
IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1

Adaptive Non-Linear Sampling Method for
Accurate Flow Size Measurement

Chengchen Hu, Member, IEEE, Bin Liu, Senior Member, IEEE,
Sheng Wang, Jia Tian, Yu Cheng, Senior Member, IEEE, and Yan Chen, Member, IEEE

Abstract— Sampling technology has been widely deployed in
network measurement systems to control memory consump-
tion and processing overhead. However, most of the existing
methods suffer from large errors for the estimation of small-
size flows. To address this problem, we propose an adaptive
non-linear sampling (ANLS) method for flow size estimation.
Instead of statically pre-configuring the sampling rate, ANLS
dynamically adjusts the sampling rate for each flow according
to the value of a corresponding counter. A smaller sampling
rate is utilized when the counter value is large, while a larger
sampling rate is employed for a smaller counter. In this paper,
the unbiased flow size estimation, the relative error, and the
required counter size are studied through theoretical analysis
and experimental evaluations. The analysis and experiments
demonstrate that ANLS can significantly improve the estimation
accuracy (particularly for small-size flows), and save memory
consumption, while maintaining processing overhead comparable
to existing methods. Moreover, we validate the design of ANLS
by implementing an FPGA-based prototype, which is capable of
measuring traffic throughput up to 26.5 Gbps.

I. INTRODUCTION

IN order to provide network status information for con-
trolling, engineering, managing, and securing the commu-

nication networks, network measurement systems have been
developed, which generally can be classified into passive
and active measurement [1]. The former approach passively
monitors traffic by analyzing packets passing through the
traffic monitors, while the latter one actively injects probe
packets into the network to infer the network status (e.g.,
available bandwidth, packet loss ratio, delay) by analyzing
the output of probe traffic. In this paper, we study the flow
size estimation method that generates the flow information for
passive measurement.

With the continuous increase of Internet link speed and
number of flows, measuring the flow size has become a

Paper approved by J. Widmer, the Editor for Network Coding and Cross-
Layer Protocols of the IEEE Communications Society. Manuscript received
October 12, 2010; revised March 1, 2011 and July 26, 2011.

Part of this work was presented at INFOCOM 2008, Phoenix, AZ, USA,
when the first author was with Tsinghua Universty.

C. Hu is with MoE Key Lab for Intelligent Networks and Network
Security, Department of Computer Science and Technology, Xi’an Jiaotong
University, China (e-mail: huc@ieee.org).

B. Liu, S. Wang, and J. Tian are with Department of Computer Science
and Technology, Tsinghua University, China (e-mail: liub@tsinghua.edu.cn).

Y. Cheng is with the Department of Electrical and Computer Engineering
Technology, Illinois Institute of Technology, USA (e-mail: cheng@iit.edu).

Y. Chen is with the Department of Electrical Engineering and Computer
Science, Northwestern University, USA (e-mail: ychen@northwestern.edu).

Digital Object Identifier 10.1109/TCOMM.2011.01.xxxxx

challenging task due to the demanding requirements on both
memory size and memory bandwidth. For example, the pro-
cessing time for a 40-Gbps OC-768 link is only 8 ns in the
worst case (considering only 40-byte packets). This makes
it necessary to employ SRAMs and it is infeasible to use
only DRAM. However, due to their low density, SRAMs
are susceptible to overflow for measurement applications [2].
Sampling technology is widely used as an efficient method for
resolving the above contradiction [3], [4]. The simplest way
to sample packets is the static sampling (SS) method, which
selects packets with the same sampling rate/probability p for
all the flows during the measurement interval. Denote c to be
the counter value for a sampled flow, and n to be the flow
size in terms of number of packets. It can be proven that the
unbiased estimate of the flow size n is c/p [5], where p is
the sampling rate for SS. Since the coefficient of variation√

V ar[n̂(c)]
n is an indication of relative error, it is used in this

paper to formulate relative error. Therefore, the relative error
is

√
(1/p − 1)/n for SS [5]. Obviously, from these results,

the major issue with SS is that small-size flows cannot be
estimated accurately, e.g., the relative error will be 300% when
p = 0.1 and n = 1.

Using a larger p can mitigate the relative error but lead to
higher memory consumption, which contradicts the purpose
of sampling. Even if it is possible to increase the sampling
rate, almost all the increased samples come from the large
flows, which have little measurement accuracy improvement
on small and medium flows. However, the measurement results
in [6] show that about 80% of the traffic flows has a size less
than two packets. For such small flows, most of the existing
related methods will lead to significant estimation error as we
will demonstrate in Section VI.

Flow size estimation is employed in many network mea-
surement applications. These applications have different re-
quirements on accuracy, and an efficient flow size estimation
method is expected to be applicable to the entire flow size
spectrum. Some examples are given as follows.

• Detecting worm spanning/ super spreader/flooding [7],
[8]. A sharp increase of TCP flows with only one 40-byte
packet is probably caused by SYN flooding attacks or
flash crowds. For this application, the estimation accuracy
of small flows is very crucial.

• Identifying the heavy hitters or the dominant flows [9],
[10]. Since the large flows are the major contributor
of traffic volume, its measurement accuracy is quite
important.

0090-6778/11$25.00 © 2011 IEEE

2 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

• Providing the statistics of flow size distribution or per-
flow traffic. Such an application requires accurate mea-
surement on the whole flow size spectrum for both small
flows and large flows.

The motivation of this paper is to develop a sampling
method, which could bound the estimation error for both
small and large flows, so as to fit the requirements of diverse
applications as illustrated above. In particular, we make the
following contributions:

• We conduct a sampling-based flow size estimation
method: Adaptive Non-Linear Sampling (ANLS). The
merit of the method is that the sampling rate is adjusted
according to the counter value and no prediction or esti-
mation of flow size distribution is required beforehand.

• We derive analysis on unbiased flow size estimation,
relative error, and required counter size for ANLS. The
performance of ANLS is also investigated under synthetic
and real network traces. ANLS significantly improves
the estimation accuracy, particularly for small-size flows.
Furthermore, the memory consumption of ANLS is the
smallest under the same mean estimation accuracy, com-
pared to related work.

• We design and implement a prototype system of ANLS.
With one FPGA (Field Programmable Gate Array) chip
and two small SRAMs, the prototype can deal with the
measurement task on a 26.5 Gbps link. With SRAMs
running on a higher frequency, say 250 Mhz, we can
easily implement ANLS for OC-768 highly loaded links.

ANLS employs fast but small SRAM to keep the counters,
so the processing speed on SRAM is not a constraint and the
challenging issue is how to control the memory consumption
without compromising the estimation accuracy. To address the
problem, ANLS maintains a counter for each flow and tunes
the sampling rate of the incoming packets according to the
counter value of the flow it belongs to. Previous literatures
employed prediction [11] or inverse estimate [12] method to
“guess” the total packet count or flow size (distribution) in
the next measurement interval and then determined sampling
rate according to their estimate. However, with prediction
technology, their methods are already not accurate in the
input phase. Unlike these methods, our method adjusts the
sampling rate based on the accurate counter value, which
is an accumulative count of sampled packets in the current
measurement interval, i.e., ANLS decreases the sampling rate
with the increase of counter value.

The rest of the paper is organized as follows. After the
review of related work in Section II, we present how ANLS
works in Section III. Section IV demonstrates the properties
of ANLS and Section V describes a reference implementa-
tion. Section VI evaluates the performance of ANLS under
synthetic data and real traces. And finally in Section VII, we
conclude the paper.

II. RELATED WORK

Traditional counting system provisions all counters with the
same size resulting in inefficient for flow length counting.
To accord with the “80-20” feature mentioned in Section I,
recent work in [13] proposes BRICK to organize efficient

“variable-length” counters with the idea of statistical multi-
plexing. Counter Braids (CB) [2] is another novel counter
organization for accurate flow measurement, which builds a
hierarchy of counters braided via random graphs in tandem.
BRICK and CB reduce the total memory size by utilizing
the features/relationship among all the counters, while ANLS
reduces the total memory size by compressing every single
counter. In fact, ANLS and BRICK/CB are complementary to
each other and can be combined to get further reduction on
counter size.

A combined SRAM&DRAM (SD) counter architecture was
first proposed in [14]–[16]. The increments are first made only
to SRAM counters, and the values of each SRAM counter is
then committed to the corresponding DRAM counters before
overflowing. SD architecture has its limitations. First, the read
accesses of SD can only be done on the DRAM side and
thus is quite slow. Second, SD also greatly increases the
traffic between SRAM and DRAM across the system bus,
which may lead to a serious bottleneck in system design[13].
Third, it is a trend to integrate measurement functions into
routers; however, SD needs a SRAM and a DRAM, which
will consume extra pins’ connections and board areas.

In order to use only SRAM for flow size statistics, sampling
is a simple but efficient way. A pioneering work on statistical
sampling of network traffic was published in [17], which uses
static sampling for the purpose of measuring on the NSFNET
backbone. Presently, the primary flow-level measurement tool
used by network operators is NetFlow [18], which resorts to
packet sampling to handle the large traffic volume and diver-
sity in high speed links. In the context of adaptive sampling,
several methods were introduced for different purposes. BNF
was proposed in [4], where a relatively large sampling rate is
configured at the beginning and will adaptively decrease when
possible memory overflow is detected. The SDS mechanism
was presented in [19]. A flow whose size is larger than z

is always selected by SDS, while the flow with size x < z is
sampled with probability x/z. ARS tunes the sampling rate by
first predicating how many packets would arrive in the next
measurement interval based on a linear auto-regressive (AR)
prediction model [11]. The accuracy and complexity of ARS
are greatly restricted by the operations to determine the AR
model parameters. SGS also adjusts the sampling rate [12].
In SGS, each incoming packet is first hashed to increase
one of the slots in a “sketch” and another counter for flow
statistics is then updated based on estimated flow size from
the sketch. SGS needs one more SRAM to keep the sketch,
and its accuracy is penalized by the hashing conflicts in sketch.
CATE proposed in [20] estimates the proportion of each flow
by making multiple comparisons for each arrival and counting
the number of coincidences. The closest work to our study is
[21], which proposes a technique to count large number in
small registers. Unlike that work, we provide a general family
of sampling functions and conduct the analysis on it. We also
carry out empirical experiments to demonstrate the potential
of ANLS.

III. ADAPTIVE NON-LINEAR SAMPLING METHOD

The estimation error and memory consumption are major
evaluation metrics in the design of an efficient sampling

HU et al.: ADAPTIVE NON-LINEAR SAMPLING METHOD FOR ACCURATE FLOW SIZE MEASUREMENT 3

scheme. It is preferred that the estimation error, in the
ideal case, keeps steady independent of the flow size to be
estimated. The memory consumption is another constraint
for flow size statistics, and an ideal one achieves a scalable
increase (sub-linear increase) with the increase of flow size.
To obtain the ideal curves, we propose ANLS for flow size
estimation.

Before presenting how ANLS works, we first describe SS.
With a static sampling of rate p, the counter value c will be
refreshed upon a packet arrival according to the following
expression,

c =

{
c + 1 with probability p;
c with probability 1 − p.

(1)

The proposed ANLS replaces the static sampling rate p

in (1) with a function P (c) over the counter value c as
the following, where P (c) is expected to diminish with the
increase of c.

c =

{
c + 1 with probability P (c);
c with probability 1 − P (c).

(2)

Specifically, P (c) for the proposed ANLS is calculated as

P (c) = 1/[f(c + 1) − f(c)], (3)

where f(c) is a sampling function to be selected according to
the following general principles.

Definition 1: Sampling function f(c), c ≥ 0, is defined as a
function satisfying the following conditions:

1) a real increasing convex function;
2) f(0) = 0 and f(1) = 1;
3) f(c) < f(c + 1) ≤ bf(c) + 1 with b > 1 and c > 0.
Now, given a pre-defined f(c), c ≥ 0, we could adaptively

tune the sampling rate based on the counter value. With
the convexity, it is not difficult to check that c ↑⇒ [f(c +

1) − f(c)] ↑⇒ P (c) ↓. Namely, the sampling rate decreases
as the counter value increases. A unique feature of ANLS
compared to existing work is that the sampling rate is adjusted
according to the counter value other than the prediction on
packet size distribution [11] and packet count or estimate on
flow size [12]. The sampling rate needs to be calculated on
the arrival of a packet. To avoid computational processing
overhead, the value of P (c) could be pre-computed and stored
in a P (c) table, which will be shown to be quite small in
Section IV-B.2.

IV. ANALYSIS OF ANLS PROPERTIES

In this section, we investigate the properties of ANLS
for accuracy, memory consumption with sampling function
selected according to Definition 1.

A. Unbiased Estimation and Relative Error

Theorem 1: Under the ANLS method, n̂(c) = f(c) is an
unbiased estimate of the flow size n.

Theorem 2: Using n̂(c) = f(c) as the unbiased estimation,
the coefficient of variation is upper bounded by

√
b−1
2 − b−1

2n .

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

flow size (n)

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

static sampling
ANLS (u=0.01)
ANLS (u=0.002)

Fig. 1. Theoretical results of the coefficient of variation.

Due to page limitations, we omit the proof of these two
theorems and please refer to Theorem 1 and Theorem 2 in [5]
for detailed proofs1.

As mentioned in Section I, the coefficient of variation√
V ar[n̂(c)]

n in Theorem 2 is used to analyze and indicate
relative error. The coefficient of variation is zero when n is
one. It increases with the increment of n and converges to√

(b − 1)/2 when n → ∞. In addition, the relative error or
the coefficient of variation decreases as b diminishes, while b

should be larger than one as described in Definition 1.
To give an intuitive illustration, we select one specific

sampling function according to Definition 1 as

f(c) = [(1 + u)c − 1]/u, 0 < u < 1, (4)

where u is a constant parameter. Obviously, (4) satisfies
Definition 1 by setting b = 1+u. From Theorem 1, it is known
that n̂(c) = [(1 + u)c − 1]/u is an unbiased estimation when
(4) is adopted as the sampling function. In this case, we can
further obtain the accurate coefficient of variation instead of
an upper bound.

Theorem 3: when the sampling function is f(c) = [(1+u)c−
1]/u, the coefficient of variation of the unbiased estimate is√

(1 − 1/n)u/2.
Proof: See the proof of Theorem 3 in[5] for details.

With Theorem 3 and the coefficient of variation of SS
mentioned in Section I, we can examine the coefficient of
variation of ANLS and SS versus the flow size n as depicted
in Fig. 1. Better NetFlow (BNF) [4] adaptively adjusts the
sampling rate, but it samples all the flows with the same
sampling rate. If the final sampling rate of BNF in a sampling
interval is pf , the relative error of BNF is the same as the
relative error of static sampling with sampling rate pf . In other
words, the relative error curve of BNF is the same as that of
SS with sampling rate pf (as shown in Fig. 1). The advantage
of BNF over SS is that it could find a proper sampling rate
automatically to fit the memory size. From the figure, we
observe that 1) the relative error of SS is quite large for small
n as we demonstrated before; 2) the relative error of ANLS is

1For the proofs, (13) in [5] should be (b−1)n2

2
− (b−1)n

2
.

4 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

(2,1)
1-P (1)

(3,1)
1-P (1)

(n-1,1)
1-P (1) 1-P (1)

(1,1)

(2,2) (3,2)
1-P (2)

(n-1,2)
1-P (2) 1-P (2)

P (1)
P (1) P (1)P (1)

(n-1,i-1)
1-P (i-1) 1-P (i-1)

P (i-2)P (i-2)

(n-1,i)
1-P (i) 1-P (i)

P (i-1)P (i-1)

(3,3) (n-1,3)
1-P (3) 1-P (3)

P (2) P (2)P (2)

(n ,1)

(n ,2)

(n ,i-1)

(n ,i)

(n ,3)

Fig. 2. Transition of the states.

almost the same for different values of n; 3) the relative error
of ANLS decreases as parameter u diminishes.

B. Memory Consumption

There are two parts of memory usage: the counters to store
counting results and the pre-computed mapping table to store
the P (c) values.

1) Memory Usage for Counters: We first calculate proba-
bilistic bound of counter value and then formulate its expected
(average) bound.

Let us first denote (n, i) as the state that counter value c

equals i when current actual flow size is n and Qi(n) as the
probability in state (n, i). Then, we can define a metric to
evaluate the probabilistic bound as the following, which means
that the counter value will not exceed Bα(n) with probability
of α, where

Bα(n) = sup{y|
y∑

c=1

Qc(n) ≤ α, 0 ≤ α ≤ 1}. (5)

To derive the numerical solution of Bα(n) given α and n, we
analyze the Markov chain whose state transitions are depicted
in Fig. 2. State (n, i) can be only transited from (n − 1, i − 1)

with probability P (i − 1) and from (n − 1, i) with probability
1 − P (i) after one incoming packet, namely,

Qi(n) = Qi−1(n − 1)P (i − 1) + Qi(n − 1)(1 − P (i)). (6)

We first calculate Qi(n) using (6) as indicated in Fig. 2 and it
is not difficult to see the initial value that Q1(1) = 1, Q0(n) = 0

when n > 0 and Qi(n) = 0 if i > n.
Next, we increase y from the expected counter value f−1(n)

(as demonstrated in [5]) to n by one each time and compute∑y+1
c=1 Qc(n). We stop the increase of y once

∑y
c=1 Qc(n) ≥ α

and then the value of y at the stop point is Bα(n).
Besides the probabilistic bound, we also investigate the

average bound of the memory consumption.
Theorem 4: An upper bound of expected counter value

E[c(n)] is f−1(n), and f−1(n) is an increasing concave
function when f(c) is chosen from Definition 1 (the ideal
memory consumption curve as mentioned in Section I).

Proof: The proof that the upper bound of expected
counter value E[c(n)] is f−1(n) is demonstrated in the proof of
Theorem 4 of [5]. And since f(c) is an increasing function,
obviously, its inverse function f−1(n) is also an increasing
function [22].

10
2

10
3

10
4

10
2

10
3

flow size (n)

C
ou

nt
er

 v
al

ue

ss,p=0.25

ANLS(Expected bound),u=0.01

ANLS(99% bound),u=0.01

99% bound

Expected bound

Fig. 3. Counter bits required for different sampling methods.

By taking a logarithm computation, we calculate the counter
width (number of counter bits) needed to record a flow size.
We show the average bound and the 99% bound (B0.99(n))
of the counter width in Fig. 3, compared to the average
counter width for SS. The counter width for ANLS is larger
than the one for SS when n is small, but it becomes much
smaller than the one for static sampling when n grows. For
simple implementation of counters, as most related work do,
we consider fixed size counter whose width is determined
by the largest counter value. Therefore, while keeping the
same number of entries, ANLS consumes a smaller amount
of memory than SS. Please note that, to maximize saving
from small flows, variable size counters could also be used
as recently mentioned in [13]. The figure also indicates that
the probabilistic bound B0.99(n) increases sublinearly with n

and is only a little bit larger than the expected counter size.
Since it is much easier to compute the expected value than the
numerical results of probabilistic bound, the expected counter
size is an acceptable approximation to the actual counter size
for ANLS.

Furthermore, we use the probability P [|c(n)−E(c(n))| ≥ t]

as a concentration of measure [23] to indicate how the counter
value is concentrated around its expectation. Given n, we first
calculate Qi(n) using (6). Then the expected value of c(n)

and the concentration of measure can be obtained from the
following two equations:

E[c(n)] =
n∑

i=1

iQi(n), (7)

P [|c(n) − E(c(n))| ≥ t] =
∑

c∈{|c−E(c)|≥t}
Qc(n). (8)

In Fig. 4, we depict the function f(t) = P [|c(n)−E(c(n))| ≥ t]

when n equals 100, 1000 and 10000. We observe from the
figure that the probability P [|c(n) − E(c(n))| ≥ t] is almost
equal to zero when the difference t from expected value is
larger than 20. Therefore, an additional one bit to the expected
counter size is enough for practical use since the overflow

HU et al.: ADAPTIVE NON-LINEAR SAMPLING METHOD FOR ACCURATE FLOW SIZE MEASUREMENT 5

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

P
[|c

(n
)
−E

(c
(n

))
|≥

t]

n=100
n=1000
n=10000

Fig. 4. Concentration of measure for the counter value.

probability is negligible2.
2) Memory Usage for the P (c) Table: Consider the worst

case of a fully loaded OC-48 link, which contains only one
flow with all 40-Byte packets. In this scenario, the flow
length n =

2.5×109b/s×60s
8×40b = 468, 750, 000 in a one-minute

measurement interval, and then the counter value will not
exceed f−1(n) < 6883 (f(n) is in the form of (4) and u =

0.002) as indicated in Theorem 4. An extra table to keep P (c)

only consumes about 111 Kb (16b × 6883 ≈ 111Kb) memory.
In addition, the P (c) table’s memory size does not increase
linearly with the link speed. For one-minute measurement
on an OC-192 link, the counter will not exceed 7577 using
the same sampling function and the P (c) table size is about
122 Kb. The increase of the precomputed table size is much
slower than the increase of link speed. Similarly, enlarging the
measurement interval also introduces a sublinear increase on
the P (c) table since a four-minute interval on OC-48 link also
requires a 122 Kb table (only 1.1 times than that in one-minute
interval). The amount of memory required for the P (c) table
is not large compared with the memory for counters.

V. PROTOTYPE IMPLEMENTATION

We implement an ANLS prototype using a FPGA (AL-
TERA Stratix EPS80) chip and two SRAMs (CYPRESS
CY7C1372C, 18Mb) as shown in Fig. 5. The ANLS module
in the figure implements the proposed algorithm using a pre-
computed P (c) table mentioned above, and the data output
module is used to export the resulting statistics to the data
center. We employ two alternating SRAMs in the prototype
system for seamless measurement. When one SRAM becomes
full, it will be paged to data center and the other one can
process new records. In other words, these two SRAMs store
flow counting information in alternating measurement epochs.

We configure each SRAM with 512k entries (counters). The
width of each entry is 32 bits, where the leftmost 18-bit is

2Although log(n)-bit counters is required to guarantee zero overflow
probability in theorem, adding one more bit to the expected counter size
leads to negligible overflow probability in practice.

Data output

ANLSP(c) Table

Counter

Counter

FPGA

SRAM #1

Data
Center

SRAM #2

Fig. 5. Prototype system of ANLS.

used to store flow ID3 and the rightmost 14-bit is employed
as a counter. As mentioned in Section IV-B, ANLS assigns
a counter for every distinct flow during the measurement
epoch, but when all the counters are assigned or one of the
counters becomes full, the switching of SRAM is triggered. By
investigating backbone traces, the time to fill up all the 512k
entries or to overflow the 14-bit counter is enough to page
the counter values from the inactive SRAM. Taking the real
trace (collected on an OC-192 link [24]) used in Section VI
as illustration, we only observe 100728 flows in a ten-minute
interval. In addition, for a ten-minute measurement interval
on an OC-192 link, the packet number is 10Gbps×60s×10

8×40b in
the worst case (one flow with only 40-Byte packets); thus the
expected counter value is 7577 if we set u = 0.002 in (4)
and 13-bit counter is enough to count 7577. Adding one more
bit to all the counters to avoid overflow, we implement our
prototype with 14-bit counters.

The ANLS module is the key function of the prototype
system and we implement ANLS using a five-stage pipeline
(developed by Verilog-HDL), where each step above is a stage
in the pipeline. In each stage, the processing overhead (includ-
ing the memory accesses and CPU operations) is presented as
follows.

Stage (1) is the flow classification stage. Before deciding
whether to sample a packet or not, the associated flow ID
needs to be identified. Such a flow classification is also
required by other flow sampling methods, like BNF and SDS.
As the flow classification issue has been extensively discussed
in the literature [25], we omit here the detailed descriptions
because it is out of the scope of this paper.

Stage (2) is the counter address fetching stage. We imple-
ment this function using an efficient hardware hash function
from the H3 hash function class [26].

Stage (3) is the counter value reading stage. It is a read
operation on SRAM.

Stage (4) is the sampling stage. As we mentioned above,
the value of P (c) could be pre-computed and stored in a P (c)

table. Thus we only need a direct address lookup on a table

3Flow ID is a number to index and identify the flows.

6 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

maintained by a small (on-chip) SRAM. In our implementa-
tion, the table has 10000 entries, each of which occupies 16-bit
to keep the value of P (c) for a specific c ≤ 10000. Therefore,
the total memory size for the P (c) table is only 160 Kb and
it is implemented by FPGA’s on-chip memory. Furthermore,
in this stage, a pseudo-random number is generated using
LFSR (Linear Feedback Shift Register) [27], which can return
a random number in one cycle. The LFSR deployed in our
prototype is of 16 bits, and the characteristic polynomial is
x16 + x14 + x13 + x11 + 1.

Stage (5) is the counter value writing-back stage. Counter
value is updated and written back if necessary.

It is clear that the processing bottleneck is the SRAM
operations. In the worst case, each packet is only 40 bytes. The
operation frequency of SRAM in our prototype is 166 Mhz,
therefore, the I/O throughput of SRAM could match up to 26.5
Gbps, and it means the prototype can handle the measurement
task on a 26.5 Gbps link. If we choose SRAMs that could
run on a higher frequency, say 250 Mhz (it is not difficult to
obtain such SRAMs in today’s FPGA/ASIC market), we can
implement ANLS for fully loaded OC-768 links.

VI. EVALUATIONS

In this section, we compare ANLS with other existing
approaches including SS, BNF [4], SDS [19], CATE [20],
ARS [11] and SGS [12] in terms of accuracy, memory, and
processing overhead by performing two sets of experiments: 1)
adopting synthetic traces to test the different methods and 2)
utilizing real IP data traces from NLANR [24] to validate our
observations. All the results in this section were obtained by
configuring the sampling function of ANLS according to the
specific form in (4). Furthermore, we discuss the processing
overhead of each method and the attack resilience of ANLS
in this section.

A. Experiments and Results on Synthetic Data

In order to examine the effects of flow size distribution on
different flow size estimation methods, we generate synthetic
data for three traffic scenarios where the experiments are
performed.

• Pareto distribution traffic scenario. The distribution of
the flows sizes obeys a Pareto distribution where the
shape parameter is 1.053 and the scale parameter is 4.
The average flow size and the maximum flow size in this
distribution are 81 and 3,295,575, respectively.

• Exponential distribution traffic scenario. The flow sizes
are exponentially distributed with location parameter λ =

100. In this scenario, the mean flow size is 100 and the
maximum flow size is 1416.

• Bi-modal uniform distribution traffic scenario. The flow
sizes are uniformly distributed between 5 and 15 with
probability 0.05, between 7500 and 8500 with probability
0.95. It is obvious that the average flow size and the
maximum of flow size are 8000 and 8500, respectively.

We compare the experimental results and the theoretical
value of ANLS’s relative error in Fig. 6. Please note that both
axes in the figure are in logarithmic scaling. The experimental
value in the figure means the gap between unbiased estimation

10
−2

10
−1

10
−1

parameter u

re
la

tiv
e

er
ro

r

theoretic (a)
experiment (a)
theoretic (b)
experiment (b)
theoretic (c)
experiment value (c)

Fig. 6. Comparison between theoretical value and experimental value of
ANLS relative error. (a) Pareto distribution traffic scenario; (b) Exponential
distribution traffic scenario;(c) Bi-modal distribution traffic scenario.

and real flow size, divided by the real flow size while the
theoretical value in the figure is the mean relative error of all
the flows calculated from Theorem 3. The results under three
traffic scenarios show that the theoretical value well meets the
experimental value. Since relative error R is approximately
equal to

√
u/2 (Theorem 3), the trends between log R and log u

should follow a linear relationship, which is also indicated in
Fig. 6.

The detailed comparisons among different methods under
three synthetic flow size distributions are made to validate our
method. The required memory is calculated as the number of
entries multiplied by the counter width of the entry, since each
entry is of the same width in real implementation as we men-
tioned before. The counter width is determined by the largest
flow to avoid overflow and different sampling approaches vary
in the entry number and entry width. The results are similar
under all the three traffic scenarios and only the results for
Pareto distribution are illustrated in Table I due to the page
limitation. All the methods produce a more accurate result
given a larger memory. Furthermore, we observe that ANLS
provides the most accurate estimate using a memory with a
same or even smaller size. Even when BNF (the M parameter
in the table is the expected flow entry for BNF) is furnished
with a larger amount of memory comparable to ANLS, its
average relative error is almost tens of times worse than
ANLS. As indicated in Table I, when memory size of ANLS
is 5.03 Mb, the relative error is only 0.07, which is nearly
20 times more accurate than BNF with 5.52 Mb memory size
(the relative error for BNF is 1.32). The average relative error
and required memory size of CATE have no advantage over
ANLS. For CATE, the burst Poisson arrival packets generate
a large number of flow counter entries in memory, and so
it consumes a larger memory. CATE is accurate for large
flows, but for small flows, the error is large. Since there are
a large number of small flows, the average relative error is
still large. The Poisson arrival process of packets may be
another possible reason for the large relative error of CATE
(The packet arrivals are supposed to be smooth by CATE in
the original paper [20]). SGS is still less accurate than ANLS
given the similar memory size. The number of entries for

HU et al.: ADAPTIVE NON-LINEAR SAMPLING METHOD FOR ACCURATE FLOW SIZE MEASUREMENT 7

TABLE I

MEMORY AND RELATIVE ERROR COMPARISON UNDER PARETO DISTRIBUTION TRAFFIC SCENARIO

ANLS parameter (u) 0.4000 0.1682 0.0707 0.0297 0.0125 0.0053 0.0022
relative error 0.42 0.27 0.18 0.11 0.07 0.05 0.03
memory size 2.78 Mb 3.31 Mb 3.87 Mb 4.45 Mb 5.03 Mb 5.61 Mb 6.18 Mb

SS parameter (p) 1/500 1/250 1/100 1/50 1/10 1/5 1/2
relative error 7.11 5.06 3.17 2.23 0.96 0.64 0.32
memory size 62.4 Kb 132.71 Kb 349.78 Kb 734.50 Kb 4.26 Mb 9.98 Mb 10.67 Mb

BNF parameter (M) 3163 10000 17783 31623 100000 177828 316228
relative error 26.33 13.16 9.31 6.58 3.05 2.15 1.32
memory size 28.19 Kb 109.13 Kb 211.83 Kb 408.26 Kb 1.51 Mb 2.86 Mb 5.52Mb

SDS parameter (z) 10000 3162.2 1000 316.2 100 31.62 10
relative error 1.88 1.76 1.59 1.30 0.89 0.44 0.14
memory size 850.86 Kb 1.47 Mb 2.52 Mb 4.20 Mb 6.67 Mb 9.52 Mb 11.11 Mb

CATE parameter (K) 1 10 100 500 1000 5000 10000
relative error 3.74 3.70 3.68 3.65 3.63 3.55 3.50
memory size 11.18 Mb 12.89 Mb 14.59 Mb 15.26 Mb 16.31 Mb 17.01 Mb 18.02 Mb

SGS parameter (ε) 0.14 0.12 0.10 0.08 0.06 0.04 0.02
relative error 0.86 0.79 0.69 0.55 0.35 0.15 0.02
memory size 8.15 Mb 8.31 Mb 8.58 Mb 8.90 Mb 9.40 Mb 10.20 Mb 12.63 Mb

TABLE II

CUMULATIVE FLOW SIZE DISTRIBUTION OF THE REAL TRACE

flow size (packets) ≤ 1 ≤ 10 ≤ 100 ≤ 1000 ≤ 10000
percentage 0.07 0.3499 0.8363 0.97 0.9956

the sketch in SGS method is 100k in the experiment. The
relatively small gain on accuracy improvement is not worth
the extra cost on memory size, if a large sketch is employed.

B. Experiments and Results on Real Traces

We first use a real OC-192 trace [24] for experiments.
There are 26,942,526 packets belonging to 100,728 flows. The
maximum flow has 720,192 packets and the minimum flow has
only one packet. The cumulative distribution of flow size is
illustrated in Table II, and it demonstrates that most of the
flows are small ones.

The results of ANLS are illustrated in Fig. 7, which demon-
strate the accuracy of ANLS for both small flows and large
flows. We also apply other sampling methods to analyze the
real trace and depict the results in Fig. 8, respectively. All these
methods demonstrate a large relative error for small flows.
A nice theorem is provided to guide the sampling method.
However, to practically benefit from the theorem, we should
have a pre-knowledge of the flow length distribution. For
this reason, ARS employs an AR (Auto-Regressive) model to
predict flow length distribution before deciding the sampling
rate. This method has the potential flaw that the accuracy is
greatly limited by the AR model [28]. We test ARS on a real
trace using a AR(1) prediction model. Note that even when we
use the actual data for the initial input to the AR(1) model,
the relative error for small flows is still larger than ANLS.
The parameter z of SDS is 1000 in this experiment, and this
setting means SDS maintains full size counter for the flow
that is larger than 1000. That is why the error of SDS is zero
when the flow size is larger than 1000. For the evaluation on
SGS, the size of sketch is also set to be 100k and as the same
as the example in [12] , ε = 0.1 here.

0 1 2 3 4 5 6 7 8

x 10
5

−0.5

0

0.5

Flow size

re
la

tiv
e

er
ro

r

Fig. 7. Relative error of ANLS on real NLANR trace.

TABLE III

PROCESSING OPERATIONS PER PACKET IN THE WORST CASE

Methods ANLS SS BNF SDS CATE ARS SGS
memory access 3 2 4 2 3 2 4
CPU operation 0 0 1 2 0 1 1

Besides the comparison of accuracy, we illustrate the corre-
sponding memory sizes of all the approaches. The correspond-
ing relative errors of BNF, ANLS, ARS, SDS and SGS are
1.82, 0.21, 1.96, 1.186 and 0.69, respectively. It is shown that,
ANLS only consumes more memory than BNF, and requires
less memory than other methods4. ANLS is the most accurate
method with the relative error of 0.21, while the relative error
of BNF is 1.82. In other words, the accuracy is improved by
9 times at the cost of a 2.5 times memory in this experimental
setting.

4The memory cost of the P (c) table for ANLS is not considered in this
figure. Adding a P (c) table with 122 Kb, the memory consumption of ANLS
is a little bit larger than the one of ARS.

8 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

TABLE IV

DESIGN SPACE FOR DIFFERENT METHODS

Methods ANLS SS BNF SDS CATE ARS SGS
Accuracy for small flows Excellent Bad Bad Bad Bad Fair Fair
Accuracy for media/large flows Good Good Good Excellent Excellent Good Fair
Memory consumption Good Good Excellent Fair Good Good Good
Processing overhead Fair Excellent Good Fair Fair Fair Fair

[1,10] (10,100] (100,1000] (1001,10000] >10000
10

−3

10
−2

10
−1

10
0

10
1

10
2

ANLS
ARS
BNF
SDS
SGS

Fig. 8. Relative error under real trace.

C. Attack Resilience

Although few resources are needed to record each flow,
one may be concerned with the performance of ANLS when
an attacker launches DoS attacks on an ANLS system with
large number of small flows. We use a trace file collected by
NLANR during the spread of the Slammer worm in January
2003 to test the attack resilience of ANLS. Since the average
traffic rate of the original trace is not very large, we scale
down the time stamp in each packet so that the flows will fully
utilize the links of 100Mbps and 1 Gbps respectively. When
the measurement interval is set as 5 seconds5, the required
memory size for the 100Mbps link and the 1Gbps link are
134kb and 441kb, respectively. Please refer to [29] for how
to effectively and adaptively adjust ANLS settings during an
attack.

D. Processing Overhead

The processing overhead can be measured by the number of
memory access and CPU operations, and results of different
methods in the worst case are summarized in Table III.

As discussed in Section IV, for each packet, ANLS needs
one read operation, one write operation (update) on the
counter, and a further memory read operation to fetch the
pre-computed sampling rate.

Considering the implementation of BNF, it needs an ad-
ditional CPU operation for re-normalization. Although the
re-normalization will not block the counting process, it may
delay the report process to the remote data collector if the re-
normalization is not completed at the end of a measurement
interval. Additionally, to determine the sampling rate, BNF

5When we scale down the time stamp to mimic a higher speed trace,
we find the life-time of the revised trace being too short to use a one-minute
interval as the previous experiment.

needs to keep several histogram bins, which also consumes
memory. On the arrival of a packet, the related histogram
should be updated, and all the histograms must be refreshed
when a re-normalization process is activated. If a packet
is sampled, BNF needs one write and one read operation.
BNF needs two more memory accesses when the sampling
is adjusted. In the worst case, a total of 4 memory accesses
are required.

SDS uses a minimum and division computation to decide
the sampling rate and employs a maximum computation for
re-normalization. For each packet, SDS requires one write
operation and one read operation on the memory.

To implement CATE, k comparisons need to be done for
each incoming packet. It can be deployed with a CAM, which
requires one memory access. Two more memory accesses
(one write and one read) are needed if there is a hitting
in the comparison. ARS utilizes an AR(n), (n > 1) model,
which increases the memory consumption linearly with n.
Furthermore, to determine the parameters of the AR(n) model,
we need to solve n linear equations, and its computational
complexity becomes high if n gets large.

SGS first updates the sketch with one memory read and one
memory write operation, and then if the packet is sampled
according to the sketch value (one CPU operation is required
to calculate the sampling rate), one more read and one more
write operation on the counters are needed.

E. Summary

From the above results, the design space of different flow
size estimation methods can be summarized in Table IV.
Compared with other methods, ANLS possesses the following
features.

• ANLS bounds the relative error for both large and small
flows, and flow size distribution has almost no effects on
relative error.

• To exhibit the same estimation accuracy, ANLS requires
the smallest memory size compared to another methods.

• ANLS is very practical for real implementations and its
processing overhead of ANLS is comparable to other
existing methods.

VII. CONCLUSION

In order to control the high relative error for small flows
introduced by static sampling, we have proposed an adaptive
non-linear sampling method (ANLS) for flow size estimation
in this paper. The basic idea of ANLS is to automatically
adjust sampling rate for each flow according to the counter
size so as to sample a small flow with a large sampling rate
and to sample a large flow with a small sampling rate. Note

HU et al.: ADAPTIVE NON-LINEAR SAMPLING METHOD FOR ACCURATE FLOW SIZE MEASUREMENT 9

that no prediction or estimation of the flow size distribution is
required. ANLS has unbiased estimation and bounded relative
error for the flow size estimation, and bounded counter size
which implies small memory consumption. Furthermore, we
find a broad category of sampling functions that can be used
for ANLS. The theoretic and experimental results demonstrate
that, ANLS significantly improves the estimation accuracy
for small flows compared to the existing methods, while
maintaining smaller memory size and comparable processing
overhead. ANLS can also obtain a better tradeoff between
relative error and memory consumption and the flow size
distribution has almost no effect on the estimation accuracy.

ACKNOWLEDGMENT

This work is supported by NSFC (60873250, 60903182,
60921003, 61073171), 973 project (2007CB310702), Ts-
inghua University Initiative Scientific Research Program, Fun-
damental Research Funds for Central Universities and the
Specialized Research Fund for the Doctoral Program of Higher
Education of China (20100002110051).

REFERENCES

[1] G. Varghese and C. Estan, “The measurement manifesto,” ACM Com-
puter Commun. Review, vol. 34, pp. 9–14, 2004.

[2] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: A novel counter architecture for per-flow measure-
ment,” in Proc. ACM SIGMETRICS, 2008.

[3] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in Proc. ACM SIGCOMM, 2003, pp. 325–
336.

[4] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” in Proc. ACM SIGCOMM, 2004, pp. 245–256.

[5] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen, “Accurate and
efficient traffic monitoring using adaptive non-linear sampling method,”
in Proc. IEEE INFOCOM, 2008.

[6] X. Guan, T. Qin, W. Li, and P. Wang, “Dynamic feature analysis and
measurement for large-scale network traffic monitoring,” IEEE Trans.
Inf. Forens. Security, vol. 5, no. 4, pp. 905–919, 2010.

[7] Z. Chen and C. Ji, “Measuring network-aware worm spreading ability,”
in Proc. IEEE INFOCOM, 2007.

[8] D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and M. May,
“Impact of traffic sampling on anomaly detection metrics,” in Proc,
ACM SIGCOMM IMC, 2006, pp. 159–164.

[9] N. G. Duffield, C. Lund, and M. Thorup, “Charging from sampled
network usage,” in Proc. ACM SIGCOMM IMW, 2001, pp. 245–256.

[10] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. ACM SIGCOMM, 2002, pp. 323–336.

[11] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive random sampling for
load change detection,” in Proc. ACM SIGMETRICS, 2002, pp. 272–
273.

[12] A. Kumar and J. Xu, “Sketch guided sampling – Using on-line estimates
of flow size for adaptive data collection,” in Proc. IEEE INFOCOM,
2006.

[13] N. Hua, B. Lin, J. J. Xu, and H. C. Zhao, “BRICK: A novel exact active
statistics counter architecture,” in Proc. ANCS, 2008.

[14] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Maintaining statistics
counters in router line cards,” IEEE Microw., vol. 22, no. 1, pp. 76–81,
2002.

[15] S. Ramabhadran and G. Varghes, “Efficient implementation of a statis-
tics counter architecture,” in Proc. ACM SIGCOMM, 2003.

[16] Q. Zhao, J. J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency,” in Proc. ACM
SIGMETRICS, 2006.

[17] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of sam-
pling methodologies to network traffic characterization,” in Proc. ACM
SIGCOMM, 1993, pp. 194–203.

[18] Cisco, “Cisco ios netflow data sheet,” [Online]. Available:
http://www.cisco.com

[19] N. Duffield, C. Lund, and M. Thorup, “Learn more, sample less: Control
of volume and variance in network measurement,” vol. 51, pp. 1756–
1775, 2005.

[20] F. Hao, M. S. Kodialam, T. V. Lakshman, and H. Zhang, “Fast, memory-
efficient traffic estimation by coincidence counting,” in Proc. IEEE
INFOCOM, 2005.

[21] R. Morris, “Counting large numbers of events in small registers,”
Commun. ACM, vol. 21, no. 10, pp. 840–842, 1978.

[22] L. S. Husch, “Visual calculus,” [Online]. Available:
http://archives.math.utk.edu/visual.calculus/ 0/inverse.6/index.html

[23] M. Luczak, “Concentration of measure for Markov chains with local
transitions,” in Proc. Workshop New random Geometries Recent Devel-
opments Probability, 2009.

[24] NLANR, “Passive measurement and analysis (PMA),” [Online]. Avail-
able: http://pma.nlanr.net

[25] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “DPPC-RE: TCAM-
based distributed parallel packet classification with range encoding,”
vol. 55, pp. 947–961, 2006.

[26] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hash-
ing functions for high performance computers,” IEEE Trans. Comput.,
vol. 46, no. 12, pp. 1378–1381, 1997.

[27] M. John and S. Smith, ch. 14.7.1. in Application-Specific Integrated
Circuits, Addison-Wesley, 1997.

[28] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive packet sampling for flow
volume measurement,” Tech. Rep. TR 02-040, University of Minnesota,
Dec. 2002.

[29] K. He, C. Hu, J. Jiang, Y. Zhou, and B. Liu, “A2C: Anti-attack counters
for traffic measurement,” in Proc. IEEE GLOBECOM, 2010.

Chengchen Hu received his Ph.D. from the De-
partment of Computer Science and Technology,
Tsinghua University, in 2008. He worked as an
Assistant Research Professor at Tsinghua University
from June 2008 to December 2010, and is now an
Associate Professor in the MOE Key Lab for Intelli-
gent Networks and Network Security, Department of
Computer Science and Technology, Xi’an Jiaotong
University. His main research interests include com-
puter networking systems, network measurement,
and monitoring.

Bin Liu was born in 1964. He is now a Full
Professor in the Department of Computer Sci-
ence and Technology, Tsinghua University. His
current research areas include high performance
switches/routers, network processors, high speed
security, and greening the Internet. Bin Liu has
received numerous awards from China including the
Distinguished Young Scholar of China and the in-
augural Applied Network Research Prize sponsored
by ISOC and IRTF in 2011.

Sheng Wang received his B.S. from the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2008. He is now a
master’s student in the Department of Computer
Science and Technology at Tsinghua University.

10 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

Jia Tian received his B.S. from the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2008. He is now a
master’s student in the Department of Computer
Science and Technology at Tsinghua University.

Yu Cheng received the B.E. and M.E. in electri-
cal engineering from Tsinghua University, Beijing,
China, in 1995 and 1998, respectively, and the Ph.D.
in electrical and computer engineering from the
University of Waterloo, Waterloo, Ontario, Canada,
in 2003. From September 2004 to July 2006, he was
a Postdoctoral Research Fellow in the Department
of Electrical and Computer Engineering, University
of Toronto, Ontario, Canada. Since August 2006,
he has been with the Department of Electrical and
Computer Engineering, Illinois Institute of Tech-

nology, Chicago, Illinois, USA, as an Assistant Professor. His research
interests include next-generation Internet architectures and management, wire-
less network performance analysis, network security, and wireless/wireline
interworking. He received a Postdoctoral Fellowship Award from the Natural
Sciences and Engineering Research Council of Canada (NSERC) in 2004,
and a Best Paper Award from the conferences QShine 2007 and IEEE ICC
2011. He received the National Science Foundation (NSF) CAREER award
in 2011. He served as a Co-Chair for the Wireless Networking Symposium
of IEEE ICC 2009, a Co-Chair for the Communications QoS, Reliability, and
Modeling Symposium of IEEE GLOBECOM 2011, and a Technical Program
Committee (TPC) Co-Chair for WASA 2011. He is an Associate Editor for
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Yan Chen is an Associate Professor in the Depart-
ment of Electrical Engineering and Computer Sci-
ence at Northwestern University, Evanston, IL. He
got his Ph.D. in computer science at the University
of California at Berkeley in 2003. His research inter-
ests include network security and the measurement
and diagnosis of large scale networks and distributed
systems. He won the Department of Energy (DoE)
Early CAREER award in 2005, the Department of
Defense (DoD) Young Investigator Award in 2007,
and the Microsoft Trustworthy Computing Awards

in 2004 and 2005 with his colleagues. Based on Google Scholar, his papers
have been cited over 3,600 times.

