiple layers of RBMs with
unsupervised training [35]. The output (top) layer of the pre-
trained DBN is then connected with true link values with
randomly initialized weights for supervised training. BP
training is first performed only on the added layer of weights
while the weights within DBN are fixed for several rounds,
then the training is further performed on all the layers for
fine-tuning [35]. The training process will assign values for
all the interacting weights in the learning structure.

Algorithm 2. Training of Deep Learning Framework

1. Build training set with Algorithm 1;
2. Train DBN with unsupervised training (Step 1 in Fig. 5);
3. Add output layer of true link values, connect the output

layer to the pre-trained DBN with random weights;
4. Hold weights in DBN while adjust weights in the top layer

for a specified number of rounds with BP method (Step 2 in
Fig. 5);

5. Fine-tune the weights in all the layers with BP (Step 3 in
Fig. 5);

4.4 Algorithm Design

With the training results, we may input the new flow
demand vector from the problem we are going to solve.
Then the output of the learning framework will provide the
evaluation vector on all the links. The result can be viewed
as an estimation on whether a link would be used under the
new flow demand vector, indicated by the values in the vec-
tor. Based on the evaluation, we can keep the links with
higher values and exclude those with very small values,
which is done by applying a threshold.

The threshold is defined based on the output link values.
Both the absolute values and the relative values of links can
be used as a reference for defining a proper threshold. The
relative values can be used to define a threshold that can
directly control how many links will be omitted. For exam-
ple, if we want to cut off 20 percent of the links, then the
threshold can be set to keep link with the top 80 percent val-
ues. However, it may be difficult to define the cut-off per-
centage without knowing the actual percentage of links
used in the optimal solution, since more links should be
kept if more links are involved in the solution. Considering
that the absolute value of a link can reflect its criticalness
estimated by the learning framework, a constant value (e.g.,
0.5) can be used as threshold to select the critical ones.
But in this case, the portion of remaining links may vary
largely in different problems due to different learning
performance in these problems. Taken both aspects into

5. In order to be consistent with the commonly implemented learn-
ing frameworks, we first applied normalization to map the sum to 1,
where we found that after normalization, most links only got very small
values, even the useful ones. This made the learning framework think
that none of the link is useful and the result deviating from the true out-
put. Therefore we removed the normalization and kept the raw output.
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consideration, we design a threshold that can reflect both
the absolute and relative values of links, which is

ythr ¼ a�y; (14)

where �y is the average link value and a is a coefficient. In
this case, adjusting the value a can help control the percent-
age of links remained, and �y provides a reference on the
absolute link values specified for different cases.

Generally, the threshold can be selected according to the
experiences from the training. A self-test on the training set
can be conducted to check the average percentage of links
required to be kept in order to cover all the critical links.
Considering that the learning performance on a test sample
will be worse than that on a training sample, higher percent-
age of links should be remained for a test sample, and the
threshold can be set accordingly.

After cutting off links according to the threshold, the opti-
mization problem will be re-formulated with only the links
that are kept. Since the learning results may not be perfectly
accurate, it is possible that a really critical linkmay be under-
estimated and excluded from the formulation. Then the re-
formulated problem may have no feasible solution. In this
case, the threshold will be lowered to cut off less links and
the problem is solved again. The algorithm is summarized in
Algorithm 3. Generally, smaller number of links will lead to
less optimization variables and constraints, which reduces
the computation time and storage cost. Examples of the cost
reductionwill be shown in the next section.

Algorithm 3. Deep Learning Based Link Evaluation and
Computation Reduction

Input: Trained learning framework (parameter values); flow
information of a new problem (from test set);
1. Convert the flow information to the flow information vector

(as in Section 4.3.1);
2. Apply the flow information vector to the learning

framework to get the output link value vector, which is
the estimation of link criticalness;

3. Apply threshold (Eq. 14) to cut off low-valued links;
4. Use remaining links to re-formulate the optimization

problem;
5. Solve the reduced size problem, if infeasible, reduce

threshold, go to Step 3;

4.5 Generalization of Results

The proposed approach is not limited to the formulation pre-
sented in this paper. In the scheduling and resource alloca-
tion problems over a multi-dimensional resource space, the
objective function and constraints may vary among different

network resources according to specific concern of different
scenarios. However, the links are always critical elements
that determine the formulated problem size. Therefore
reducing the number of links involved in the formulation
will benefit the improvement of optimization efficiency.

More generally, the optimization problems in wireless net-
work may span to different area where links are not involved
or not as the focus variables. In these cases, the proposed algo-
rithm can also be applied by replacing link evaluations with
the corresponding network elements in formulation and fol-
lowing similar procedures for training and implementation.
For example, in addition to link, we can also evaluate other
network elements such as nodes, independent sets ([9]), trans-
mission patterns ([34]) with respect to their contributions in
network scheduling or resource allocation. Moreover, struc-
tural level information may also include abstracted knowl-
edge such as which area is more likely to be congested, which
nodes’ energy is likely to be depleted first. Through learning
algorithms, the extracted information can be utilized to
improve the efficiency of optimization or directly enhance net-
work performance.

5 PERFORMANCE EVALUATION

In this section, we present numerical results of the proposed
deep learning based optimization. The optimization is per-
formed in a network with 25 nodes with a grid or random6

deployment (as shown in Fig. 6, where each node is
equipped with one or multiple radio interfaces. Transmis-
sions can take place on one or multiple non-overlapping
channels. We consider the topology of nodes fixed, while
the flow information changes by each sample case. The goal
is to evaluate link criticalness through off-line training,
based on which the optimization problem can be solved in
reduced time under new flow demand.

5.1 Link Evaluation

We first construct the training set by solving pre-generated
optimization problems, where each case is formulated with
randomly generated flow demand vector and solved with
DCG-based decomposition algorithm. Solving each prob-
lem will provide one pair of input (flow information vector)
and output (link value vector), and the data pairs are used
as training samples for the learning algorithm. Following
the same way, a test set is built to test the performance of
the leaning results. The learning framework is constructed
with 3 hidden layers with 500, 400, 200 units, respectively.
We input the test flow vectors to the learning structure to
get the learning results, which are the link value vectors
estimated by the learning algorithm. The learning result is
then compared with the true result obtained from solving
the optimization problem.

5.1.1 Single-Flow Link Evaluation

For illustration, we first test the learning algorithm with sin-
gle flow scenarios, with a training set of 10000 samples.
Then the test is done with a left-to-right sample flow input

Fig. 6. Topology.

6. To maintain connectivity of the network, the random topology is
generated based on a grid topology, then applying both a horizontal
and a vertical random offsets to each node’s location.
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in grid topology, and a top-to-down sample flow in random
topology. The output link values are sorted in the descend-
ing order and the top 10 valued links for each case is shown
in Fig. 7.

As can be seen from Fig. 7, the link evaluation from the
learning algorithm correctly identified the critical links by
outputting relatively larger values for these links. Especially
for Sample (b), where only the links on the optimal path get
values larger than 0.5 and all the other links get very small
values. In Sample (a), in addition to the really critical links,
some links off the optimal path (e.g., link from Node 7 to
Node 12, link from Node 12 to Node 17) also get large out-
put values. In fact, this result indicates a possible alternate
choice of link due to proximity to the optimal path, and
such information may be useful under multi-flow scenarios
where the optimal path gets crowded.

5.1.2 Multi-Flow Link Evaluation

The single-flow scenario is a simple case for the learning
framework in the sense that the test samples may contain
an overlap with the training set since the number of possible
source destination pairs is limited.7 In the rest of this sec-
tion, all the experiments are carried out in a more practical

multi-flow scenario with 3 to 5 commodity flows, and non-
overlapping training and testing sets with 20000 training
samples and 1000 test samples. Two sample sets of link
evaluation results are shown in Fig. 8. In the figures, the bar
heights represent the output link values of the learning
algorithm, while the bars colored red are the ones present in
the optimal solution (really critical ones).

Similar to the single-flow cases, from Fig. 8 we can
observe that the learning process is able to detect most of
the critical links since these links generally receive higher
values. Based on the evaluation results, links with higher
values will be kept while lower-valued links are pruned
from the formulation. With a properly selected threshold, it
is possible to exclude a portion of links while still includes
every critical link, which means a reduced search space size
without changing the optimal result.

5.2 Learning Performance

The learning result of link evaluation will be used to deter-
mine which links will be removed and which will be kept in
the formulation by applying the threshold as discussed in
Section 4.4. We say a link is “detected” if it presents in the
optimal solution and receives an output value higher than
the threshold in the learning results, and define detection
rate as the percentage of links detected (as compared with
the total number of links used in the optimal solution). Fig. 9
shows the results of detection rate with remaining portion of
links for all the test samples under different parameter set-
tings. A result that is closer to the bottom-left corner has bet-
ter performance, since it achieves higher detection rate with

Fig. 7. Single flow link evaluations.
Fig. 8. Multi-flow link evaluations.

7. When there are fewer flows, there will be fewer variety of the
resulting flow distributions. Then it is more likely that the test sample
can find a very similar case from the training set, resulting in good per-
formance. On the other hand, if we have a very large training set, the
performance of multiple flow scenario can also be improved. So the
major factor affecting the algorithm performance is the size of training
set.
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smaller link portion. Result points located at both 100 percent
detection rate and link portion are omitted since theywill not
benefit the complexity reduction goal.

5.2.1 Detection and Reduction Trade-off

The value of threshold (as in Eq. (14)) has the most direct
effect on the results. Varying the threshold, we can observe
a trade-off between detection rate and the portion of
remaining links, as can be seen in the comparisons between
Fig. 9a and 9b, and between Fig. 9e and 9f. Generally, a
higher threshold means less links kept, which further means
larger computation reduction. However, it is also risky to
set a high threshold since truly useful links may also be cut
off. As discussed in Section 4.4, multiple concerns should be
taken into consideration to set the threshold properly.

5.2.2 Effect of DBN Pre-Training

We further investigate the effects of DBN pre-training in the
learning performance. The learning framework without
DBN pre-training can be viewed as a pure BP neural net-
work where all the weights are randomly initialized. The
comparisons are shown in Fig. 9a, 9c and 9e, 9g. The perfor-
mance of the learning with DBN pre-training is generally
better than that without pre-training. The reason is that
DBN pre-training can be viewed as a process to properly
assign initial weight values to the multi-layer learning
framework before BP method’s adjustment, which takes
effect by extracting features from the input that can help
better map each input to the corresponding output. This
advantage of DBN pre-training has already been seen in
typical machine learning tasks such as classification, while
the results in this paper show that it also benefits the deep
learning framework in our problem.

5.2.3 Effect of Learning Depth

While deep learning is powerful in extracting features for
better learning results, it is critical to decide how deep the

learning network should be. We compared the performance
of learning frameworks with 3 and 5 hidden layers (500,
400, 300, 200, 200 units in each layer), and the results are
shown in Fig. 9a, 9d and 9e, 9h.

The counterintuitive result is that deeper learning frame-
work may not necessarily lead to better performance. One
possible reason is that the size of training set is limited in
our case. With number of layers increased by a factor of 2,
the number of parameters in the learning framework
increased by 40,000 times (with 200 units per layer). Since
the size of training set is unchanged, more parameters only
lead to worse performance due to possible over-fitting. Gen-
erally, the proper number of layers and other parameters
related to the learning framework are dependent on the
training set, therefore should be adjusted accordingly.

5.2.4 Effect of Network Structure

Further, by comparing the results of grid and random topol-
ogy in Fig. 9, we may observe that the results of random
topology can achieve nearly 100 percent detection rate with
less links remaining. In other words, the learning performs
better under the random topology. The reason is three-fold.

First, due to the symmetric geographic locations of grid
topology, there can be multiple paths with equal perfor-
mance for each flow. Which is to say, the optimal set of links
(the links used in the optimal solution) is not unique. Since
the data sample contains only one optimal solution, there
could be alternative links with the same functionality but not
present in the solution. In this case, it is likely that the learn-
ing results select the alternative links instead of the ones in
the sample output, which is considered asmis-detection.

Second, in grid topology, all the links are identical in link
quality. While in the random topology, some links have bet-
ter transmission quality than the others and multiple flows
tend to share these links for transmission. This results in dif-
ferent number of links used in the optimal solution for the
two topologies. On average, 13.6 links are used for random
topology, while 28.9 links are used for grid topology. As a

Fig. 9. Distribution (density) of results for the 1000 sample cases in the testing set. The default setting is a learning framework of 3 hidden layers with
DBN pre-training, and threshold coefficient a set to 0.3. The top four figures are for grid topology and the bottom four for random topology.
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result, in order to achieve similar detection rates, more links
will be kept for the grid topology since more detections are
required.

Finally, as mentioned previously, whether a link will be
used or not is determined by both the geographic location
and link quality. In the grid topology, since there is no differ-
ence in link quality, the information that can be learned by the
learning framework is limited to the locations. While in the
random topology, difference in link quality can also be
obtained by the learning framework. Further, there exist
some “popular” links that aremore frequently used. Since the
training is batch based, detection of a popular linkwill reduce
the cost function more than other links, which can be seen
fromEq. 13. Thismeans it is easier for the learning framework
to detect popular links, which leads to better detection in the
random topology. This observation also demonstrated that
the learning framework is able to extract structural informa-
tion from the network, which can be used for link evaluation.

5.3 Problem Scale Reduction

By applying the threshold to the learned link values, links
with lower values than threshold will be eliminated from
the formulation to reduce the optimization problem scale,
as described in Algorithm 3. As mentioned previously, by
adjusting the value of the threshold, different level of com-
putation reduction can be achieved. Depending on whether
the critical links are remained in the re-formulated problem,
the performance in terms of the objective value (in our case,
energy efficiency) of solving the reduced size problem may
also be affected. The computation time and objective value
under different portion of links remaining in formulation
are shown in Fig. 10.

Fig. 10 demonstrated that a portion of links can be
excluded from the formulationwhile the reduced-sized prob-
lem can yield the same objective value as that of the original
problem. When too many links, including the critical links,
are removed from the formulation, the performance in

Fig. 10. Computation time and achieved objective value under different
portions of remaining links.

Fig. 11. Computation time comparisons under different network configurations. In grid topology, Sample 1 has 48.75 percent remaining links, Sample
2 is 71.25 percent, Sample 3 is 90 percent. In random topology, Sample 1 has 33.33 percent remaining links, Sample 2 is 47.44 percent, Sample 3 is
65.38 percent. In all the cases, the objective value achieved by the reduced size problem is the same as that of the original problem.
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objective value will drop or even there is no feasible solution
(0 objective value in the figures). This can be avoided with a
proper selection of threshold such that the computation time
can be reducedwithout affecting the optimal solution.

The computation reduction will be more significant in
larger scale optimizationproblems.Asdiscussed in Section 3.3,
the problem scale will be dramatically increased in a multi-
dimensional resource space, such as the exploitation of multi-
ple radios and multiple channels. The computation time com-
parisons under different network configurations are shown in
Fig. 11, where 3 sample cases of each topology are presented
with different levels of problem size reductions (resulted from
different percentage of remaining links).

It can be observed that the computation reduction is
effective in all the cases with up to 50 percent reduction in
some cases. Fig. 11 also indicates that the cost reduction will
be more significant as the scale of original problem grows.
With multi-dimensional modeling technique, the optimiza-
tion problem will scale more largely with the number of
links, which means reducing number of links in formulation
is more effective in improving computational efficiency. The
above results suggest that the learning based algorithm is
promising in improving the efficiency of solving large scale
optimization problems.

6 CONCLUSION

In this paper, we have proposed a deep learning based algo-
rithm in identifying critical links thus reducing optimiza-
tion problem scale for wireless networks. Based on the
observation that omitting unscheduled links can reduce
problem size without affecting the solution, we have
designed a deep learning framework to predict link usage
by training with off-line pre-computed samples. With the
link evaluation, we have proposed a learning based algo-
rithm to exclude unused links and re-formulate the optimi-
zation problem into smaller scale. In addition, we have
presented numerical results, which demonstrated that the
proposed learning based method is able to detect useful
links before solving the optimization problem. With the
learned information, optimization problems can be solved
with greatly reduced computation cost while preserving the
optimality of solution, which shows the effectiveness of the
proposed approach in improving efficiency of solving large
scale optimization problems in wireless networks.
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