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Abstract—The session initiation protocol (SIP) is widely used for controlling multimedia communication sessions over the Internet
Protocol (IP). Effectively detecting a flooding attack to the SIP proxy server is critical to ensure robust multimedia communications over
the Internet. The existing flooding detection schemes are inefficient in detecting low-rate flooding from dynamic background traffic,
or may even totally fail when flooding is launched in a multi-attribute manner by simultaneously manipulating different types of SIP
messages. In this paper, we develop an online detection scheme for SIP flooding attacks, by integrating a novel three-dimensional
sketch design with the Hellinger distance (HD) detection technique. In our sketch design, each SIP attribute is associated with a two-
dimensional sketch hash table, which summarizes the incoming SIP messages into a probability distribution over the sketch table. The
evolution of the probability distribution can then be monitored through HD analysis for flooding attack detection. Our three-dimensional
design offers the benefit of high detection accuracy even for low-rate flooding, robust performance under multi-attribute flooding, and
the capability of selectively discarding the offending SIP messages to prevent the attacks from bringing damages to the network.
Furthermore, we design a scheme to control the distribution of the normal traffic over the sketch. Such a design ensures our detection
scheme’s effectiveness even under the severe distributed denial of service (DDoS) scenario, where attackers can flood over all the
sketch table entries. In this paper, we not only theoretically analyze the performance of the proposed detection techniques, but also
resort to extensive computer simulations to thoroughly examine the performance.

Index Terms—Session initiation protocol, flooding attack, multi-dimensional sketch, Hellinger distance.
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1 INTRODUCTION

THE session initiation protocol (SIP) [1] is the sig-
nalling protocol for controlling voice and video

communications over the Internet protocol (IP). SIP is
however designed with an open structure vulnerable to
security attacks. The SIP flooding attack is among the
most severe attacks because it is easy to launch and
capable of quickly draining the resources of both net-
works and nodes. The attack disrupts perceived quality
of service (QoS) and subsequently leads to denial of ser-
vice (DoS). Furthermore, SIP is a transactional protocol
and possesses multiple controlling message attributes.
The flooding attacks can thus bear diverse forms and
together initiate the multi-attribute attack. In order to
achieve a secure VoIP system, an anomaly defense sys-
tem is desired to detect the flooding attacks, classify their
respective forms, and prevent the attacks from bringing
damages to the services.
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Detecting anomalies from network traffic can be mod-
eled as distinguishing odd traffic behavior from normal
behavior, which is estimated based on history informa-
tion. Such approaches resemble anomaly detection in
statistics [2], where measurements of the investigated
data form a time series for analysis. In the case of
flooding attack, an intuitive choice for such measure-
ments can be traffic volume/rate since an unreasonable
volume/rate burst can imply some malicious behavior
on the network [3], [4]. However, one major limitation of
volume/rate-based monitoring is that low-rate flooding
can hardly be distinguished from the normal rate fluctu-
ation due to randomness. Fortunately, besides just minor
volume/rate changes, anomalies are likely to induce
different probability distributions from the normal one,
which reveals the presence of anomalies. The Hellinger
distance (HD) [5] is a well-known metric to describe the
deviation between two probability distributions, which
has been used in [6] to implement a flooding detection
system with good sensitivity. However, the scheme in
[6] establishes a probability distribution by monitoring
the relative proportions of four types of SIP messages
associated with four SIP attributes within the total traffic.
The detection method will become ineffective if the four
attributes are proportionally flooded simultaneously. We
refer to such an attack as multi-attribute attack in this pa-
per. Also through investigation, we find that as there is a
relatively large time difference between the BYE attribute
and the other three attributes due to call holding times,
dynamic normal traffic arrivals can severely undermine
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the effectiveness of the scheme in [6]. Moreover, the
scheme in [6] does not address the important issues
of how to protect the detection threshold from being
polluted by attacks and how to subsequently prevent
the attacks after detection.

In this paper, we develop a versatile defense scheme
for detecting the SIP flooding attacks, by integrating the
sketch technique [3], [7] with the HD-based detection.
Sketch is capable of summarizing each of the incoming
SIP messages into a compact and constant-size data set
by random hash operations. Based on the sketch data set,
we can establish a probability distribution for each SIP
attribute independently, termed as sketch data distribution,
which is the cornerstone of our design. Especially, we
design a generic three-dimensional sketch: the sketch com-
prises multiple two-dimensional attribute hash-tables (one
for each SIP attribute), and each attribute table consists
of multiple element hash-rows (one associated with a
different hash function). The three-dimensional sketch
design allows us to apply HD detection to examine the
anomaly over each SIP attribute separately and therefore
successfully resolve the multi-attribute attack. The mul-
tiple element hash-rows provision a voting scheme to
improve detection accuracy. Also due to the separate ex-
amination on each attribute, the time difference between
the attributes does not affect our scheme and we are
able to maintain high detection accuracy under dynamic
normal traffic arrivals. Furthermore, the multiple hash-
row design within an attribute table can be leveraged
to identify the offending SIP messages responsible for
the flooding attack over the attribute under considera-
tion. We can then selectively discard those messages to
efficiently prevent the attack. In addition, we develop
an estimation freeze mechanism that can protect the HD
threshold estimation from being impacted by the attacks.
A side benefit of the estimation freeze mechanism is that
the durations of attacks can be identified.

We prove a detection theorem that our detection scheme
can detect the flooding attack over a SIP attribute with a
high probability, assuming an ideal case that the sketch
data distribution could be accurately measured and the
normal distribution is unknown to attackers. We also
prove a location theorem that when the HD indicates
an attack, an entry in an element hash-row with a
larger value than the estimated normal value must be
associated with some offending SIP messages, with the
entry being termed as an abnormal entry. The location the-
orem provides the theoretical foundation for our multi-
dimensional sketch design to identify the offending SIP
messages. Specifically, the abnormal entries in a row can
indicate a set of suspicious attackers; the intersection of
the suspicious sets crossing all the sketch rows identify
those messages from attackers.

The basic multi-dimensional sketch design was pre-
sented in our preliminary work [19]. In the basic de-
sign, the sketch data distribution solely depends on
the hash function. Such basic detection design performs
effectively in the situation where the attackers occupy a

limited key space (the SIP address space in our paper)
and they cannot mimic the normal sketch distribution.
In this paper, we enhance the sketch design, so that
the flooding attacks can still be detected even in the
very severe distributed denial of service (DDoS) scenario
where powerful attackers flood over all the SIP address
space to mimic the normal traffic distribution, termed as
all-space attack. Our methodology is to control the sketch
distribution of normal traffic with a sketch distribution key
(SD-key). The sketch can set a target sketch distribution,
which is independent of the hash function and kept as
confidential secrets to the SIP server. When a normal user
applies for the SIP service, an SD-key will be calculated
to bond the hash output together with the confidential
sketch distribution. Later when a normal user makes a
SIP call, it needs to offer its SD-key to the server based on
which its sketch entry is calculated. We will show that in
the online operation the SD-key design can always shape
the normal traffic into the target sketch distribution and
effectively detect the flooding under the all-space attack.

Performance of the proposed techniques is validated
through extensive simulations and comparisons to the
existing SIP flooding detection solution. In summary,
this paper has five-fold main contributions. (1) By ex-
ploiting the sketch technique, we decouple the probabil-
ity model construction from the specific SIP attributes,
which significantly enhances the flexibility of the HD-
based detection. (2) We design a novel three-dimensional
sketch, which equips our scheme with the advantages
of high detection accuracy even for low-rate flooding at-
tacks, robust performance under multi-attribute flooding
attacks, and the capability of selectively discarding the
offending SIP messages to efficiently prevent the attacks.
(3) An estimation freeze mechanism is developed to
protect the detection threshold from being impacted
by attacks and determine the attack durations. (4) An
SD-key design is developed to control the sketch data
distribution and effectively detect flooding attacks in the
challenging all-space DDoS scenario. (5) We thoroughly
examine the performance of the proposed techniques
through theoretical analysis and computer simulations.

The remainder of the paper is organized as follows.
Section 2 reviews more related work. Section 3 describes
the system model. Section 4 presents the proposed SIP
flooding detection scheme and conducts the theoretical
performance analysis. Section 5 presents the sketch key
distribution design. Section 6 gives the performance
evaluation results. Section 7 provides discussions on
related issues. Section 8 concludes the paper.

2 RELATED WORK

In the context of anomaly detection, several studies are
based on the classic time series forecasting analysis and
outlier detection [8]. Sketch [7] is a technique to sum-
marize high dimensional data and provide scalable and
flexible input to the time series forecasting model. Krish-
namurthy et al. [3] utilize sketch in detecting behavior
changes. However, their approach is based on the traffic
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volume, and requires the operation of retrieving data
values for given keys from sketch even in the normal
condition. This can incur relatively high computational
cost. In our scheme, we do not perform such operation.

Generally, intrusion detection systems are classified
into two major approaches, signature based and behav-
ior based. The signature based approach profiles known
attack patterns as signatures. Detection systems in this
approach raise alert if the on-going traffic patterns match
the profiled signatures. For example, Kreibich et al. [9]
propose a system capable of automatically generating
attack signatures based on pattern-detection techniques
and packet header conformance checks at multiple levels
over the network protocol hierarchy. Also, popular in-
trusion detection tools such as Snort [10] are developed
following this approach. However, a major limitation
of the approach is that it is not able to detect new
anomalies. Rather than profiling known attacks, the
behavior based approach builds models that represent
normal behaviors on the network. Alarms are raised if
the observed behaviors significantly deviate from the
behaviors estimated by the model. The main advantages
of this approach are that a priori knowledge of attack
strategy is not required and new anomalies unknown
before can be detected. Our detection scheme in this
paper adopts the behavior based approach.

Using the destination addresses to profile traffic is a
common approach to address the DoS problem [11], [12].
Even though the attackers can be distributed, their target
is concentrated on the victim addresses. This causes the
traffic at destination addresses to significantly deviate
from the normal condition and thus the attack will be
effectively detected. However, such an approach is not
practical in the SIP case where the victim under the
flooding is usually a proxy server. The messages can be
sent to the proxy server no matter what addresses are
in the SIP destination header field. In our work, we use
the source SIP addresses to profile traffic. This allows
us to both detect the flooding attacks and identify the
offending SIP messages efficiently.

Surveys of the SIP security issues can be found in
[17], [18]. A hash-based mechanism to protect both SIP
proxy server and user agent against various SIP-based
attacks is proposed in [13]. The schemes presented in
[14], [15] work effectively to detect the SIP flooding DoS
attacks. In their work, SIP transactional models are built
to detect deviations from normal behaviors. However,
these schemes are customized specifically to the SIP
protocol suite and cannot be easily generalized to other
flooding detection cases. Whereas in our scheme, we can
use the attributes associated with protocols other than
SIP as keys to profile traffic and thus have a generic
method to detect other flooding attacks.

3 SYSTEM MODEL
3.1 SIP basics
A voice or video communication session utilizes SIP
[1] as the application-layer signaling protocol to es-

tablish, manage and terminate communication sessions.
At the transport layer, SIP normally favors the user
datagram protocol (UDP) over the transmission con-
trol protocol (TCP) due to the simplicity of UDP and
the connection-oriented nature of SIP itself. There are
three basic components in a SIP environment, which
are user agent client (UAC), user agent server (UAS)
and SIP proxy server. These components are identified
using the SIP address, which has a similar form to an
email address, typically containing a username and a
host name, e.g., “sip:alice@iit.edu”. The SIP addresses
for legitimate users are normally provisioned by the
voice/video service providers. Messages are exchanged
between the basic components to perform ordinary SIP
operations.

The SIP messages used to establish and terminate
sessions are basically INVITE, 200 OK, ACK and BYE.
They are also called the SIP methods or attributes. A
UAC initiates a SIP session by sending out an INVITE.
Intermediate proxies look over the destination SIP ad-
dress in the message and forward it to the destined UAS
who will respond with a 200 OK. An ACK message then
finishes the three-way handshake to establish the session
and media will go directly between the UAC and the
UAS. When the session is finished, it will be terminated
by a BYE message from either of the calling parties.

3.2 Threat Model
SIP is vulnerable to network anomalies such as the
flooding attacks. These attacks can be easily mounted by
utilizing various SIP traffic generators openly available
on the Internet, e.g., SIPp [16]. The victim SIP proxy
servers can be overwhelmed or even crushed by a large
number of SIP messages within a short period of time.

SIP utilizes multiple methods/attributes to manage
sessions. This provides possibilities for the attackers to
take advantage of the vulnerabilities of these attributes
to launch different forms of SIP flooding attacks. We de-
scribe some of these attacks below. We see that a general
detection/prevention system is desired to defend against
these attacks.

3.2.1 INVITE Flooding
In this attack, thousands of INVITE messages are gener-
ated and transmitted to the victims which can barely
support all of them. Moreover, being a transactional
protocol, SIP may require the intermediate proxy servers
to maintain a state for each INVITE message when they
are expecting the associated 200 OK. Thus the resources
of these victim proxy servers could be exhausted almost
in real time if the attack rate is high enough.

3.2.2 BYE Flooding
The BYE message is used to terminate SIP sessions.
Therefore it can be utilized by the attackers to bring
down ongoing VoIP phone calls. More severely, the
attackers can just launch a brute force BYE flooding
attack to prematurely tear down most ongoing sessions
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in a VoIP network without the knowledge of the SIP ad-
dresses of the legitimate users. Such flooding attacks will
cause call drops over a big range of users immediately.

3.2.3 Multi-Attribute Flooding
Intelligent attackers can launch different forms of SIP
flooding attacks together to the victim proxy servers
in a distributed manner. In this case, not only will the
resources of the proxy servers be exhausted, but also
all the ongoing sessions may be torn down instantly at
the same time, which makes the multi-attribute flood-
ing attacks devastating to the VoIP service. Moreover,
the attacks flood the four SIP attributes simultaneously
and thus do not change the relative proportions of the
attributes. Therefore the existing SIP flooding detection
solution [6] based on observing significant deviations
in such proportions will become ineffective against the
multi-attribute flooding attacks.

3.3 Sketch and Hellinger Distance
Our flooding defense system monitors the SIP messages
arriving at a proxy server. We implement it in a firewall
module, which can be deployed without modifying the
proxy server. The system operation is based on two
techniques, sketch and Hellinger distance.

3.3.1 Sketch
The sketch data structure is a probabilistic data summa-
rization technique. It builds compact and constant-size
summaries of high dimensional data streams through
random aggregation, by applying a hash function [21]
to the data. Specifically, we consider that each data
item consists of a key ki and its associated value vi
[20], represented as ai = (ki, vi), for constructing a
sketch. Data items whose keys are hashed to the same
value will be put in the same entry in sketch and their
values will be added up to obtain the value of that
entry. In our scheme, we use the SIP address as the
key, and the value associated with each key is set as 1
indicating one SIP attribute generated from that address.
As legitimate users use SIP addresses provisioned by the
service provider to communicate with each other, it is
not easy for different users to use the same addresses
as well as for some nomadic users to keep on changing
their addresses as they want. Therefore, it is reliable to
use SIP address as the hash key.

Using sketch makes our scheme scalable. No matter
how many users exist in the VoIP network, sketch is
able to derive a constant-size traffic summary. More
importantly, sketch allows us to construct a probability
distribution based on the sketch entries, with no need to
investigate the correlation among different SIP attributes
as described in [6].

3.3.2 Hellinger Distance
The Hellinger distance (HD) is used to measure the
distance between two probability distributions [5]. To
compute HD, suppose that we have two histogram
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Fig. 1. Illustration of a three-dimensional sketch design.

distributions on the same sample space, namely, P =
(p1, p2, ⋅ ⋅ ⋅ , pn) and Q = (q1, q2, ⋅ ⋅ ⋅ , qn). The HD between
the two distributions is defined as follow

H2(P,Q) =
1

2

n∑

i=1

(
√
pi −√

qi)
2. (1)

It is not difficult to see that the HD will be up to 1 if
the two probability distributions are totally different and
down to 0 if they are identical. This property provides
a good approach to quantify the similarity of two data
sets in either normal or anomalous situations. Recall that
we aim to build an anomaly detection system which
needs a statistical model to represent the normal traffic
condition and raises alarms when abnormal variations
are observed. The property of HD makes it well suited
to this role. A low HD value implies that there is no
significant deviation in the current traffic observations
and a high HD is a strong indication that anomalies have
happened.

4 DETECTION SCHEME DESIGN

4.1 Three-Dimensional Sketch
The SIP flooding attack can bear different forms and
thus induce changes in multiple SIP attributes. We must
be able to isolate the changes across the attributes, then
discriminate the diverse attack forms and cope with the
multi-attribute attack.

Fig. 1 gives an illustration of our three-dimensional
sketch design. The sketch comprises multiple two-
dimensional attribute hash-tables, each of which is built
for a SIP attribute. We build four such tables for the four
SIP attributes investigated. An attribute hash-table con-
sists of H element hash-rows, each of which is associated
with a different hash function and has K entries. We
construct the hash functions using independent random
seeds [21], and therefore they are independent from each
other. The hash functions are kept secret because the
seeds are not known to others. The three-dimensional
sketch design allows us to separately summarize each
of the SIP attributes. In the following, we first discuss
how to calculate an HD based on each hash-row, and
then describe the operation in the context of three-
dimensional sketch.

We divide time into discrete intervals and each inter-
val is of a constant length d. The messages associated
with a certain SIP attribute under consideration are
indexed as a data stream. The data stream then passes
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through two periods: a training period and a test period.
The training period contains T consecutive time intervals
and the test period is the (T + 1)th interval. We build
two sketches, one for the training period and the other
for the test period. The SIP address of each message is
used as key for the data to be put into the sketch. Such
two sketches can generate two probability distributions
for HD analysis.

Based on the training set, we obtain a sketch data
distribution P . Suppose that the values of the K entries
are n1, n2, ⋅ ⋅ ⋅ , nK , and we denote N =

∑K
i=1 ni. Then

we define the distribution P as

P = (
n1

N
,
n2

N
, ⋅ ⋅ ⋅ , nK

N
). (2)

Similarly, we obtain a distribution Q based on the
sketch for the test period. Suppose that the values of
the K entries of the test sketch are m1,m2, ⋅ ⋅ ⋅ ,mK , with
M =

∑K
i=1 mi. We can have the distribution Q as

Q = (
m1

M
,
m2

M
, ⋅ ⋅ ⋅ , mK

M
). (3)

The Hellinger distance of the above two distributions
is then calculated as

H2(P,Q) =
1

2

K∑

i=1

(

√
ni

N
−
√

mi

M
)2. (4)

We monitor the data stream by tracing the HD. As-
sume that there is no attack in the first training set, which
initially represents the normal condition. To calculate
the HD, we obtain the “test” distribution Q from the
current time interval and the ”training” distribution P
from the immediately preceding T time intervals. We
continue this operation and move the test and training
periods forward respectively at each time interval, as
long as the HD is smaller than a threshold. Such a sliding
window mechanism better estimates the pattern of the
data stream than directly analyzing two consecutive
individual time intervals. It can well reflect the dynamics
of the evolving traffic and smooth sudden fluctuations
in normal traffic.

All the H hash-rows in an attribute hash-table in-
dependently monitor the data stream associated with
a certain SIP attribute, following the same operation
as described above. Similarly, in the three-dimensional
sketch, the four attribute hash-tables investigate the four
SIP attributes separately and are prepared for the attack
detection.

4.2 Threshold under Attack
4.2.1 Detection Threshold
As we want to utilize HD to model the traffic behavior
along time, a detection threshold is needed to reflect
the normal condition and be the actual indicator of
anomalies. Since normal traffic behaviors also fluctuate
over time and the distribution obtained based on sketch
may even not be stationary, the HD in the normal
condition will be non-zero and may dynamically change.
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Fig. 2. Sliding window in estimation freeze mechanism.

In order to properly model the behavior, we adopt the
exponential weighted moving average (EWMA) method
[23] in our scheme to compute a dynamic threshold.

Let ℎn denote the value of HD in the current time
interval n. To smooth its fluctuation, we calculate an
estimation average, Hn, of ℎn as

Hn = (1− ®) ⋅Hn−1 + ® ⋅ ℎn. (5)

Next, to have an estimate of how much Hn deviates
from ℎn, we compute the current mean deviation Sn as

Sn = (1− ¯) ⋅ Sn−1 + ¯ ⋅ ∣Hn − ℎn∣. (6)

Then given values of Hn and Sn, we derive the
estimated threshold HTℎre

n+1 by

HTℎre
n+1 = ¸ ⋅Hn + ¹ ⋅ Sn, (7)

where ¸ and ¹ are multiplication factors used to set a
safe margin for the threshold. Due to the ability of HD to
accurately monitor the difference between two probabil-
ity distributions, proper values of these two parameters
may greatly reduce false alarms. The parameters ®, ¯, ¸
and ¹ are all tunable parameters in the model. We set the
initial values of them according to previous research [6]
and tune them in our experiments to achieve desirable
detection accuracy.

4.2.2 Estimation Freeze Mechanism
When the HD obtained from a certain element hash-row
exceeds the threshold, an attack detection is registered.
After this, if we continue the update according to (5),
(6), (7), the threshold will be polluted by the attack
as the attacking traffic will be taken into account in
estimating the threshold. To avoid this from happening,
we freeze the threshold and keep it as a constant as long
as the HD is above it. Also, to prevent the attacking
traffic from entering the training set and thus keep the
HD high only during attacks, we modify the sliding
window mechanism. As shown in Fig. 2, after an attack
detection is registered at the (i+ 1)th time interval di+1,
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we freeze the current training set and only let the test set
proceed to the next time interval. This “one freezing one
proceeding” action only ends when the HD goes below
the threshold and the normal sliding window is then
resumed. Overall, the above operations are illustrated
in Algorithm 1, termed by us as the “estimation freeze
mechanism“. As a side benefit of the mechanism, we can
determine the attack duration D because the HD is above
the threshold all through the attack and immediately
comes down right afterwards.

Algorithm 1: Estimation Freeze Mechanism
Input: SIP attribute stream
Output: Duration of the anomaly D
D = 0;
d = time interval length;
anomaly starting time t1 = 0;
anomaly ending time t2 = 0;
if HD exceeds threshold then

t1 = time of HD exceeding threshold;
t2 = t1;
freeze training set;
freeze threshold;
while HD > threshold do

test set proceeds;
calculate HD between test set and freezed
training set;
t2 = t2 + d;

end
D = t2 - t1;
else

training set proceeds;
test set proceeds;;
update threshold;

end
end
return D;

We illustrate a comparison between two thresholds
under attack in the same traffic condition in Fig. 3.
The left one is estimated directly from HD without our
estimation freeze mechanism whereas the right one is
obtained using the mechanism. We see that without
freezing the threshold goes all the way up with HD
when the attack is detected. It is even much higher than
HD after the detection and cannot reflect the normal
traffic condition. Obviously such a threshold mechanism
loses track of the attack after the initial detection. On
the contrary, using our estimation freeze mechanism,
the threshold remains low and HD keeps high after the
attack is detected. Together they also explicitly determine
the duration of the attack. This provides a very clear
indication of the entire attack.

4.3 Attack Detection
As described above, to actually detect possible attacks,
the HD associated with a certain hash-row will be com-
puted between the sketch data distribution constructed
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Fig. 3. Comparison of thresholds under attack.

from the testing set and that constructed from the train-
ing set. In an ideal case, assuming that the sketch prob-
ability distribution could be accurately measured from
the training set, we can set the threshold for detection
as 0. We have the following theorem.

Theorem 1: (Detection Theorem) A flooding attack
over a SIP attribute can be detected with a high probabil-
ity by computing the HD between sketch data distribu-
tions, assuming that the sketch probability distribution
could be accurately measured from the training set and
the normal distribution is unknown to the attackers.

Proof: Consider an element hash-row in the attribute
hash-table under investigation. Suppose that the hash-
row has K entries. The total volume of normal traffic
in the testing set is M , which is distributed into the K

entries according to M =
∑K

i=1 mi, with mi denoting
the volume counted by the ith entry. Assume that there
is a flooding attack with total volume M ′ added over
the normal traffic in the testing set, which is distributed
to K ′ (≤ K) entries according to M ′ =

∑K′

i=1 m
′
i. Let pi

denote the probability mass of entry i, and pi = mi

M in
the normal situation. Assume that the entry is contami-
nated by the attacking traffic. The probability mass will
then be p′i =

mi+m′
i

M+M ′ . Assume that the training set can
accurately monitor the normal probability distribution
and the testing set is consistent with such a distribution.
The performance of the HD-based detection is then
determined by the relation between pi and p′i as

∣pi − p′i∣ =
∣∣∣∣
mi

M
− mi +m′

i

M +M ′

∣∣∣∣ =
∣∣∣∣
miM

′ −m′
iM

M(M +M ′)

∣∣∣∣

=

∣∣∣∣∣
mi

M − m′
i

M ′

1 +M/M ′

∣∣∣∣∣ . (8)

Given a threshold of 0, the attacker needs to set the
distribution of the flooding traffic exactly as the normal
distribution to avoid being detected. A significant benefit
of utilizing the sketch data distribution is that the hash
functions used by the detection system will be kept se-
cret to users. Therefore, the attackers cannot estimate the
normal sketch data distribution even if they can monitor
the raw user data distribution. Furthermore, the detec-
tion system can dynamically change the sketch hash
functions for a higher level of security. If the attacker
attempts to guess the normal sketch data distribution
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mi

M , the probability of guessing the correct value will
be low, because the value of mi

M in a given entry can
be considered as a continuous random variable. In other
words, our detection system can detect the attack with
a high probability.

Theorem 1 demonstrates the ideal performance under
accurate distribution modeling. In practice, since ran-
dom aggregation of sketch brings information loss and
normal traffic itself is dynamic, the normal probability
distribution may change over time. The distribution
estimated by the training data is just an approximation
to the real distribution. The discrepancy in estimation
might lead to false alarms or missed detections. In an
attribute hash-table, each element hash-row registers at-
tacks independently when its associated HD exceeds the
detection threshold. Considering the possible detection
errors, in one detection circle certain rows may register
attacks whereas others may not. However, if most rows
agree on an attack, it is highly likely that the attack
actually occurs. Correspondingly, if only a small portion
of rows find one attack, we can probably consider it as
a false alarm. Thus, to increase detection confidence and
assure high accuracy, we apply a voting procedure: if at
least z percent of the H rows in an attribute hash-table
register attacks, a flooding attack alarm is finally raised.

4.4 Attack Prevention
After detecting the flooding attack, the next step is
to identify the offending SIP messages and selectively
discard them to prevent the attack from reaching the
proxy servers and causing damages. In order to achieve
this, we first identify the anomalous sketch entries that
contain the offending messages in each row. Assuming
that the normal probability distribution could be ac-
curately measured from the training set, we have the
following theorem.

Theorem 2: (Location Theorem) In a flooding attack
context, when the HD-based detection indicates an at-
tack, there must exist entries in a sketch hash-row for the
testing set which has a larger probability mass than that
in the corresponding entry for the training set, and such
entries are definitely associated with certain offending
SIP messages.

Proof: In the normal situation, we assume that the
normal probability distribution could be accurately mea-
sured from the training set and the testing set is consis-
tent with the distribution. Thus, we have mi

M = ni

N . In
the context under attack, the probability mass deviation
in an entry i is

p′i −
ni

N
= p′i −

mi

M
=

m′
i

M ′ − mi

M

1 +M/M ′ (9)

according to (8). When the HD detection indicates an
attack, there must exist entries where p′i ∕= ni

N . Moreover,
in such entries, we must have p′i >

ni

N for some of them
and p′i < ni

N for others; otherwise the condition that∑K
i=1 p

′
i = 1 could not be maintained. In those entries

with p′i > ni

N , the item associated with offending mes-
sages m′

i

M ′ must exist. However, the entries with p′i <
ni

N
may not include offending messages. The reason is that
the attacking traffic might only occupy a subset of the
entries in a hash-row, i.e., K ′ < K. In the remaining
K −K ′ entries, m′

i = 0 and offending messages are not
included.

According to Theorem 2, we mark entries whose prob-
ability increases as possible anomalous entries. Suppose
that we have pi as the probability mass of the itℎ entry
in one row from the training sketch set and qi as the
probability mass of the same entry from the test set.
Then, if the condition

√
pi −√

qi < 0 (10)

satisfies, we mark this itℎ entry as a suspicious entry.
We use square roots of pi and qi since we have already
obtained the value of every

√
pi−√

qi when we calculate
HD. Therefore this operation would not incur much
more computational cost to our scheme.

Let Uj denote the set of SIP messages that are mapped
to the suspicious entries of the jtℎ row in an attribute
hash-table. We then tag these messages in Uj as offend-
ing message candidates. Certainly there will be normal
SIP messages among these candidates because sketch
hashes multiple users to one entry. However, since each
row in a table independently performs random aggrega-
tion, offending messages and certain normal messages
which are hashed to the same entry in one row are not
likely to be hashed to one entry in other rows. Thus, we
identify the offending message set U over all the H rows
in a table through

U =

H∩

j=1

Uj . (11)

This intersection of candidates filters out normal mes-
sages in the suspicious entries. As a result, the set
U is finally believed to just include the offending SIP
messages.

Once the offending messages are identified, they will
be immediately discarded and only normal SIP messages
can go through. This ensures that the proxy servers
will only serve normal messages, and also effectively
prevent the attacks from reaching the proxy servers and
subsequently causing damages.

5 SKETCH DISTRIBUTION KEY DESIGN

The detection theorem in Section 4.3 indicates that the
sketch based detector is effective under the condition
that the attackers cannot get information about the nor-
mal sketch distribution. The theorem however does not
tell how to ensure such a condition. The basic detection
scheme design presented in Section 4 works fine in
scenarios where the number of attackers is not very large
and the attacking traffic is only hashed into some of
the sketch entries. In a large scale system with many



1545-5971 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2302298, IEEE Transactions on Dependable and Secure Computing

8

users, if the SIP address space served as input to the
sketch hash functions is large enough, the output sketch
distribution will become dependent only on the hash
function and basically independent of the input traffic.
In on-line operations, both normal and attacking flows
will be processed by the sketch hash function. The traffic
independent behavior implies a way for attackers to
avoid being detected — flooding over a large enough
space to approach the normal sketch distribution. We
term such an attack as all-space attack. The all-space attack
is indeed possible if the attackers are powerful enough
to launch a large-scale DDoS attack.

In this section, we enhance the sketch design, so that
the flooding attacks can still be detected even in the
very severe all-space DDoS scenario. Our methodology
is to control the sketch distribution of normal traffic with
a sketch distribution key (SD-key). The sketch can set a
target sketch distribution, which is independent of the
hash function and kept as confidential secrets to the SIP
server. When a normal user applies for the SIP service,
an SD-key will be calculated to bond the hash output
together with the confidential sketch distribution. Later
when a normal user makes a SIP call, it needs to offer
its SD-key to the server based on which its sketch entry
is calculated.

Specifically, in a SIP-based multimedia application, a
legitimate user needs to first register with a proxy server
to get the service. The SIP proxy server sets a target
sketch data distribution for the normal traffic. This target
distribution is kept as secrets and known to the server
only. Note that the target sketch distribution should not
be a trivial uniform distribution. When the registration
request comes, the proxy server determines the position
of the sketch entry for this user according to the target
sketch data distribution, denoted as ai. At the same time,
the server also calculates the hash value of the user’s SIP
address bi = ℎ(ki). Then in response to the registration
request, the proxy server will send a sketch distribution
key in the value of ci = ai−bi back to the user. When the
user later sends a SIP controlling message to the proxy
sever, it must include ci in the messages. After receiving
the messages, the proxy server will hash the included
SIP address to obtain bi again, and the final position of
these messages in the sketch table will be determined by
the value of ci + bi, which in fact equals to ai.

As a result of the above operation, if a user l is
legitimate and knows its correct associated cl value from
registration, the position of the messages from this user
in sketch will simply be al. However, an attacker k in a
DDoS attack did not go through the registration process
and thus has no SD-key for the target sketch distribution.
One way for the attacker is to use some random number
c′k to send to the proxy server and its position in the
sketch table will be a random position c′k+bk, which very
possibly gives a uniform distribution rather than the
target sketch distribution. Thus, the deviation brought by
the attacks from normal traffic in the sketch distribution
can be identified by HD. Another way for attacking is
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Fig. 4. SD-key distribution.

an SD-key playback attack. In this attack, the attackers
can record those SD-keys carried by normal users and
then randomly insert a copied SD-key into the attacking
SIP message. Note that the SD-key has the property
to bond the target sketch distribution with the normal
user’s SIP address together. If the playback attacker k′i
uses the SD-key from user ki, the sketch entry for this
playback attacker will be ai−ℎ(ki)+ℎ(k′i), which is again
an arbitrary random value. Here, we assume that the
SIP address of a normal user is protected with certain
authentication schemes and cannot be spoofed by the
attackers in the registration process. This ensures that
only legitimate users can get the SD-keys associated
with their SIP addresses in registration. If attackers do
spoof SIP addresses in flooding attacks, they will not be
able to evade detection due to the strength of our SD-
key mechanism. The attackers must gather the SD-key
for every SIP address that they spoof to get the target
distribution, and they do not have the means to achieve
it. The effectiveness of this enhanced sketch distribution
will be demonstrated in Section 6.

6 PERFORMANCE EVALUATION

We evaluate the performance of the proposed SIP flood-
ing defense scheme in this section. VoIP signaling traces
are simulated and analyzed using Matlab. All detection
results are based on the enhanced sketch design with
the SD-key mechanism. The analysis focuses on the
INVITE flooding case first since other SIP attributes can
be addressed in a similar way. We also investigate the
advantage of our scheme over the detection scheme in
[6], where the effectiveness of the scheme [6] can be
severely affected by the combination effect of dynamic
normal traffic arrival and call holding time. Then we
extend our discussion to the cases of DDoS attack and
multi-attribute attack.
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Fig. 5. Hellinger distances under normal traffic.

6.1 Normal Traffic Behavior

In the normal condition, the average call generating rate
is uniformly distributed from 25 per second to 75 per
second with a mean of 50 per second. The senders of
the messages are randomly chosen from 100,000 uniform
users. Also, to properly model the BYE messages, we set
normal call holding times to I , where I either follows a
log-normal distribution to reflect the long tail character-
istic of real VoIP call holding times [25] or has a constant
duration of 60 seconds according to [6]. We will discuss
the effect of I later.

We parse INVITE messages from the trace data. As
in [6], to achieve higher detection accuracy and lower
computational cost, we set the length of a time interval
d to 10 seconds. Also, as a longer training set better
captures the pattern of the traffic whereas a shorter
training set responds quicker to change, in order to find
a good balance between them, the training period is set
as 10 consecutive intervals, i.e., T = 10.

We build two enhanced sketches for both the training
set and the test set and calculate the Hellinger dis-
tances between their related element hash-rows along
time as described in Section 4. The CDF of the SD-
key distribution used to shape the sketch distribution
of normal traffic is illustrated in Fig. 4. We will maintain
this SD-key distribution for all the attacking cases in our
following experiments. Also, as shown in Fig. 5, in the
normal traffic condition, the HDs are mostly distributed
around 0.015 when we choose K = 32 and H = 5. These
low HD values show the similarity of the training set
and the test set when the traffic behaviors are normal.

6.2 Ineffectiveness of Rate Based Approach

In the flooding attack experiment, we use the normal
traffic described above as background and mix it with
the flooding traffic from an attacking source. In Fig. 6,
we show the dynamics of traffic rates when there are five
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Fig. 6. Dynamic traffic rate.
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Fig. 7. Detection of flooding attacks.

attacks of 60 INVITEs per second from a single attacker
mixed with the normal traffic. The durations of the
attacks are all 30 seconds. We see that there is hardly a
sign of abnormal behaviors in the figure since the normal
traffic itself has fluctuation as well. Comparatively, we
will see how our scheme responds to these attacks in
next section.

6.3 Effectiveness of Sketch-Based Detection
6.3.1 Detection
We apply our scheme to detect the same five attacks of
60 INVITEs per second as described above. We set the
initial values of the parameters in the scheme according
to previous research [6] and empirically get their final
values as ® = 0.125, ¯ = 0.25, ¸ = 4, ¹ = 1 to
achieve desirable detection accuracy. Fig. 7 shows the
dynamics of the HD obtained from a hash-row and
the associated threshold. The five spikes clearly identify
the five flooding attacks. Other rows may not have the
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(a) Dynamic traffic rate and constant I.
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(b) Dynamic traffic rate and lognormal I.

Fig. 8. Limitation of existing detection scheme [6].

same detection accuracy due to different aggregations
of INVITE messages, but as we set z = 80%, the voting
procedure finds an agreement among the five rows and
raises attack alarms accurately. Also in Fig. 7, due to the
“estimation freeze mechanism” applied, we can see that
the HD remains high and the threshold keeps constant
during attack. They together precisely determine the
duration of an attack, which lasts for 3 time intervals, i.e.,
30 seconds. Both the HD and the threshold evolve with
the dynamics of the traffic and thus preserve the ability
to detect attacks online. Whereas in [6], the threshold
does not react accordingly under attack and remains
low as if it is always estimated from normal traffic.
Compared to our threshold mechanism, theirs is not able
to accurately reflect the online traffic situation.

We repeat the experiment for several times and change
the attack rates accordingly. The flooding rates vary
from 60 per second to 500 per second. The purpose of
choosing such a wide range is to see that, in addition
to effectively detecting high rate flooding, our scheme
is even capable of identifying low rate attacks which
can hide in the normal traffic and still preserves high
accuracy. The durations of the attacks are all 30 seconds.
The detection results are shown in Table 1. We can see
that our scheme with enhanced sketch is able to detect
the attacks with 100 percent accuracy when the attack
rate is as low as 60 per second.

In [6], probability distributions are derived by moni-
toring the relative proportions of the four SIP attributes
within the same period of time. However, as BYE comes
after a relatively long lag, i.e., the call holding time I ,
compared to the other three attributes, its number within
a certain period of time is correlated to the number of
the other three attributes which arrived I seconds earlier.
Thus if the normal traffic arrival rate is dynamic, the
probability distribution derived from the relative propor-
tions of the four SIP attributes within the same period of

TABLE 1
Detection Results

Flooding Rate Number of Ex-
periments

Detection Prob-
ability

60 50 100%

75 50 100%

100 50 100%

500 50 100%

time will certainly have great fluctuations and result in
large deviation between the training set and the test set
even under the normal condition. Fig. 8(a) illustrates the
HD and the associated threshold calculated based on the
scheme in [6] from the same traffic condition where we
obtain Fig. 7. The normal average call generating rate
is uniformly distributed from 25 per second to 75 per
second with a mean of 50 per second and there are five
attacks of 60 INVITEs per second mixed with the normal
traffic. The call holding time I is set to a constant of 60
seconds in this case. We see that the HD is relatively
large even when traffic is normal before and between
attacks, with its mean value around 0.005. Also, the
five instances of attacks are not detected, as the attacks
cannot bring larger deviation compared to the normal
traffic. We find that for the scheme in [6] to be more
effective, the standard deviation of the normal traffic
rate needs to be small. We have similar observations in
Fig. 8(b), where all the setting is the same as Fig. 8(a)
except that I is set to follow a lognormal distribution.

Through investigation, we learn that dynamic traf-
fic arrivals can severely affect the effectiveness of the
scheme in [6] as BYE needs to arrive later due to call
holding times. Comparatively, our scheme establishes
probability distributions and detects attacks over each at-
tribute independently, which eliminates the dependency
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Fig. 9. Ineffectiveness of the basic scheme with hash
operations but without SD-key mechanism against DDoS
attacks.

on the correlation between different attributes. Call hold-
ing times do not affect our scheme and high detection
accuracy is achieved even under dynamic traffic arrivals.
Therefore, our detection scheme is more effective and
robust than the scheme in [6].

6.3.2 Prevention
For attack prevention, our scheme accurately identifies
all the offending INVITE messages from the single at-
tacker and can thus drop the messages to prevent the
attacks from damaging the VoIP services. There is no
missed identification in each attack occasion. There are
two facts contributing to this high accuracy. First, all the
offending messages are aggregated to just one suspicious
entry in each of the element hash-rows. Second, the
intersection of the five suspicious entries respectively
from the five element hash-rows is enough to filter out all
the involved normal messages and identify the offending
ones.

6.4 DDoS Attack Detection
6.4.1 Detection
In the case of the DDoS attack, numerous attackers in
a VoIP network initiate flooding to a SIP proxy server
simultaneously. To test our scheme against such attacks,
we launch five DDoS attackers from 300 attackers with
addresses uniformly chosen from the whole address
space.

Fig. 9 shows the results of the basic detection scheme
as in [19] (without the SD-key mechanism) against DDoS
attacks, where HD is always less than the threshold
and the attacks cannot be detected. The reason for the
ineffectiveness is that attack messages can occupy every
entry of a sketch table just like messages from the normal
users and thus bring little change to the overall traffic
distribution. Fig. 10 shows the results of our scheme with
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Fig. 10. Detection of the DDoS attacks.
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Fig. 11. Detection of the SD-key playback attack.

traffic distribution obtained from the enhanced sketch
with the SD-key mechanism. The attacks cause obvious
deviation in HD along time. The five spikes of HD in
the figure clearly identify the attacks. We run the ex-
periment multiple times with varying attacker numbers
and rates. The results show neither missed detection
nor false alarm. Note that this is achieved when we set
the attribute hash-table size K = 32. We then further
decease the value of K to test how performance may
change with less overhead. As a result, we see that
the false alarm rate rises to 1.67% when K = 16 and
7.81% when K = 8. The principle behind this high
detection accuracy is that the enhanced sketch is able to
utilize the number ci to differentiate normal users and
attackers, as the correct value of ci is only known to
normal users. This makes it difficult for the attackers
to capture the pattern of every distribution deployed
from the normal traffic in a large VoIP network. The
detection performance drops as K gets smaller. When K
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Fig. 12. DDoS prevention rate varying K and H.

is smaller, on average the probability mass distributed
to one entry is larger. Let pi be the probability that a
SIP address will be hashed into the ith entry. Let Xj

be an indicator, where Xj = 1 if the jth message is
hashed into the ith entry, and Xj = 0 otherwise. Xj then
follows the Bernoulli distribution with the probability pi,
which has the variance var(Xj) = pi(1 − pi). It is not
difficult to see that when pi < 0.5 (which is normally
the case over a sketch with more than two entries), the
variance var(Xj) increases with pi. For online detection,
given N messages, the estimated probability mass in the
ith sketch entry is (

∑N
j=1 Xj)/N , with the variance of

(1/N)var(Xj) which increases with pi. Therefore, with
the larger variance due to a larger pi, the estimated
distribution is easier to deviate from the real value, and
thus leads to a larger false alarm rate.

We further test the performance of our scheme against
the SD-key playback attack. Fig. 11 shows our results
and the attacks are clearly identified. This shows that
matching legitimate ci with the attackers’ addresses does
not affect the performance of our scheme.

6.4.2 Prevention
For the following attacker prevention, numerous offend-
ing SIP messages are identified by our scheme. However,
there are still some missed offending messages that
we are not able to identify. This is because we can
only retrieve attacking SIP messages from the entries
with a probability mass larger than the estimated value,
according to the location theorem.

We then investigate the missed identification problem
in the DDoS prevention operation. We vary the values
of K and H to find out how they affect the prevention
rate, while we always maintain the SD-key distribution
for normal traffic as shown in Fig. 4. The results are
illustrated in Fig. 12. We can see the trend that missed
identification decreases when K increases. When we

maintain the same distribution for normal traffic, the
new entries in sketch resulting from the increase of K
have the value of 0 in the normal condition and will
be filled with attacking messages in the attacking con-
dition. These attacking messages can easily be identified
according to the location theorem. Also as K increases,
there will be more attacking messages being filled in
the increased new entries, resulting in more of these
messages being identified. Moreover, we observe that a
larger H here leads to more missed identification since
more rows tend to have less consensus.

6.5 Multi-Attribute Attack
We generate distributed multi-attribute flooding attacks
through simulation. There are ten attack occasions in
this experiment. In each occasion, attackers send a large
number of messages of the four SIP attributes, namely
INVITE, 200 OK, ACK and BYE simultaneously. Results
of the experiment show that our scheme successfully
identifies the ten attack occasions of each SIP attribute.
We build three-dimensional sketch data sets to sepa-
rately address each attacking attribute. Thus our scheme
is able to naturally discriminate the different forms of
SIP flooding no matter which attribute is being used to
launch the attacks.

6.6 Computational Cost
The computational cost of the two key components in
our scheme, i.e., the sketch operation and the compu-
tation of Hellinger distance, has crucial impact for real-
time detection of the flooding attacks. In the enhanced
scheme, the sketch operation includes computing the
hash value [21] and calculating ci + bi to determine the
sketch entry position using the SD-key. Also, the compu-
tation of Hellinger distance includes the update of the
thresholds as well as the estimation freeze mechanism
besides actually calculating HD. The calculation of the
SD-key, however, is performed in SIP registration and
is only calculated once before users initiate VoIP calls.
Thus our detection scheme does not require online SD-
key calculation, and the SD-key calculation will then not
directly affect the computational cost of attack detection.
Between the two key components, the sketch operation
needs to be done on every SIP message in the data
stream, and the computation of Hellinger distance is
performed at the end of each time interval. In our evalu-
ation, we consider the CPU time needed to perform the
sketch operations and Hellinger distance computations
respectively on SIP messages during attacks within one
time interval, i.e., 10 seconds, to see how our scheme
performs in attack detection.

Table 2 shows the CPU time needed to detect the
DDoS attacks. DDoS attack 1 is the same as described
in Section 6.4, and DDoS attack 2 has double of the
attacker number. The computer used to perform the
experiments is a laptop PC with the CPU frequency of
2.4 GHz and memory of 4 GB. The combining CPU time
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TABLE 2
Computational Cost - CPU Time

Operations DDoS attack 1 DDoS attack 2

Sketch 0.2142 0.4202
Hellinger
distance 0.4181 0.4004

Total 0.6323 0.8206

for the two operations are 0.6323 and 0.8206 seconds
respectively for the two DDoS attacks. From the results
we can see that even using a normal PC the overhead
incurred by our detection scheme is not very high. Also
to note is that even with the increase of attack intensities,
i.e., more attackers or higher attacking rate, only the
sketch operations will increase the needed CPU time,
and the computation of HD will remain relatively stable.
This is another good property of our detection scheme.
Obviously, the CPU time for computing the hash value
and calculating ci + bi to process each SIP message in
sketch is consistent. The increased CPU time for the
sketch operations is due to processing a greater number
of SIP messages in each time interval under more intense
DDoS attacks.

Another aspect regarding the computational cost is
memory. For attack detection, such cost is the mem-
ory used to maintain the sketch tables. In our three-
dimensional design, we build two 4∗H ∗K sketch tables
for the SIP messages from the training set and testing
set respectively. If we use 32-bit integers to represent the
value of one sketch entry, the memory cost for one three-
dimensional sketch would be 128 ∗H ∗K bits. When we
use K = 32 and H = 5 as specified in Section 6.1, the
memory cost for two such sketch tables will be 40, 960
bits, which is very reasonable considering the memory
and processing power of current computers.

The focus of this paper is on attack detection. How-
ever, the sketch-based technique also demonstrates its
potential in attack prevention in previous sections. In
our current design, each sketch entry needs to be further
associated with a table to store the SIP addresses hashed
into this entry. More efficient operations for attack pre-
vention is a challenging research topic. We will address
it in our future work.

7 DISCUSSION

In this section we discuss some limitation of the pro-
posed detection scheme and also one possible solution to
the issue. Flooding attacks can bear various forms in or-
der to evade detection. One special form of the attacks is
the stealthy flooding. Under such attack circumstances,
intelligent and patient attackers start with no rush from
a low initial rate. And then they will continue to period-
ically increase the attack rate following a slow pace. This
stealthy attack does not cause sudden directly observable
changes in traffic. However, it can bring damages to the

network in a long time scale even though initially the
attack may seem harmless.

Unfortunately, both the detection schemes proposed
in this paper and in [6] are not able to effectively
address the stealthy flooding attack. The reason is that
the attacking rate only increases slightly or even keeps
the same in consecutive time intervals, thus it can hardly
cause significant deviation between the two probability
distributions obtained from the training set and the test
set. As a result, the attack does not bring significant
changes to HD over time and is only able to slowly
prompt the threshold higher rather than driving HD to
exceed the threshold.

To effectively detect the stealthy flooding attack, we
should quickly identify the deviation from normal traf-
fic caused by the attack. This means that we need
to extract more detailed information from the directly
observed traffic which only seems to change slowly. Such
thoughts inspire us to resort to wavelet analysis, a signal
processing technique which is able to decompose the
observed traffic measures into different levels and enable
observations on these more detailed levels to identify
the deviation. We are currently working on this issue
to detect the stealthy attack and have obtained some
preliminary results [26].

8 CONCLUSION

The SIP flooding attack has become a major threat to the
VoIP networks. In this paper, we propose an online VoIP
flooding detection and prevention scheme by integrating
two techniques, i.e., sketch and Hellinger distance. We
first utilize sketch to build constant-size compact sum-
maries of the SIP signaling message flows. The three-
dimensional sketch design is capable of summarizing
each SIP attribute separately and deploying associated
probability distributions. Based on these distributions,
the Hellinger distance is utilized to monitor the normal
traffic behaviors and detect attacks if any abnormal
variations are observed. Knowing that the original hash
operation of sketch has limitations in detecting DDoS
attacks, we further enhance sketch by utilizing informa-
tion known only to normal users to establish the traffic
distribution. Also, the “estimation freeze mechanism”
presented shows its ability to both maintain the informa-
tion about normal behavior under attack and determine
the durations of the flooding attacks. A voting procedure
is applied to assure the detection accuracy. Moreover,
we utilize the random aggregation property of sketch
and the consensus between all the rows to selectively
discard the offending SIP messages and subsequently
prevent the attack. Since we establish probability distri-
butions for each SIP attribute independently, our scheme
is fully effective to the multi-attribute attack and is
able to discriminate different forms of SIP flooding. We
evaluate the performance of our scheme by conducting
computer simulations. The experimental results show
that the scheme preserves high accuracy on both attack
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detection and prevention. In our future work, we will
further develop our scheme to improve its attack pre-
vention rate against large scale DDoS attacks and more
comprehensively evaluate the scheme using extensive
VoIP traffic traces. Also, we will further address the issue
of quickly and accurately detecting the stealthy flooding
attack based on the idea of wavelet analysis.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne and G. Camarillo, “SIP: Session
Initiation Protocol,” IETF RFC 3261, Jun. 2002.

[2] V. Barnett and T. Lewis, Outliers in Statistical Data (3rd ed.), Wiley,
1994.

[3] B. Krishnamurthy, S. Sen, Y. Zhang and Y. Chen, “Sketch-based
Change Detection: Methods, Evaluation, and Applications,” Proc.
ACM SIGCOMM Conference on Internet Measurement, 2003.

[4] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P.
Dinda, M. Kao and G. Memik, “Reverse Hashing for High-Speed
Network Monitoring: Algorithms, Evaluation, and Applications,”
Proc. IEEE INFOCOM, 2006.

[5] G. Yang and L. Le Cam, Asymptotics in Statistics: Some Basic
Concepts (2nd ed.), Wiley, 2006.

[6] H. Sengar, H. Wang, D. Wijesekera and S. Jajodia, “Detecting VoIP
Floods Using the Hellinger Distance,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 6, pp. 794-805, Jun. 2008.

[7] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan and M. Strauss,
“Quicksand: Quick Summary and Analysis of Network Data,”
DIMACS, Tech. Rep. 2001-43, 2001.

[8] C. Chen and L. Liu, “Forecasting Time Series with Outliers,”
Journal of Forecasting, vol. 12, no. 6, pp. 13-35, Jan. 1993.

[9] C. Kreibich, and J. Crowcrowft, “Honeycomb: Creating Intrusion
Detection Signatures Using Honeypots,” ACM SIGCOMM Com-
puter Communication Review, vol. 34, no. 1, pp. 51-56, Jan. 2004.

[10] Snort, [Online.] Available: http://www.snort.org/.
[11] A. Lakhina, M. Crovella and C. Diot, “Mining Anomalies Using

Traffic Feature Distributions,” Proc. ACM SIGCOMM, 2005.
[12] H. Sengar, D. Wijesekera, H. Wang and S. Jajodia, “VoIP Intrusion

Detection Through Interacting Protocol State Machines,” Proc.
IEEE International Conference on Dependable Systems and Networks,
2006.

[13] R. Farley and X. Wang, “VoIP Shield: A Transparent Protection
of Deployed VoIP Systems from SIP-based Exploits,” Proc. IEEE
Network Operations and Management Symposium, 2012.

[14] S. Ehlert, C. Wang, T. Magedanz and D. Sisalem, “Specification-
based Denial-of-Service Detection for SIP Voice-over-IP Net-
works,” Proc. the Third International Conference on Internet Mon-
itoring and Protection, 2008.

[15] E. Chen, “Detecting DoS Attacks on SIP Systems,” Proc. 1st IEEE
Workshop on VoIP Management and Security, 2006.

[16] SIPp, [Online.] Available: http://sipp.sourceforge.net/.
[17] D. Sisalem, J. Kuthan and S. Ehlert, “Denial of Service Attacks Tar-

geting a SIP VoIP Infrastructure: Attack Scenarios and Prevention
Mechanisms,” IEEE Network, vol. 20, no. 5, pp. 26-31, Sept.-Oct.
2006.

[18] D. Geneiatakis, T. Dagiuklas, G. Kambourakis, C. Lambri-
noudakis, S. Gritzalis, S. Ehlert and D. Sisalem, “Survey of
Security Vulnerabiliteis in Session Initiation Protocol,” IEEE
Communication Surveys & Tutorials, vol. 8, no. 3, pp. 68-81, 3rd.
Qtr. 2006.

[19] J. Tang, Y. Cheng and Y. Hao, “Detection and Prevention of
SIP Flooding Attacks in Voice over IP Networks,” Proc. IEEE
INFOCOM, 2012.

[20] S. Muthukrishnan, ”Data Streams: Algorithms and Applications,”
Proc. the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2003.

[21] M. Thorup and Y. Zhang, “Tabulation Based 4-Universal Hashing
with Applications to Second Moment Estimation,” Proc. the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2004.

[22] W. Stevens, TCP/IP Illustrated Volume-1: The Protocols (1st ed.),
Addison-Wiley, 1994.

[23] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach
(4th ed.), Addison Wiley, 2007.

[24] SIP Express Router, [Online.] Available: http://www.iptel.org/
ser/.

[25] F. Gustafson and M. Lindahl, “Evaluation of Statistical Distribu-
tions for VoIP Traffic Modelling,” University Essay from University
West, Department of Economics and IT, 2009.

[26] J. Tang and Y. Cheng, “Quick Detection of Stealthy SIP Flooding
Attacks in VoIP Networks,” Proc. IEEE ICC, 2011.

Jin Tang received the B.S. degree in Com-
puter Science from Fudan University, Shanghai,
China, in 2004, the Master’s degree in Informa-
tion Technology and Management from Illinois
Institute of Technology, Chicago, IL, USA, in
2007, and the Ph.D. degree in Computer En-
gineering from Illinois Institute of Technology,
Chicago, IL, USA, in 2012. He is now with
AT&T Labs. His current research interests in-
clude wireless network security, intrusion de-
tection and security in VoIP applications. He

received a Best Paper Award from IEEE ICC 2011.

Yu Cheng received the B.E. and M.E. degrees in
Electrical Engineering from Tsinghua University,
Beijing, China, in 1995 and 1998, respectively,
and the Ph.D. degree in Electrical and Com-
puter Engineering from the University of Water-
loo, Waterloo, Ontario, Canada, in 2003. Since
August 2006, he has been with the Department
of Electrical and Computer Engineering, Illinois
Institute of Technology, Chicago, Illinois, USA,
now as an Associate Professor. His research
interests include next-generation Internet archi-

tectures and management, wireless network performance analysis,
network security, and wireless/wireline interworking. He received a Post-
doctoral Fellowship Award from the Natural Sciences and Engineering
Research Council of Canada (NSERC) in 2004, and a Best Paper Award
from the conferences QShine 2007 and ICC 2011. He received the
National Science Foundation (NSF) CAREER award in 2011. He served
as a Co-Chair for the Wireless Networking Symposium of IEEE ICC
2009, a Co-Chair for the Communications QoS, Reliability, and Modeling
Symposium of IEEE GLOBECOM 2011, and a Technical Program
Committee (TPC) Co-Chair for WASA 2011. He is an Associated Editor
for IEEE Transactions on Vehicular Technology.

 Yong Hao received the B.E. and M.E. degrees
in Electrical Engineering from Huazhong Univer-
sity of Science and Technology, Wuhan, Hubei,
China, in 2003 and 2007, respectively, and the
Ph.D. degree in Computer Engineering from Illi-
nois Institute of Technology, Chicago, IL, USA, in
2012. He is now with Juniper Networks. His cur-
rent research interests include network security,
cryptography, wireless network and vehicular ad
hoc networks.

Wei Song received her Ph.D. degree in electrical
and computer engineering from the University of
Waterloo, Canada, in 2007. Since 2008, she has
worked as a postdoctoral research fellow at the
Department of Electrical Engineering and Com-
puter Sciences, University of California, Berke-
ley. In July 2009, she joined the Faculty of Com-
puter Science, University of New Brunswick, as
an Assistant Professor. She received a Harrison
McCain Foundation Young Scholars Award in
2010, a Top 10% Award from IEEE Workshop

on Multimedia Signal Processing (MMSP) 2009, and a Best Paper
Award from IEEE WCNC 2007. Her current research interests include
the interworking of cellular networks and wireless local area networks
(WLANs), resource allocation for heterogeneous wireless networks,
cooperative wireless networking, and cross-layer design for multimedia
service provisioning.


