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Abstract—The emerging ad hoc clouds form a new cloud computing paradigm by leveraging untapped local computation and storage
resources. An important application of ad hoc clouds is to outsource computational intensive problems to nearby cloud agents.
Specifically, for the problem of solving a linear algebraic equation (LAE), an outsourcing client assigns each cloud agent a subproblem,
and then all involved agents apply a consensus-based algorithm to obtain the correct solution of the LAE in an iterative and distributed
manner. However, such a distributed collaboration paradigm suffers from cyber security threats that undermine the confidentiality of the
outsourced problem and the integrity of the returned results. In this paper, we identify a number of such security threats in this process,
and propose a secure outsourcing scheme which not only preserves the privacy of the LAE parameters and the final solution from the
participating agents, but also guarantees the correctness of the final solution. We prove that the proposed scheme has low
computation complexity at each agent, and is robust against the identified security attacks. Numerical and simulation results are
presented to demonstrate the effectiveness of the proposed method.
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F

1 INTRODUCTION

C LOUD computing is a revolutionary paradigm of delivering
network resources, ranging from computational power and

data storage to platform and software, as a service over the
network [1]. As mobile devices are equipped with increasing
computational capability and memory, a new peer-to-peer cloud
computing model is proposed to interconnect nearby devices to
form an ad hoc cloud, in which a device can either work as
a service provider or a client of a service requester. Such an
ad hoc cloud computing model can significantly improve the
resource utilization of local devices, while providing benefits of
conventional client-server cloud computing model over existing
heterogeneous hardware [2]. Ad hoc cloud computing has drawn
many research attention on its architecture [3], service model [4],
applications [5], and security [6].

Computation outsourcing is one major application of cloud
computing, which enables resource limited cloud customers con-
duct originally impossible complex missions by outsourcing the
workloads to the cloud. In spite of such a benefit, cloud users
should seriously consider the potential risks before resorting to
the cloud, since the user has little control over the outsourced
data and the behavior of the remote cloud entities. Thus, a secure
outsourcing scheme should firstly have the capability to hide both
the sensitive information contained in the problem parameters and
the computation results from the participating cloud agents and
malicious eavesdroppers as well. In fact, cloud service providers
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have various motivations to behave dishonestly. For example, the
cloud service providers may perform slothfully to save computa-
tional resource or power. There also exists the possibility that a
cloud service provider is compromised by a malicious attacker,
thus intentionally misleading the client to a false computation
result. Therefore, for a secure outsourcing scheme, it is important
that the correctness of the returned results of the outsourced
problem can be verified and guaranteed to be correct. Moreover,
the local computation complexity in a secure outsourcing scheme,
including that incurred by certain privacy preserving and result
verifying computations, should not exceed that by locally solving
the original problem alone.

In [7], Gentry constructed the first fully homomorphic encryp-
tion (FHE) scheme, which allows computing arbitrary functions
with encrypted data. Following [7], many schemes, e.g., [8], [9]
were proposed to improve the efficiency of FHE for practical
applicability. An important technique for efficient verification of
arbitrarily complex computations [10], [11] is interactive proofs,
where a powerful prover can convince a weak verifier of the
truth of statements that the verifier could not compute on its own.
Homomorphic encryption and computation verification techniques
construct the foundations of secure outsourcing scheme in a
client-server cloud setting. However, in an ad hoc cloud setting,
the aforementioned techniques are no longer applicable. Unlike
the traditional cloud computing model which features in one
or multiple powerful servers, in the ad hoc cloud network, the
resource pool is formed by leveraging untapped resources from
local devices, each of which has only limited computational power.
Resource limited entities in the ad hoc cloud are often unfordable
to perform the FHE schemes and verification protocols.

Solving linear algebraic equations (LAEs) Ax = b is one of
the most frequently used mathematical tool for a large variety
of real-world engineering and scientific computations. Unlike
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most of other secure outsourcing works in the traditional cloud
computing model with one or several powerful cloud servers, in
this paper, we study the problem of secure outsourcing the LAE
problem in an ad hoc cloud network comprised of multiple agents
with limited computation resources. The work in [12] proposes
a consensus-based distributed algorithm, which enables multiple
agents to solve the LAE problem in a collaborative manner. In
this algorithm, each agent is assigned one (or possible multiple)
row of [A, b], say [Ai,bi]. Starting with a feasible solution
to its subproblem Aix = bi, each agent iteratively updates
its local solution based on solutions from neighboring agents.
Eventually, all agents will agree on a consensus, which is the exact
solution of the original LAE problem. Although this algorithm
is suitable to outsourcing an LAE problem to an ad hoc cloud
network, the collaborative nature makes it vulnerable to deliberate
erroneous updates. A malicious agent is able to mislead the final
consensus to a wrong solution by misreporting its local solution
to neighbors. What’s worse, continuous incorrect updates will
impede the progress of consensus and even prevent other agents
from reaching an agreement.

In this paper, we propose a secure outsourcing scheme for
solving LAE problems in ad hoc cloud. Through the analysis of
potential security threats, we categorize them into three classes
based on the corresponding effects. We define our design goals
for a secure outsourcing scheme as to preserve LAE problem
privacy and guarantee correct final returned solution. On the
basis of the consensus-based algorithm presented in [12], we
design a new robust algorithm which can prevent malicious (or
compromised) agents from manipulating the final solution by
injecting unfaithful intermediate computation results during the
consensus process. However a malicious or compromised cloud
agent may still diverge the algorithm and hence launch a denial
of service attack by continuously injecting unfaithful data dur-
ing the consensus process. To deal with this issue, we further
propose a misbehavior detection mechanism. The main idea of
the detection mechanism is that neighboring agents cooperatively
verify each other’s intermediate computation results at each step
of the consensus process with a probability p. Such a detection
mechanism, together with the fault tolerance feature of the robust
consensus algorithm, can protect the integrity and availability of
the solution to the outsourced LAE. In addition, another building
block of our proposed secure outsourcing scheme is a privacy
disguising technique, which preserves the privacy of the sensitive
information contained in both the LAE problem parameters and
the final solutions.

The main contributions of this paper can be summarized as
follows.

1) We design a robust version of the consensus-based al-
gorithm for distributively solving an LAE problem with
false tolerance.

2) Based on the robust distributed algorithm, we design a
secure outsourcing scheme for LAE in the ad hoc cloud
environment, with the capabilities of privacy preserv-
ing and misbehavior detection. The performance of the
scheme is analyzed theoretically.

3) We demonstrate the performance of the proposed out-
sourcing scheme through both theoretical analysis and
numerical results. We also conduct simulations to evalu-
ate the performance of the scheme in WiFi based ad hoc
clouds with packet losses.

The remainder of this paper is organized as follows. Section
2 reviews more related work. Section 3 describes the system
model and preliminaries on distributed algorithms for solving
LAE problems. Section 3.2 presents the attack model and our
design goals. Section 4 presents details of the proposed algorithm.
Theoretical performance analysis is given in Section 5, followed
by numerical results in Section 6. Section 7 discusses collusion
attacks and Section 8 concludes this paper.

2 RELATED WORK

Recently, there have been steady progress in the study of securely
outsourcing computationally intensive problems such as linear
equations [13], linear programming [14], sequence comparisons
[15] and DNA searching [16]. For example, the work in [17]
proposes a protocol for secure and private outsourcing of linear
algebra computations, especially the problem of multiplying large-
scale matrices, to either two or one remote server(s). The approach
is based on the secret sharing scheme proposed in [18], without
carrying out expensive cryptographic computations. In [14], secure
outsourcing of a linear programming problem is investigated
where malicious behavior can be detected by a computation result
verification mechanism by exploiting the properties of the dual
of the original LP problem, while the problem confidentiality is
preserved by using random matrix and vectors. Based on random
scaling and permutation, matrix masking algorithms for secure
outsourcing matrix inversion and matrix determinant computation
are proposed respectively in [19] and [20].

There are a few works on secure outsourcing of the LAE
problem. The work in [21] first introduces several mechanisms
for secure outsourcing of scientific computations, which includes
the disguising scheme for outsourcing LAE problem. The work in
[13] proposes a secure scheme for outsourcing a large-scale LAE
problem, where they applied the Jacobi method for solving the
LAE problem and preserved the privacy by hiding the problem in-
formation based on a homomorphic encryption scheme. A secure
outsourcing scheme for LAE problem based on conjugate gradient
method (CGM) is presented in [22], and the work in [23] develops
a general method for disguising the LAE problem. However, these
existing studies focused on outsourcing this problem to a single
remote cloud server, which is essentially a centralized scheme.
In this paper, we consider a different application scenario—
outsourcing the LAE problem to an ad hoc cloud, with the cloud
agents involved in solving the problem in a completely distributed
manner.

Distributed solutions for large-scale LAE problems have been
studied. The mainstream approach is to decompose the original
problem into smaller ones which can be solved by parallel proces-
sors [24], [25]. However, these parallel algorithms often assume
special structure of the matrix A. Recently with the advances
in distributed consensus algorithms [26], [27], a consensus-based
distributed solution to the LAE has been propose in [12]. Instead
of performing problem decomposition, the algorithm assigns each
agent one (or possibly multiple) row of A and b, say Ai and
bi, respectively. Each agent starts with a feasible solution to the
subproblem. By applying an averaging consensus algorithm where
each agent only talks to its neighbors, the solutions obtained
by the agents can finally converge to the correct solution of the
original problem, and the convergence speed is exponentially fast.
Compared to classic algorithms, for example, Jacobi iterations and
the classical Kaczmarz method, the consensus-based algorithm
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does not make special assumptions about A, and does not require
the network topology to be strongly complete. It has been shown in
[12] that, if the network topology of the agents is repeatedly jointly
strongly connected over time, the convergence is guaranteed and
the correct solution A−1b can be obtained.

The consensus-based algorithm provides an interesting and
promising way for outsourcing a large-scale LAE problem to a
number of distributed agents, each of which has only limited com-
putation resources. Despite such merit, the algorithm is susceptive
to several malicious attacks ranging from sensitive data probing
and disobeying the updating rule as the algorithm runs. With
potentially many attack strategies, an adversary can manipulate the
final results and even cause the whole algorithm diverge. To the
best of our knowledge, this paper for the first time systematically
studies the security issues in outsourcing an LAE problem to a
distributed ad hoc cloud.

3 PROBLEM STATEMENT AND PRELIMINARIES

3.1 System Model

In this paper, we study a computation outsourcing problem in an
ad hoc cloud system, as illustrated in Fig. 1. The ad hoc cloud
comprises of multiple agent nodes, each of which is capable of
performing certain computation tasks within its computational
resource limit. The physical devices associated with these agents
can be desktops, mobile devices, or servers. The connection
between agents can either be wired or wireless. Although the
consensus-based algorithm we considered works with dynamic
network topologies, as long as the network topology is repeatedly
jointly strongly connected [12], for ease of presentation, in this
paper we only consider the static network topology. One of these
agents is interested in solving a large-scale LAE problem in the
form Ax = b, where A ∈ Rn×n is a non-singular constant
matrix, b ∈ Rn is a constant vector, and x ∈ Rn is the unknown
variable to be solved. Assume that n is large such that solving this
LAE problem is computationally intensive considering the limited
computing power at one cloud agent (solving this problem directly
takes time O(n3)). To distinguish the problem outsourcer from
other agents in the ad hoc cloud, the outsourcer agent of this LAE
problem is denoted as the client. Thus, the client resorts to the
ad hoc cloud in which other agents who are willing to share their
computation power, either voluntary or paid, can collaboratively
work towards solving this LAE problem.

. . .
Problem
Disguising

Solution
Recovery

Client

Ad Hoc
Agents

Fig. 1. Overview of the distributed outsourcing scheme.

Through a distributed algorithm, a solution to the outsourced
LAE problem can be eventually reached via collaboration over
all the participating agents in the ad hoc cloud. However, in
most of the real world application scenarios, there potentially
exists malicious agents aiming to break down the problem solving
process for a variety of motivations. For example, they may either
perform selfishly by claiming the revenue but not fulfilling their
tasks, or spitefully preventing the client from deriving the correct
solution. Moreover, the parameters and results of the outsourced
problem may contain privacy information that the client is not
willing to share with other agents. In this paper, the private
information in the LAE contains magnitudes and interrelationships
of the elements in A, b, and the solution x∗, and the number and
positions of zero elements in these matrix/vectors.

3.2 Attack Model

In the multi-agent ad hoc cloud, each agent has a unique identity
number, e.g., the agents are indexed by 1, 2, . . . , n. All the
agents form a connected cloud network and the network-wide
time synchronization is always guaranteed. We assume that the
connectivity is known by the client. This can be achieved by
running a secure neighbor discovery process beforehand [28]. We
also assume that each message in the system is authenticated, so
that a malicious agent may record and then play back a message
but cannot modify it. For the malicious nodes, we assume that
they do not collude (the cases with colluding attacks will be
discussed in Section 7). We further assume that in each agent’s
neighborhood, the number of honest agents is greater than the
number of malicious ones.1 The communications between agents
are assumed reliable (the cases with packet losses will be evaluated
and discussed in Section 6.3).

When an LAE problem is outsourced to the ad hoc cloud, the
client will have little control over other agents involved in the
computing. Without a proper defense mechanism, a cloud agent
may perform dishonestly for a variety of reasons. We assume that
malicious agents in the ad hoc cloud, either on their own initiative
or compromised, are interested in the information contained within
the original problem parameters as well as the problem’s final
solution. Malicious agents also have the motivation to break down
the distributed algorithm, either by misleading the algorithm to
a false result or diverging the consensus of the algorithm, thus
launching a denial of service attack. In this section, we explicitly
analyze the misbehavior possibly conducted by malicious agents
and how these attacks affect the final solution.

Depending on their purposes, we specify the behavior of
malicious agents into three categories.

• Probing sensitive information: In the basic consensus-
based algorithm, each participating agent is assigned with
a row of A and the corresponding component of b. This
setup process reveals part of information of A and b. After
the consensus is finally reached, all the participating agents
will obtain the solution of the outsourced LAE problem,
which is highly undesirable, since malicious agents may

1. This local honest majority assumption is an f -fraction local model,
which has been used in many other literatures [29], [30]. Since the detection
mechanism relies on neighbor-checking and runs in a distributed manner based
on the majority rule, the above assumption guarantees that the majority rule in
each agent’s neighborhood does not generate false decisions. In our future work
we will study the performance of our scheme in the general honest majority
model.
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collude with each other to obtain more information of
A and b. Therefore, it is necessary for the outsourcing
client to disguise the original problem before sending it
to the cloud. The disguising should be able to hide the
original problem parameters as well as the solution to
the outsourced problem. How to preserve these privacy
information contained in the matrix has been previously
studied by many researchers [19], [20], [21]. However,
their solutions either reveals partial information or in-
volves O(n3) computation complexity.

• Manipulating the solution: A malicious agent can mis-
lead the algorithm to a false solution by injecting a
false intermediate result during the consensus process.
For example, at the kth iteration, malicious agent i sends
out a false intermediate result xi(k), which results in
AT
ixi(k) = b

′

i 6= bi. In the subsequent iterations, accord-
ing to the update rule in (1), AT

ixi(l) = AT
ixi(k) = b

′

i

for l > k. The algorithm will finally converge to a false
result x′, which is the solution to Ax′ = b

′
where

b′ = [b1, b2, . . . , b
′

i, . . . , bn]T.
• Diverging the consensus: Denial of service attack is a

common attack in distributed computing systems [26],
[31]. Without a proper defense mechanism, a malicious
agent can easily diverge the consensus algorithm by ran-
domly updating xi(t) in each iteration. If the malicious
agent keeps doing this, obviously the distributed consensus
algorithm will not converge. Existing detection mecha-
nisms usually require global system information [32] and
impose high computational burden to the detector [33].
A straightforward solution to prevent such an attack is
resorting to the help from other nodes during the algorithm
setup stage: distribute AT

i and bi not only to agent i, but
also to its neighbor agents so that neighboring agents can
verify each other’s updating value per step by checking
whether AT

ixi(t) = bi. A randomly chosen xi(t) by
malicious agents will not likely to satisfy this checking
equation and gets detected by their neighbors as a result.
However, a “smart” enough malicious agent can still break
the convergence of the algorithm by choosing xi(t) for
each iteration within the solution space of AT

ixi(t) = bi,
for example, resending the initial guess repeatedly. Thus
simply checking AT

ixi(t) will not prevent the solution
process from diverging, which calls for sophisticated mu-
tual verification methods.

According to the aforementioned analysis, securely outsourc-
ing an LAE problem in an ad hoc cloud requires the following
properties.

• Privacy preserving: Participating agents, during collabo-
rating with each other for solving the outsourced problem,
cannot infer the client’s privacy information contained in
the input A, b, and the solution x.

• Misbehavior detection: Misbehaving agents can be de-
tected with a high probability during participating the
outsourced computation. The validation of final solutions
can be guaranteed.

• Low complexity: The computation burden on each partic-
ipating agent, as well as the client, should be kept below
O(n3), i.e., less than that of solving the original LAE
problem by the client himself.

3.3 Preliminaries on Distributively Solving LAE

In order to allow multiple agents cooperatively solving the LAE
problem Ax = b, a distributed algorithm that can decompose the
LAE problem into smaller subproblems is the foundation. In this
paper, we build our secure outsourcing scheme over a consensus-
based distributed algorithm proposed in [12]. Compared to other
algorithms for solving the LAE problem, the consensus-based
algorithm has no special requirement on A, and achieves an
exponential convergence rate. The key idea of this algorithm is
summarized as follows.

We use boldface letters to represent column vectors and
matrices. Let x∗ be the exact solution of the LAE problem. Let
Ai be the ith column of the matrix AT and [AT

i bi] be a distinct
row of the partitioned matrix [A b], where T is the transpose
operator. Assume that there are n connected agents that forms a
network (the cases when there are less than n agents are discussed
in Section 4.2). Each agent is allocated one distinct row, and the
agent who receives the ith row is denoted as agent i. To start
the algorithm, each agent picks an initial guess of x∗, denoted
as xi(0), i ∈ [1, 2, . . . , n], such that AT

ixi(0) = bi. Let
Ki ∈ Rn×(n−1) be a matrix whose column span is the kernel
of AT

i , i.e., AT
iKi = 0 and rank(Ki) = n − 1. Each agent

iteratively updates its guess following an updating rule in the form
xi(t+ 1) = xi(t) +Kiui(t) so that, within the iteration process,
the local solution of each agent always satisfies AT

ixi(t) = bi.
In order to guarantee the convergence, ui(t) is chosen as the
least square solution to xi(t) + Kiui(t) = 1

di
(
∑
j∈Ni

xj(t)),
where Ni denotes the set of neighbor agents of agent i (i ∈ Ni
for convention), and di is the number of neighbors of agent i.
With ui(t) properly determined, the update process can then be
expressed as

xi(t+ 1) = xi(t)−
1

di
Pi

dixi(t)− ∑
j∈Ni

xj(t)

 , (1)

where Pi = Ki(K
T
iKi)

−1KT
i is the orthogonal projection on the

kernel of Ai.
For a nonsingular A, if the network topology of these agents

is a connected graph, all local solutions would reach a con-
sensus, denoted as x̂ [12]. Note that AT

i x̂ = bi holds for all
i ∈ {1, 2, . . . , n}, ensuring that x̂ is the solution of this LAE
problem. That is, Ax̂ = b.

4 SECURE LAE OUTSOURCING

Our secure outsourcing scheme for LAE consists of three basic
components: a robust consensus-based algorithm for distributedly
solving the LAE, a privacy preserving algorithm for defeating the
probing sensitive information attack, and a cooperative verifica-
tion and misbehavior detection mechanism for detecting attacks
intended to manipulate solution or diverge the consensus.

4.1 Robust Consensus-Based Algorithm

Equation (1) provides a collaborative framework for autonomous
agents to solve a large-scale LAE problem. However, the updating
rule in (1) is vulnerable to false messages, referring to our analysis
in Section 3.2. Furthermore, such an updating process incurs
high computation cost and storage requirement when the prob-
lem dimension n is very large. Specifically, the straightforward
calculation of Pi as Ki(K

T
iKi)

−1KT
i involves matrix-matrix
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multiplications which have O(n3) time complexity. In addition,
Pi(dixi(t)−

∑
j∈Ni

xj(t)) incurs matrix-vector multiplications
which take time O(n2). Storing a large-scale matrix is also an
expensive burden for some storage-constrained devices. Thus, we
are motivated to design a robust and efficient version based on the
preliminary consensus algorithm.

Observing that Pi is the orthogonal projection on the kernel
of Ai, it can be calculated as

Pi = I−PAT
i

= I− AiA
T
i

AT
iAi

, (2)

where I represents the identity matrix of compatible dimension.
PAT

i
is the orthogonal projection on AT

i and can be calculated
with time complexity O(n2). Let x̄i(t) = 1

di

∑
j∈Ni

xj(t) de-
note the average value of agent i’s neighbors’ updates. Substituting
(2) into (1), the updating process can be expressed as

xi(t+ 1) = PAT
i
xi(t) + x̄i(t)−PAT

i
x̄i(t)

=
AiA

T
i

AT
iAi

xi(t)−
AiA

T
i

AT
iAi

x̄i(t) + x̄i(t)

=
AT
ixi(t)

‖AT
i ‖2

Ai −
AT
i x̄i(t)

‖AT
i ‖2

Ai + x̄i(t)

=
bi

‖AT
i ‖2

Ai −
AT
i x̄i(t)

‖AT
i ‖2

Ai + x̄i(t), (3)

where ‖ · ‖ represents the 2-norm of a vector. For convenience of
reference, our proposed consensus-based algorithm is

xi(t+ 1) =
bi

‖AT
i ‖2

Ai −
AT
i x̄i(t)

‖AT
i ‖2

Ai + x̄i(t). (4)

The proposed algorithm (4) has low computation complexity,
as specified in Lemma 1.

Lemma 1. In each iteration of the proposed consensus-based
algorithm (4), the computational cost for agent i is O(din).

Lemma 1 directly follows the algorithm in (4). In (4), the first
term of the right-hand side is a fixed constant. Thus, each update
only needs to compute the second and the third term of the right-
hand side, which incurs time complexity O(din). Besides, each
agent only needs to store his own [AT

i bi], which is a 1× (n+ 1)
vector.

If an agent doesn’t update its local solution according to (4)
(e.g., agent i broadcasts an xi to its neighbors such that AT

ixi 6=
bi), we call that this agent conducts a false update. The proposed
algorithm in (4) is robust against a finite number of false updates,
as presented in Theorem 1.

Theorem 1. The revised consensus-based algorithm in (4) is
robust against a finite number of false updates. That is, as long as
all agents (including malicious ones) update their local solutions
according to (4) from a certain moment on, these local solutions
will converge to the correct solution.

Proof: According to (4), we can see that each update
always maintains AT

ixi(t) = bi. That is,

AT
ixi(t+ 1) = AT

i

bi
‖AT

i ‖2
Ai −AT

i

AT
i x̄i(t)

‖AT
i ‖2

Ai + AT
i x̄i(t)

= bi −AT
i x̄i(t)

AT
iAi

‖AT
i ‖2

+ AT
i x̄i(t)

= bi −AT
i x̄i(t) + AT

i x̄i(t)

= bi.

Hence, as long as the agents update their local solutions
according to (4), our algorithm always ensures that AT

ixi(t) = bi
regardless of the updates of their neighbors. Moreover, the initial
local solution of each agent can be selected randomly. If, from a
certain moment on, all the updating follows Equation (4), the past
false updates just behave as selecting a different initial value such
that those solutions can still converge to the correct solution of
the outsourced LAE problem. In contrast, a single false update
may impact the final solution of the original consensus-based
algorithm, as discussed in Section III-B

4.2 When There Are Less Than n Agents

In practice, it is unlikely to have exactly n available agents
for solving a large-scale LAE problem. Now we extend our
consensus-based algorithm to work with m agents where m < n.
For the m-agent ad hoc cloud which is assumed connected, we
partition the n rows of [A b] into m groups and assign each
agent a distinct group, as shown in Fig. 2. Consider cloud agent i,
1 ≤ i ≤ m. It runs ri instances of algorithm (4) during the con-
sensus process, where ri denotes the number of rows assigned to
it. Each of these instances can be viewed as a distinct virtual agent
responsible for a single row of [A b]. Since the computations of
all virtual agents associated with one physical agent are carried
out by the physical agent itself, these virtual agents are considered
completely connected. For two virtual agents belonging to two
different physical agents, they are considered connected if the two
physical agents are also connected. In this way, the whole system
can be viewed as a connected n-agent virtual cloud. To update the
local solution of each virtual agent, a straightforward strategy for
agent i is to send all local solutions of its associated ri virtual
agents to its neighbors. Observing that only the average value of
neighbors’ local solutions matters in updating the local solution of
an agent, the communication overhead can be lessened for agent
i by only broadcasting the average value of the ri local solutions
along with ri. With such information obtained from neighbors,
a physical agent can easily calculate x̄i(t) can then updates the
local solutions for each of its associated virtual agents.

It is worth noting that the network topology of all the virtual
agents is still a connected graph, hence the convergence of the
algorithm is guaranteed. As long as each honest agent running
its virtual agents following the algorithm in (4), the robustness
property in Theorem 1 is still valid. For the computational cost,
since all the virtual agents in agent i have the same neighbor set
(each virtual agent is a neighbor of itself), agent i only needs to
compute x̄i(t) once in each iteration. The computational cost of
x̄i(t) is O((ri + di)n) for agent i, and the computational cost of
running ri virtual agents to compute ri local solutions is O(rin).
In sum, the computational cost for agent i in each iteration is
O((di + 2ri)n).

4.3 Privacy Preserving

In order to keep confidential the LAE parameters A, b, and
the solution x, the client needs to disguise the problem before
outsourcing it to the cloud. Note that such a disguising algorithm
should have low computation complexity, since any computation
at the complexity level of O(n3) incurred at the client will
demotivate the whole outsourcing scheme. In the following, we
develop a low-complexity algorithm for disguising the outsourcing
problem.
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Agent i

(physical agent)

Virtual
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Fig. 2. Proposed scheme with less than n agents.

We start with introducing a random noise ∆x to mask the
solution x∗ of the original problem Ax = b as follows. ∆x
follows uniform distribution whose support is [−u, u], where u is
the maximum absolute value of elements in A and b.

A(x∗ + ∆x) = Ax∗ + A∆x

= b + A∆x

= b + ∆b. (5)

Thus, the client generates an n dimensional random vector ∆x,
and computes ∆b = A∆x. Then the original problem is trans-
formed into Ax = b + ∆b.

Next, we consider hiding the problem parameters A and b.
One straightforward method is to generate a random non-singular
n × n matrix Q, and outsource the problem A′x = b′, with
A′ = QA and b′ = Q(b + ∆b). However, the computation
of QA commonly has time complexity O(n3), which violates
the motivation of outsourcing. Hence, we resort to elementary
transformations to transform the LAE problem. For one thing,
all non-singular matrices with the same size are equivalent under
elementary transformations, meaning that A can be transformed to
any non-singular n× n matrix by a finite sequence of elementary
operations. For another, each elementary operation on a matrix
takes time O(n), which enables the client to control the computa-
tion complexity of the transformation of the LAE problem.

There are three types of elementary row (resp. column) op-
erations: multiplication, switching and addition. The aggregated
multiplication operation can be characterized by a diagonal matrix

Qm =


α1

α2

. . .
αn

 ,
where a1, . . . , an are random non-zero scalars. Left (resp. right)
multiplying a matrix by Qm is equivalent to multiplying the ith
row (resp. column) of that matrix with scalar ai.

Let Qπ represents the aggregated switching operation,

Qπ =
(
uπ(1) uπ(2) · · · uπ(n)

)
,

where π denotes a permutation of n elements; and ui denotes
a vector of length n with 1 in the ith position and 0 in other
positions.

An addition operation which adds row (resp. column) j mul-
tiplied by a non-zero scalar β to row (resp. column) i can be
denoted by a tuple τ , (i, j, β), where i and j are two distinct

indexes. Let Qτ denote the corresponding elementary matrix of
operation τ .

Since an arbitrary non-singular n × n matrix can be trans-
formed from A by a finite sequence of elementary operations,
e.g., QmQπQτ1 · · ·QτKA, we transform the LAE problem with
two random diagonal matrices Qm,Q

′
m; two random permuta-

tion matrices Qπ,Q
′
π and two sequences of random elementary

addition operations {Qτ1 , . . . ,QτK}, {Q′τ1 , . . . ,Q
′
τK′}.

More precisely, we respectively transform A and b into A′

and b′, where

A′ = QmQπQτ1 · · ·QτKAQ′mQ′πQ′τ1 · · ·Q
′
τ ′
K

(6)

b′ = QmQπQτ1 · · ·QτK (b + ∆b) (7)

If the client outsources the transformed LAE problem A′y = b′,
let y∗ be the returned solution. One can check that

Q′mQ′πQ′τ1 · · ·Q
′
τ ′
K

y∗ = x∗ + ∆x (8)

which indicates that the client is able to derive the solution of
original LAE problem x∗ from y∗.

For convenience, we hereby summarize the disguis-
ing/recovery algorithms for privacy preserving as follows:

1) Key Generation: The client generates a random vec-
tor ∆x, two random diagonal matrices Qm,Q

′
m;

two random permutation matrices Qπ,Q
′
π and two

sequences of random elementary addition operations
{Qτ1 , . . . ,QτK}, {Q′τ1 , . . . ,Q

′
τK′}.

2) Problem Disguising: The client computes A′ and b′

according to (6) and (7), respectively.
3) Outsourcing: The client outsources the disguised version

of the original problem A′y = b′ to the cloud.
4) Solution Recovery: After receiving the solution y∗, the

client obtains the solution to the original problem by
computing x∗ = Q′mQ′πQ′τ1 · · ·Q

′
τ ′
K

y∗ −∆x.

Lemma 2. If both K and K ′ are bounded above by O(n), the
computation complexity of the disguising and recovery algorithms
for preserving the privacy of the outsourced LAE problem is
O(n2).

Proof: Since K and K ′ are both bounded by O(n), the
computation complexity of the key generation process is O(n).
Computing A′ involves aggregated row and column multiplica-
tion; aggregated row and column switching; and K row additions
and K ′ column additions, which takes time 4n2 + (K +K ′)n =
O(n2). The complexity of calculating ∆b is O(n2) since it
involves a matrix-vector multiplication. Once obtaining b + ∆b,
b′ can be computed with complexity O(n) through K row
additions, one aggregated row switching and one aggregated
row multiplication. Similarly, to derive the solution, the client
computes x∗ = Q′mQ′πQ′τ1 · · ·Q

′
τ ′
K

y∗ − ∆x with complexity
O(n). In summary, the computation complexity for disguising and
recovery of the LAE problem is O(n2).

Remark 1. In [21], random scaling and permutations are em-
ployed to disguise a matrix. Based on a similar idea, matrix
masking algorithms for securely outsourcing matrix inversion and
matrix determinant computation problems are proposed in [19]
and [20], respectively. These methods, however, have two common
drawbacks. For one thing, since scaling and permutation cannot
mask zero elements, the amount of zero entries remains the same
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after transformation. For another, the non-zero entries in A and
A′ have the following relationship for any h, i, j, k:

a′ija
′
hk

a′ika
′
hj

=
aijahk
aikahj

.

In our algorithm, these issues can be addressed by elementary ad-
dition transformations. The proposed matrix disguising algorithm
can also be interpreted as protecting A by both left-multiplying
and right-multiplying two non-singular matrices, similar as that
in [23]. Nevertheless, our procedure has two benefits compared to
that used in [23]: i) The mask matrices in [23] are required to be
sparse in order to guarantee low complexity. We give a systematic
procedure to disguise A through a series of elementary operations
of low complexity, which avoids generating the aforementioned
two matrices directly. We hence do not require the equivalent
mask matrices in our method, e.g., M = QmQπQτ1 · · ·QτK

and N = Q′mQ′πQ′τ1 · · ·Q
′
τ ′
K

, to be sparse. This is because the
equivalent mask matrices generated by our method may be dense
as the product of extremely sparse matrices can be completely
dense [34]. ii) In our method, the client can easily control the
computation overhead of problem disguising and solution recov-
ery by adjusting parameters K and K ′, while the computation
complexity of the algorithm in [23] depends on the sparsity of
those two mask matrices whose generation method is not given in
[23].

4.4 Misbehavior Detection
In Section 3, we have analyzed the possible misbehavior taken by
malicious agents. A simple updating verification of AT

ixi(k) =
bi is effective only for detecting malicious agents who randomly
update their values in each iteration. A stronger detection approach
is to let the ad hoc agents monitor their neighbors’ updates by
double checking whether their computation is according to the
algorithm in (4). From (4), we notice that at (k + 1)th iteration,
for agent j to verify the update xi(k + 1) from agent i, agent j
requires the knowledge of AT

i , bi, and x̄i(k). During the problem
setup stage, the information distributed to agent j should include
not only [AT

j bj ], but also [AT
i bi] for i ∈ Nj . For each i ∈ Nj ,

it can send agent j the set of solution vectors it collected, i.e.,
{xl(k)|l ∈ Ni}, so that agent j can compute x̄i(k) and then
verify xi(k + 1).

We set the update process as follows: in (k + 1)th iteration,
agent i broadcasts message

Φi(k + 1) = {xi(k + 1), Ni, {xm(k)|m ∈ Ni}, Fi,k} . (9)

where Fi,k is the alarm information indicating the malicious agent
detected by i at iteration k. Fi,k = 0 if no misbehavior has been
detected; Fi,k = l if agent l is detected by agent i as a malicious
agent. To verify xi(k + 1), agent i’s neighbor agents recompute
xi(k + 1) according to (4) using the information of AT

i , bi and
xm(k) contained in Φi(k + 1). If agent j detects its neighbor i
conducts a malicious behavior, in its next broadcasting message
Φi(k + 2), it sets Fj,k+1 = i. Based on our assumptions that the
majority of agents are honest within any agent’s neighborhood,
a malicious agent will be monitored by more than half of its
neighbors. Thus more than half of its neighbors will generate
alarm messages reporting the malicious agent. Once there exists
a certain number (half of the number of i’s neighbors) of alarm
messages denoting agent i’s misbehavior in the same iteration,
agent i will be confirmed as a malicious agent and eliminated

from the cloud. The share of the outsourcing problem originally
assigned to i will then be reassigned to one of his neighbors.

It is worth noting that the cooperative detection mechanism
introduced above incurs extra computational overhead to each
agent. When agent j double checks the computation according
to (4) for its neighbor i, it incurs a workload with complexity
O(din). If agent j monitors all its neighbors, the total workload
will be O(

∑dj
1 din). Under a well-connected network topology,

for example, a complete network graph with di = n − 1 for
any agent i, in a single iteration the verification computational
overhead for each monitoring agent is O(n3), resulting the total
computation cost exceeding O(n3).

To reduce the computation overhead, we further set a verifica-
tion probability p: at each iteration, agent j will verify a received
message from its neighbors with probability p. For this probabilis-
tic verification scheme, every agent needs to keep its neighbors’
broadcast information till the end of next iteration. Suppose at
(k + 1)th iteration, agent j receives an alarm message Fm,k = i,
then agent j will double check xi(k) with probability 1, thus
requiring the knowledge of Φi(k). The system parameter p can
be tuned to balance the detection performance and computational
overhead. The verification algorithm is summarized in Algorithm
1.

Remark 2. When the network is well connected, the verification
process will introduce heavy computational overhead. For exam-
ple, if the network topology is a complete graph, even with a
verification probability p, the computational cost for each agent
is O(pn3) in each iteration. However, the agents may use a
subgraph of the well-connected network topology as their logical
network graph to run the algorithm. As long as the logical network
graph is connected, our algorithm will converge. In this case, the
computational cost for one agent in each iteration will be reduced
to O(pd′2n), where d′ is its degree in the logical network graph.
For example, in our simulations, we use an Erdős-Rényi (ER)
random graph G(n, lnnn ), in which the average node degree is
lnn. In this case, on average, the computational cost for each
agent in a single iteration is O(pn(lnn)2).

When a malicious agent i injects an unfaithful intermediate
result, each of its di neighbors will verify its update with proba-
bility p. The probability that malicious agent i successfully injects
a single unfaithful intermediate result without being identified
by its neighbors is P1 = (1 − p)di . By Theorem 1, injecting
a finite number of unfaithful intermediate results will not affect
the final solution, so the malicious agent should inject unfaithful
intermediate results from time to time in order to diverge the
algorithm. The probability that malicious agent i successfully
injects m unfaithful intermediate results without being caught is
Pm = ((1 − p)di)m, which decreases exponentially in m. As
m goes to infinity, such a malicious agent will be detected by its
neighbors almost surely.

4.5 Main Scheme
In the above, we have developed three important components for
secure LAE outsourcing. Here we integrate the components into a
complete secure LAE outsourcing system consisting three stages.

• Setup Stage: In this very first phase, the client generates
the secure key and disguises the problem using the pro-
posed algorithm in Section IV-C. After the problem dis-
guising phase, the client distributes transformed problem
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Algorithm 1: Verification process of agent i at iteration k+1

INPUT: Φi(k + 1), Φi(k), Aj , bj∀j ∈ Ni, p ;
OUTPUT: Fi,k, Fi,k+1;
for j ∈ Ni do

if Fj,k 6= 0 and Fj,k ∈ Ni then
compute x′Fj,k

(k) by (4);
if x′Fj,k

(k) 6= xFj,k
(k) then

Fi,k = Fj,k;
end

end
randomly choose m from (0, 1);
if m < p then

compute x′j(k + 1);
if x′j(k + 1) 6= xj(k + 1) then

Fi,k+1 = j;
end

end
end

parameters A′ and b′ to corresponding agents according
to the following rule: to agent i, the client distributes
A

′T
i , b

′
i, and {A′T

j , b
′
j |∀j ∈ Ni}.

• Distributed Computation Stage: At iteration 0, each
agent i picks one initial solution xi(0) randomly. At
iteration k + 1, k ≥ 0, agent i performs the cooperative
verification algorithm Algorithm 1, updates its consensus
value xi(k + 1) by (4), and then finishes iteration k + 1
by broadcasting the updating message Φi(k + 1) to its
neighbors. Agent i will terminate the consensus process if

max
j∈Ni

|xi − xj |∞ ≤ ε (10)

holds for consecutive 2L step, where | · |∞ represents the
infinity-norm of a vector and L is the diameter of the
underlying network graph.

• Final Solution Stage: The distributed average consensus
algorithm will achieve a final convergent point x̄, which is
the solution of the transformed problem, i.e., y∗ = x̄. The
client can then transform the solution to that of the original
problem by computing x∗ = Q′mQ′πQ′τ1 · · ·Q

′
τ ′
K

y∗ −
∆x, referring to Section 4.3.

5 PERFORMANCE ANALYSIS

5.1 Convergence Analysis
With the distributed consensus-based algorithm, each agent up-
dates its local solution by utilizing the information from its neigh-
bors. A critical issue in the algorithm design is the convergence
performance. The local solutions of all the agents need to not
only reach a consensus but also converge to the exact solution
of the LAE problem. Furthermore, a fast convergence rate is
preferred. Without false update, our revised robust consensus-
based algorithm yields the same local solutions as the original
algorithm, whose correctness has been proved in [12]. According
to Theorem 1, our algorithm is able to tolerate finite number
of false updates. Besides, the monitoring scheme would prevent
malicious agents from sabotaging the consensus process continu-
ously. Therefore, local solutions in our algorithm can eventually
converge to the exact solution of the LAE problem. Here, we
provide some insights on the convergence rate of our scheme.

Let x∗ be the exact solution of the LAE. For ease of pre-
sentation, we conduct analysis based on the updating process
xi(t + 1) = PAT

i
xi(t) + x̄i(t) − PAT

i
x̄i(t). Suppose that the

local solution at agent i, after k + 1 iterations, deviate from x∗

with a value of ei(k+ 1). Since PAT
i

+ Pi = I according to (2),
we have

ei(k + 1) = xi(k + 1)− x∗

= PAT
i
xi(k) + Pi

∑
j∈Ni

xj(k)

di
− (PAT

i
+ Pi)x

∗

=
AiA

T
i

AT
iAi

(xi(k)− x∗) + Pi

∑
j∈Ni

xj(k)

di
−Pix

∗

=
AT
i (xi(k)− x∗)

AT
iAi

Ai + Pi

∑
j∈Ni

xj(k)

di
−Pix

∗

=
bi − bi
AT
iAi

Ai + Pi

∑
j∈Ni

(xj(k)− x∗)

di

= Pi

∑
j∈Ni

ej(k)

di
. (11)

Let D be the adjacency matrix corresponding to the underlying
graph of the network and H = diag( 1

d1
, . . . , 1

dn
)D. Let c(k +

1) = [eT
1(k+ 1), eT

2(k+ 1), . . . , eT
n(k+ 1)]T be the deviation of

all agents after k + 1 iterations. Then, according to (11),

c(k + 1) = PGc(k), (12)

where

P =

P1 · · · 0
...

. . .
...

0 · · · Pn

 , G = H⊗ I,

with ⊗ denoting the Kronecker product. P ∈ Rn
2×n2

is a block
diagonal matrix which is determined by the matrix A in the LAE
problem, while G ∈ Rn

2×n2

is determined by the connectivity of
the network.

For a square matrix M, let ρ(M) denote its spectral radius,
i.e., the maximum modulus of all its eigenvalues. Since every Pi is
a projection matrix, ρ(Pi) = 1 holds for all i, and hence ρ(P) =
1. It is easy to see that H is a stochastic matrix. Therefore, G is
also a stochastic matrix and ρ(G) = 1. According to (12), the
convergence rate of our scheme is bounded above by the spectral
radius of the iteration matrix ρ(PG). With connected network
topology and nonsingular A, it is proved in [12] that all local
solutions would converge to the exact solution exponentially fast,
indicating ρ(PG) < 1 such that limk→∞(PG)k = 0.

Based on aforementioned analysis, two factors affect the
convergence rate of our algorithm. The first one is the condition
number of the matrix A, which characterizes how inaccurate the
solution will be after approximation. The work in [35] investigates
the influence of a matrix condition number on the convergence
rate of iterative methods such as Jacobi method and Gauss-Seidel
method. Let x̂ denote the local solution such that Ax̂ = b̂. If the
condition number of A is large, the deviation between x̂ and x∗

would be large even if b̂ is close to b. Thus, an ill-conditioned A,
albeit nonsingular, can yield a poor convergence rate, meaning that
ρ(PG) is very close to 1. In order to improve the convergence
rate, several preconditioning techniques have been proposed to
transform A with respect to different iterative methods [36], [37],
[38]. Certain types of matrices, such as diagonally dominant
matrices, could achieve a good convergence rate as indicated
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in on our simulations. In this work, we focus on the security
aspect of the LAE outsourcing problem, analyzing which types
of matrices are suitable to our consensus based algorithm or
studying the preconditioning techniques for that algorithm is out
of scope of this work. Therefore, we employ diagonally dominant
matrices to conduct the simulations. The other factor affecting
the convergence rate is the connectivity of the network graph.
The relationship between the convergence rate and the adjacency
of the network will be discussed later, where we present some
numerical results concerning the impact of connectivity on the
total computation time of one agent.

5.2 Security Analysis
5.2.1 Privacy Preserving
Note that the transformation keys ∆x, Qm, Q′m, Qπ , Q′π and
{Qτ1 , . . . ,QτK}, {Q′τ1 , . . . ,Q

′
τK′ } are kept local with the client

throughout the updating process. The only information that a
malicious agent i could obtain is [A′

T
i b
′
i], [A′

T
j b
′
j ], for some

or all j ∈ Ni, and the solution y∗ of the transformed problem.
Considering that the network may be completely connected, let’s
assume an adversary obtains A′, b′, and the solution to the
disguised problem y∗.

We first consider the output privacy, x∗ =
Q′mQ′πQ′τ1 · · ·Q

′
τ ′
K

y∗−∆x. As ∆x is a random n-dimensional
vector, the possible attack strategy for an adversary is statistical
attack, which takes the advantage of the distribution information
of ∆x to approximate the solution x∗. In our disguising scheme,
since x∗ is also masked by the series of elementary operations,
each element in the masked x∗ is a linear combination (with
random weights) of all elements in x∗, hence protecting x∗

against statistical attack. In other words, no information of x∗ can
be obtained by the adversary. Similarly, an adversary cannot learn
b. With respect to A, due to both elementary row and column
transformations, each element is also a random combination of all
elements. Without the knowledge of those elementary operations,
an adversary cannot determine A. However, since the elementary
operations do not change invertibility and dimension of the input
matrix, our scheme is not indistinguishable under chosen-plaintext
attack (IND-CPA). Since all non-singular matrices of the same
size are equivalent under elementary transformations, the client
can improve the security level of the disguising scheme by
increasing K and K ′. However, to guarantee O(n2) local
computation complexity, both K and K ′ must be bounded above
by O(n).

5.2.2 Misbehavior Detection
A malicious agent trying to sabotage the algorithm continuously
will almost surely be detected. Now we consider the situation that
a malicious agent broadcasts a false alarm message F(i,k) = j
accusing an honest agent j for updating a false value at iteration
k. Suppose there is a common neighboring agent of agent i
and j. Upon receiving this false alarm at iteration k + 1, this
common neighbor verifies Φj(k) with probability 1 and finds that
Φj(k) is actually correct. In other words, with honest common
neighbors, the malicious agent has no way to cheat others by
sending false alarm messages. Since malicious agents are assumed
not colluding, the probability that two fake alarms on the same
integrity agent in one iteration is negligible. In summary, we have
the following deductions: malicious behavior that can sabotage the
algorithm can be detected by probability infinitely close to 1; the

probability that falsely detecting an integrity agent as a malicious
one is negligible.

5.3 Computation Complexity Analysis

Low computation complexity is one of our design goals. For one
thing, due to lack of computation resource, an individual agent
may not afford time-consuming computation. For another, if the
total time cost is much longer than that by solving the LAE
problem locally, the client would also be reluctant to outsource
the problem. The following theorem gives the total computation
complexity for the client and participatory agents throughout the
outsourcing process.

Theorem 2. Through the secure outsourcing process, the local
computation complexity for the client is O(n2); the average
computation complexity for each agent is O(l(dp+ 1)dn), where
l is the number of iterations to reach the consensus and d is the
average degree of the network graph.

Proof: For the client, the only computation burden stems
from the problem disguising and solution recovery. By Lemma 2,
the disguising computation complexity is O(n2). For recovering
the solution, the client computes x∗ = Q′mQ′πQ′τ1 · · ·Q

′
τ ′
K

y∗−
∆x which incurs complexity O(n). Thus, the total computation
complexity for the client is O(n2).

For each agent, it performs two tasks at each iteration—
updating its local solution and probabilistically monitors its neigh-
bors. Checking the message from neighbors has the same time
complexity as updating its solution which is O(din) by Lemma
1. Thus, the expected complexity within one iteration for an agent
isO((dp+1)din) and the total average complexity for each agent
can be given as O(l(dp+ 1)dn).

Based on Theorem 2, the average computation complexity for
each agent is related to the network graph and number of steps
to reach consensus. When d � n, the computation complexity
for each agent approximates to O(ln). Through extensive simu-
lations, we notice that for a diagonal dominant A, the convergent
step is roughly bounded by O(n), resulting in that the average
complexity for each agent is less than O(n2) which is one-
order lower than the computation complexity of solving the LAE
problem directly.

5.4 Communication Complexity Analysis

The main communication burden for the client is to distribute the
disguised problem. As A′

T
i and b′i are distributed not only to agent

i, but also to its neighbor agents, on average, the client needs to
send d + 1 copies of disguised LAE problem, incurring O(dn2)
communication overhead.

For simplicity, we use the amount of data exchanged between
agents to characterize the communication complexity for each
agent, regardless of the scheduling protocol. At each iteration,
agent i broadcasts message Φi. To update its local solution,
it also needs to receive di messages from its neighbors. Since
each message contains the current solution of an agent and local
solutions of its neighbors in the previous round, the average
size of one message is O(dn). On average, an agent needs to
send and receive totally d + 1 messages. Therefore, the average
total communication complexity for each agent can be given as
O(l(d+ 1)dn) = O(ld2n).
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6 NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed scheme in terms of both efficiency
and robustness. We employ a PC with Intel Core 2 Quad CPU
of 2.34 GHz and 4 GB memory to run the problem disguising
process at the client. The consensus-based LAE solving process is
performed by memory optimized instance (r3.2xlarge) on Amazon
Elastic Computing Cloud (EC2). The virtual core of the employed
instance is equivalent to an Intel Xeon E5-2670 v2 processor,
whose running frequency is comparable to common desktops or
mobile devices. We also develop simulation codes using Python
with the NumPy package extension.

6.1 Convergence performance
Similar as in [13], we generate random diagonally dominant
matrices to construct the LAE. We use an Erdős-Rényi (ER)
random graph G(n, q) [39] to model the connectivity of the
cloud agents. According to the analysis in Section 5.1, the con-
nectivity of the underlying graph affects the convergence rate
of our algorithm. Intuitively, the convergence can be reached at
a faster speed under a graph with better connectivity. However,
the computation complexity per iteration for an agent is O(din),
which implies that a lower average degree can bring benefit in
terms of computation time. Fig. 3 illustrates the trade-off between
the time complexity per iteration and convergence time under
different graph connectivity. To guarantee the connectedness of
the network topology, we use the union of an n-agent cycle and
the ER graph generated by G(n, q) model as the network graph.
In an extreme case, the underlying graph is a cycle with average
degree 2 when the probability q equals to 0. Fig. 3 shows the
relationship between the connectivity probability q and the total
running time (equivalently the number of convergence steps) for
each agent in a 1000-agent network.
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Fig. 3. Total computation time per agent and number of convergence
steps versus probability of the ER graph.

As shown in Fig. 3, although the number of convergence
steps decreases as the network connectivity increases, the total
running time for each agent is dominated by the time complexity
per iteration. This is due to the fact as in Theorem 2 that the
computation time grows in the order of O(l(dp + 1)dn), which
is O(d2) of the average network degree d but O(l) of the number
of convergence steps l. The results also show that the number
of convergence steps decreases exponentially as the connectivity

improves. When the probability q > 0.1, only marginal reduction
of convergence steps can be achieved. Since the average degree of
the underlying graph d ≈ nq, the time complexity per iteration
reduces linearly when q decreases. Especially, as compared to a
cyclic topology (i.e., q = 0), the computation time can be lowered
by adding shortcuts to the cycle. This is because such a topology
could benefit from the dramatical reduction of convergence steps.
In the following simulations, we set q = lnn

n , which is the sharp
threshold for the connectedness of G(n, q) and corresponds to a
relative sparse topology [39].

The computation cost of our scheme with respect to the
LAE problem dimension n is given in Table 1. To illustrate the
efficiency of our scheme, we also locally solve the same problem
using the existing Jacobi method [40]. For problem disguising,
we set the amount of row and column addition operations equal to
the problem size, i.e., K = K ′ = n. As shown in the table,
for the problem of size n = 10000, the problem disguising
algorithm only takes less than 8 seconds. Moreover, for solving
the LAE, approximately 2.5 hours are needed by the Jacobi
method, while in contrast the computation time required by each
agent using the proposed consensus-based algorithm is less than
7 seconds. With respect to the memory occupation, each agent
needs to store a couple of 10000 × 1 vectors. Each vector, of
size 10000 × 8Bytes ≈ 80KB, is significantly shorter than the
memory usage by the local Jacobi method which requires at least
100002 × 8Bytes ≈ 800M.

6.2 Security performance
We adopt the following two metrics to evaluate the security
performance of the proposed scheme — root mean square error
(RMSE) and mean standard deviation (MSD):

RMSE =
1

n

n∑
i=1

‖xi(t)− x∗‖, (13)

MSD =
1

n
‖xSD‖1, (14)

where ‖ · ‖1 represents the l1-norm of a vector; xSD is the
standard deviation vector with every component being the standard
deviation of the value in the corresponding component of all local
solutions. RMSE and MSD characterize the error between all local
solutions and the exact solution.

As discussed in Section 3, without our robust algorithm, a
malicious agent can manipulate the final results with a one-time
false update. This phenomenon is illustrated in Fig. 4, where a
500-agent ad hoc cloud is used in the simulations. At the 500th
iteration, a malicious agent injects a false update (see the spike
at iteration 500 in Fig. 4(a)). In presence of the malicious agent,
final consensus can be reached as shown in Fig. 4(a). However,
the RMSE as shown in Fig. 4(b) indicates that the algorithm
eventually converges to an incorrect solution.

When the proposed robust consensus-based algorithm is im-
plemented, we apply the same attack at 100th, 300th and 500th
iterations. Fig. 5 shows that these three false updates do not
mislead normal agents to an incorrect solution. Since each agent’s
next update is only determined by the current updates of its
neighbors, the false update can only influence the next update
of the malicious agent’s own neighbors. However, as illustrated in
Fig. 5(b), these attacks impose little impact on the convergence
process. Despite some impulses, all the agents are on the right
course of agreeing on the final solution. This is because that these
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TABLE 1
Computation Overhead

Problem size n 1000 2000 3000 4000 5000 8000 10000

Local Jacobi Method [40] 10 secs 78 secs 250 secs 10 mins 19 mins 78 mins 151 mins

Problem Disguising (our method) 0.066 sec 0.263 sec 0.599 sec 1.089 secs 1.739 secs 4.395 secs 7.225 secs

Problem Solving (our method) 0.28 sec 0.78 sec 1.33 secs 1.93 secs 2.57 secs 4.90 secs 6.84 secs
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Fig. 4. The effect of results manipulating attack when without our robust
algorithm.

impacts will be averaged out by the correct updates of honest
agents and thus decay as time goes.

We evaluate the performance of our misbehavior detection
scheme with a 1000-agent ad hoc cloud. For simplicity, we employ
a complete graph as the network topology of these 1000 agents.
The results shown in Fig. 6 are averaged over 5000 independent
runs. For each agent, the number of malicious agents in its
neighborhood is bounded above by a fraction f ∈ (0, 1). Each
malicious agent updates a false result at each iteration. A malicious
agent is considered to be detected if there are at least f -fraction
of its neighbor agents claiming its misbehavior. For example,
when f = 0.1, we say a malicious agent has been detected if
more than 10% of agents in its neighborhood have discovered
its misbehaviors. The percentage of detected malicious agents
under different fraction models is illustrated in Fig. 6(a), where
the detection probability is fixed at 0.04. When f = 0.1, almost
all malicious agents would be detected if they conduct more than
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Fig. 5. The effect of results manipulating attack when with our robust
algorithm.

20 times of attack. Fig. 6(b) shows the percentage of detected
malicious agents under different detection probabilities, where the
fraction of malicious node is fixed at 0.1. When the detection
probability p ≥ 0.02, more than 80% malicious agents would be
detected if they conduct more than 10 false updates. For a higher
detection probability, e.g. p = 0.03 and p = 0.04, almost no
malicious agent is able to conduct more than 18 times of attack
before being detected.

6.3 Performance under WiFi based ad hoc clouds

In this section, we develop C++ codes within the OMNeT++
discrete event simulation environment to evaluate the performance
of the proposed algorithm in a WiFi based wireless ad hoc cloud.
We consider that 100 cloud agents are uniformly distributed in a
500m × 500m square area. The wireless communications among
the agents are carried out based on the IEEE 802.11g standard over
the 2.4GHz channel and with CSMA/CA protocol as the MAC
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Fig. 6. Performance of the misbehavior detection scheme.

layer protocol. The agents have the same transmit power of 13dBm
and the SINR threshold for successfully decoding a message is
4dB. The default values for the CSMA/CA protocol parameters
are used. In order to run our algorithm in a synchronous manner
(to cater for the discrete-time consensus-based algorithm), the
time is equally divided into updating windows with each window
having the same length. During each window, each agent randomly
chooses a time to start the CSMA/CA based contention and only
broadcasts its local solution when it succeeds in the contention.
Each agent can update the average value x̄i(t) upon receiving
a local solution from one of its neighbors. At the end of an
updating window, each agent calculates its local solution based
on the up-to-date x̄i(t). A message may get lost due to collision
in the contention process. Also, due to channel access delay, if a
message arrives beyond the current window, it will be dropped and
is considered as a packet loss. This local solution is then stored in
the corresponding agent until broadcasted in the next window.

The performance of our consensus-based algorithm with
packet loss is illustrated in Fig. 7. The solid line characterizes
the relationship between the number of iterations required for
convergence and the dimension of the LAE problem. The dotted
line represents the results under the same network topology but
without packet loss. The scheme described in 4.2 is used when the
dimension of the problem is larger than the number of agents, in

which case we assign each agent the same number of rows. We
focus on LAE problems with A as a diagonal dominant matrix.
Fig. 7 indicates that the convergence steps approximates to O(n).
In addition, compared to the performance when without packet
loss, the case with packet loss shows that only a small number of
extra iterations is needed to reach consensus, which suggests that
the packet loss has no much impact on the consensus process in
the simulated scenarios.
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Fig. 7. Performance of consensus-based algorithm with packet loss

6.4 Performance under LAN testbed

Through row switching, a diagonally dominant matrix can be
transformed to a matrix to which Jacobi method is not applicable.
For example, a matrix which does not satisfy the convergence
condition of Jacobi method can be constructed by shifting the
rows of a diagonally dominant matrix circularly (i.e., the i-th row
is moved to the (i − 1)-th row while the 1st row is moved to the
last). In this section, we show that our proposed algorithm works
properly on matrices to which Jacobi method is not applicable,
e.g., matrices with the aforementioned structure. We establish a
LAN which consists of 5 computers to run the multiple-rows-
per-agent version of our proposed algorithm. All computers are
linked to a central hub. An LAE problem of size 5000 × 5000
is solved collaboratively by these computers. The total 5000 rows
are distributed evenly to the computers. At each iteration, each
computer broadcasts the average of 1000 local solutions, which is
a 5000-dimension vector. As the number of iterations increases,
these vectors will converge to the exact solution of the LAE
problem. To illustrate the consensus behavior of these 5 machines,
we use the normalized error (normalized deviation from the exact
solution) of one dimension of the solution and plot the consensus
traces in Fig. 8. As shown in Fig. 8, the normalized errors diminish
to zero as the number of iteration increases.

7 DISCUSSIONS

7.1 Hiding Dimension of the LAE Problem

In order to fully hide the problem dimension, the client needs to
have the capability to outsource a modified LAE with a different
dimension and recover the right solution of the original LAE
from the returned solution of the modified LAE. For example,
to increase the size of the outsourced problem, the client can
firstly augment the original problem by introducing a random r×r
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non-singular matrix S and an r-dimensional random vector z and
obtain a modified LAE as follows:(

A 0
0 S

)(
x
z

)
=

(
b
Sz

)
where r is a random integer. With this augmented problem, the
client employs the disguising scheme to mask the problem and
then outsources the disguised problem to the ad hoc cloud.

On the other hand, solving LAE problem through outsourcing
another (or multiple) computation problem with a smaller dimen-
sion is a challenging issue in the distributed context. The work in
[21] proposed a method to partition A, which enables the client
to solve A−1 by outsourcing several matrix inversion problems
with dimensions smaller than n. As the LAE problem Ax = b
can be solved by computing inversion of A if A is non-singular,
the partition method in [21] can be directly applied to decrease the
dimension of the original LAE problem. To make such method
applicable in the scenario of ad hoc cloud, distributed schemes for
securely outsourcing matrix inversion and multiplication problem
are required. We leave this to our future work.

7.2 Detecting Collusion Attack
So far, we have assumed that malicious agents do not collude.
However, in some cases this assumption may not apply. For
example, a powerful malicious agent may be able to hack one
or multiple of its neighbors and take control of their computation
and/or communications. In this section, we discuss possible exten-
sions of our misbehavior detection scheme to deal with collusion
attacks.
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Fig. 9. Collusion attack and its detection.

7.2.1 Collusion Attack Model
For ease of exposition, we use examples to illustrate how two
adjacent malicious agents collude and sabotage the consensus-
based algorithm. As shown in Fig. 9(a), assume that agents 1 and
2 are malicious ones while agent 3 is an honest one. We are to
show that the two malicious agents, if they collude, can escape the
above proposed misbehavior detection scheme. At some iteration
k, agent 2 broadcasts a correct update x2(k) to its neighbors,
while unicasts an incorrect update x′2(k) 6= x2(k) to agent 1.
Since they collude, agent 1 will move on to use x′2(k) to compute
its x1(k + 1) in the next iteration without reporting misbehavior
of agent 2. The incorrectness of x1(k + 1) cannot be detected
by agent 3, since agent 1 exactly follows the updating equation
(4). Since agent 3 is unaware of the misbehavior of agent 2 and
if agent 1 colludes with 2, agent 3 is unable to accuse agent 1. If
agent 2 is not caught by its neighbors, it can continuously inject
bad data to disturb the consensus process and finally cause the
algorithm diverge or converge to a wrong value. Note that this type
of attack cannot be done by agent 1 alone, because every message
is digitally signed by the generating agent, and the attempt for
agent 1 to forge an x′2(k) will be detected by agent 3.

7.2.2 Collusion Attack Detection
For an agent to be able to detect the above attack, it has to be
the common neighbor of a two colluding agents. For example,
as shown in Fig. 9(b), if agent 3 is the common neighbor of the
colluding agents 1 and 2, it is able to find out that the incorrect
x′2(k) contained in Φ1(k + 1) does not match x2(k) contained
in the message Φ2(k). Since messages are signed as mentioned
above, agent 3 will notice that agent 1 forwards a wrong message
without reporting misbehavior and agent 2 sends wrong messages,
thus identifies that the two agents are colluding.

The collusion attack can only be detected by the common
neighbor of these colluding agents; however, the common neigh-
bors of a colluding pair can also be malicious ones. To be able to
deal with this issue, the network topology has to satisfy that among
the common neighbors of a colluding pair, the number of honest
agents is larger than the number of malicious ones. We leave the
detailed design of a collusion tolerance outsourcing scheme as our
future work.

8 CONCLUSION

In this paper, we have proposed a secure outsourcing scheme
for solving LAE problems in ad hoc clouds, which comprises
of a robust distributed average consensus-based algorithm, a pri-
vacy preserving problem disguising technique, and a cooperative
verification mechanism. The proposed scheme can protect the
private information contained in the LAE problem parameters
and solutions, and guarantee the correctness of the final solution.
Performance analysis and numerical results have been provided
to demonstrate that the proposed scheme is efficient in terms of
computation complexity, and robust against a variety of malicious
behaviors. For the future work, we will study the detection and
mitigation mechanics for collusion attack, and how to further
reduce the communication overhead of the proposed scheme.
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