
Optimization Problems in Throwbox-
Assisted Delay Tolerant Networks:
Which Throwboxes to Activate?
How Many Active Ones I Need?

Fan Li,Member, IEEE, Zhiyuan Yin,
Shaojie Tang,Member, IEEE,

Yu Cheng, Senior Member, IEEE, and
Yu Wang, Senior Member, IEEE

Abstract—One of the solutions to improve mobile Delay Tolerant Network (DTN)

performance is to place additional stationary nodes, called throwboxes, to create

a greater number of contact opportunities. In this paper, we study a key optimization

problem in a time-evolving throwbox-assisted DTN: throwbox selection, to answer

the questions such as “howmanyactive throwboxes do I need?” and “which

throwboxes should be activated?”We formally define two throwbox optimization

problems:min-throwbox problem and k-throwbox problem for time-evolving DTNs

modeled byweighted space-time graphs.We show thatmin-throwbox problem is

NP-hard and propose a set of greedy algorithmswhich can efficiently provide

quality solutions for both challenging problems.

Index Terms—Throwbox optimization, topology design, delay tolerant networks

Ç

1 INTRODUCTION

THE intermittent connectivities in Delay Tolerant Networks (DTNs)
result in the lack of instantaneous end-to-end paths, large transmis-
sion delay and unstable network topology. Recent advances in
DTN routing [1], [2], [3], [4] have overcome limitations in connec-
tivity by relying on intermittent contacts between mobile nodes to
deliver packets. However, lack of rich contact opportunities in
many DTN applications (especially with sparse deployments) still
causes poor delivery ratio and long delay of DTN routing.

One of the solutions to improve mobile DTN performance is to
place additional stationary nodes, called ThrowBoxes (TBs), to cre-
ate a greater number of contact opportunities [5], [6], [7], [8], [9],
[10]. Throwboxes are small, battery-powered, and inexpensive
devices equipped with wireless interfaces and storage. They are
usually stationary, and can relay data between mobile nodes in a
store-and-forward way. When two nodes pass by the same location
at different time, the throwbox acts as a relay, creating a new con-
tact opportunity. Throwboxes can operate without communication
with other throwboxes. Simulations and real deployments [6], [7],
[8], [9], [10] have demonstrated that introducing small number of
active throwboxes can indeed improve the network performances
and overall throughputs. Section 2 reviews related works on
throwbox-assisted DTNs.

In this paper, we assume that a set of throwboxes is already
deployed to assist the DTN. Each throwbox can be turned on or off
adaptively to the dynamics of the DTN. One of the key design
problems in such throwbox-assisted DTNs is throwbox selection.
Given a set of locations of throwboxes, we need to answer

questions like “how many active throwboxes do I need?” and
“which throwboxes I should activate?”. This is more critical if the
budget of active throwboxes is limited. General relay placement in
static wireless networks [11], [12] has been well studied. However,
in DTNs, the nodes are mobile and the network topology evolves
over time. These features bring new challenges and make existing
relay placement algorithms not suitable in DTNs. To our best
knowledge, there is not much study on throwbox deployment or
selection except for [5], which studies a joint throwbox deployment
and routing optimization problem. However, their focus is only on
the long term average capacity. Instead, here we study how to
select active throwboxes in a time-evolving and predictable DTN
so that the network reliability is guaranteed or maximized.

We first model a time-evolving and predictable DTN as a
weighted space-time graph which includes both spacial and
temporal information about the dynamic network. We assume
that (1) the network topology (contacts between nodes) could be
known a priori or can be predicted from historical tracing data;1

and (2) there is a finite set of locations for deployed throwboxes.
In Section 3, we then formally define two throwbox optimization
problems: (1) min-throwbox problem—to guarantee certain level of
reliability, how many active throwboxes are needed and which
one should be activated? and (2) k-throwbox problem—which k

throwboxes should be activated so that the network reliability is
maximized over time? We discuss the hardness of both prob-
lems. Then, we propose a set of greedy algorithms which can
efficiently provide quality solutions for these two optimization
problems in Section 4. One of the proposed algorithms can par-
ticularly guarantee an ð1þ lnðrðGÞ=rðoptÞÞÞ approximation for
min-throwbox problem and an ð1� 1=eÞ approximation for
k-throwbox problem. Here rðGÞ is the reliability of the network
with all throwboxes activated and opt is the optimal solution.
Finally, in Section 5, we conduct extensive simulations over ran-
dom time-evolving DTNs and real life DTN traces [15] to dem-
onstrate the efficiency of the proposed methods.

2 RELATED WORKS

Throwbox-assisted DTNs are first proposed by [5] where a joint
throwbox deployment and routing optimization problem is stud-
ied and a greedy algorithm, which relies on network flow
technique to solve multiple linear programming problems, is pro-
posed. However, their study only focuses on the average capacity,
i.e., the maximum data rate that can be sent between two nodes in
long term. Different from them, we consider the detailed topology
evolving over time (not just average contact capacity) and aim to
optimize the overall routing reliability in the network. In [6],
energy efficiency inside each throwbox for throwbox-assisted
DTNs is considered. An energy-efficient architecture is proposed
and a real testbed is built over such architecture. An approximate
heuristic is given for solving the NP-hard problem at a throwbox
of meeting an average power constraint while maximizing the
number of bytes forwarded. However, their energy optimization is
only performed within each individual throwbox. There are also
other studies on analytical models of delay distribution [7], [8] and
relay strategies [9], [10] for throwbox-assisted DTNs, which do not
consider throwboxes deployment or selection.

Various relay placement problems in static wireless networks
have been well-studied, such as the static relay placement [11], [12]
or the mobile relay planning [16], [17] in static wireless sensor
networks. However, the networks studied in this paper are

� F. Li and Z. Yin are with the School of Computer Science, Beijing Institute of
Technology, Beijing 100081, China. E-mail: fli@bit.edu.cn.

� S. Tang is with the Jindal School of Management, University of Texas at Dallas,
Richardson, TX 75080. E-mail: shaojie.tang@utdallas.edu.

� Y. Cheng is with the Department of Electrical and Computer Engineering, Illinois
Institute of Technology, Chicago, IL 60616. E-mail: cheng@iit.edu.

� Y. Wang is with the Department of Computer Science, University of North Carolina
at Charlotte, Charlotte, NC 28223. E-mail: yu.wang@uncc.edu.

Manuscript received 9 July 2014; revised 23 May 2015; accepted 25 June 2015. Date of
publication 30 June 2015; date of current version 13 Apr. 2016.
Recommended for acceptance by H. M. Ammari.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2451621

1. Note that the deployed throwboxes can help collecting historical data to
model the topology evolving over time. In addition, many DTN networks do
have clear temporal patterns of evolving topology, such as space DTNs, DTNs
formed by public buses or students who share fixed class schedules. Many such
examples are given in [13], [14].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016 1663

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



time-evolving DTNs where all devices are mobile and the network
topology evolves over time.

In our previous work [13], [14], we have studied topology control
(TC) problem for time-evolving DTNs, which aims to build a
sparse space-time graph while guaranteeing the connectivity or
reliability requirement over time. Even though those studies share
the underlying space-time graph model with this paper, they are
completely different problems. In TC problem, arbitrary links
between two nodes at any time slots can be activated or not. In our
throwbox optimization problem, if a throwbox is activated, all its
spacial and temporal links over any time slots are activated.
Therefore, the problems, NP-hardness proofs, and solutions are
completely different.

3 THROWBOX OPTIMIZATION IN PREDICTABLE DTNS

In this section, we first introduce a weighted space-time graph
model and associated assumptions, and then formally define two
throwbox optimization problems.

3.1 Models and Assumptions

In this paper, we adopt the space-time graph [18], [19] to model the
time-evolving DTNs, since it can capture the evolving characteris-
tics in both spacial and temporal spaces. Assume that Vuser ¼
fv1; . . . ; vng and Vthrowbox ¼ fvnþ1; . . . ; vnþmg be the set of all individ-
ual users (wireless devices) and the set of all deployed throwboxes
in the network over a period of time T . Here, time is divided into
discrete and equal time slots, e.g., f1; . . . ; Tg. Let V ¼ Vuserþ
Vthrowbox be the whole nodes set. Since the positions of individual
nodes and the topology co-evolve over time and we assume this
information is known, then a sequence of static graphs can be
defined over V to model the interactions among nodes in the time-
evolving DTN. Fig. 1a illustrates such an example with three
mobile users (in black) and two potential throwboxes (in green).
Some of the snapshots may not be connected at all even with all
throwboxes (e.g., the first and third snapshot in Fig. 1a). This
makes routing tasks over them challenging.

We can then convert this sequence of static graphs into a space-
time graph G ¼ ðV; EÞ, which is a directed graph defined in both
spacial and temporal spaces. Fig. 1b illustrates the corresponding
space-time graph of the same network. In G, T þ 1 layers of nodes
are defined and each layer has nþm nodes, thus the whole vertex

set V ¼ fvtjjj ¼ 1; . . . ; nþm and t ¼ 0; . . . ; Tg. Two kinds of links

(spacial links and temporal links) are added between consecutive

layers in the edge set E. A temporal link vt�1j vtj
���!

(those horizontal

links in Fig. 1b) connects the same node vj across consecutive

ðt� 1Þth and tth layers, which represents that the node can carry

the message in the tth time slot. A spacial link vt�1j vtk
���!

represents a

forwarding opportunity from one node vj to its neighbor vk in the

tth time slot (i.e., vj and vk are within each other’s transmission

range in time slot t). In the figure, black links are communication

links among mobile users, while green links are communication
links with potential throwboxes. We assume that all throwboxes
have the capacity to buffer any packet for any long time period,
thus there exists temporal links of throwboxes. By defining the
space-time graph G, any communication operation in the time-
evolving network can be simulated on this directed graph.

A space-time graph G is connected over time period of T if and
only if there exists at least one directed path between each pair of

nodes ðv0i ; vTj Þ (i and j are in ½1; n�). Hereafter, we assume that the

underlying space-time graph G is always connected. This guaran-
tees that the packet can be delivered between any two nodes in the
network over the period of T . Note that a connected space-time
graph does not require connectivity in each snapshot.

To consider the reliability of lossy wireless links or inaccurate
link predictions, we also define a reliablility probability rðeÞ for each
link e 2 E, which represents the probability of a successful data
transmission over link e. Here, we assume that the reliablility prob-
ability of each link can be obtained through link estimation techni-
ques at the link and physical layers [20] or mobility prediction
techniques [21]. Given the reliability of each link, we can then define
the reliability of a path P or a structure G. Hereafter, we consider the
reliability for single-copy DTN routing where only one copy of each
message is propagated in the network. Thus, the resulting propaga-
tion path of a message is basically a single space-time path in G.
Given a path P ðu; vÞ connecting nodes u and v, the reliability of
P ðu; vÞ is the product of reliability of all links in that path. For a
given topology G (a space-time graph), we can define the most reli-

able path P Gr ðu; vÞ as the path from u to v in G with the highest reli-

ability. Let rGðu; vÞ ¼ P
e2PGr ðu;vÞrðeÞ be the reliability of path P Gr

ðu; vÞ. Then the reliability of the topology G is defined as follows

rðGÞ ¼ min
1�i;j�n

rGðv0i ; vTj Þ: (1)

Here, the reliability of the topology is the minimum path reliability
among all source-destination pairs. Another alternative way to
define the reliability is taking the summation of path reliabilities
instead of the minimum. Notice that when G is given, it is easy to
calculate rðGÞ by using any shortest path algorithms (such as the
Dijkstra’s algorithm).

3.2 Throwbox Optimization Problems

With the helps from active throwboxes there will be more forward-
ing opportunities among devices, thus keeping more active throw-
boxes usually increases the reliability of the network. However,
maintaining active throwboxes has certain cost [6]. Therefore, we
may want to carefully decide how many active throwboxes we
need and which throwboxes should be activated. We now formally
define the throwbox optimization problems over the weighted space-
time graph model, which have two versions: min-throwbox problem
and k-throwbox problem. In both definitions, n mobile users and
their contact patterns are given as the input space-time graph, and
the selection is only made over throwboxes.

Definition 1. Given a weighted space-time graph G (with n mobile users
and m potential throwboxes) and a threshold g � rðGÞ, the aim of
min-throwbox problem is to find the minimum set of active throw-
boxes such that the space-time graph H formed by these throwboxes
and all mobile users (which is a subgraph of G, e.g. in Fig. 2 with one
active throwbox) has a reliability larger than or equal to g.

The min-throwbox problem is to use minimum number of
active throwboxes while guaranteeing certain level of reliability. Its
solution gives both the number of active throwboxes needed and
who are them.

Definition 2. Given a weighted space-time graph G (with n mobile users
and m potential throwboxes) and a constant k (k � m), the aim of

Fig. 1. (a) Example of a time-evolving throwbox-assisted DTN (two green nodes
are throwboxes). (b) The corresponding space-time graph.

1664 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



k-throwbox problem is to find k active throwboxes such that the
space-time graph H formed by these throwboxes and all mobile users
has the maximum reliability.

The k-throwbox problem aims to limit the number of usage of
active throwboxes to k while achieving the best reliability. The net-
work operator may have fixed budget to activate k throwboxes.
The solution explores which k throwboxes should be activated.

Note that both newly defined throwbox optimization problems
are different from traditional relay node placement problems [11],
[12], since the network is not static but evolves over time. They are
also different from the topology control problems [13], [14], which
aim to build a sparse subgraph while guaranteeing the connectivity
or reliability. In TC, arbitrary links from any node at any time can
be activated.

3.2.1 Hardness

We first prove the NP-hardness of the min-throwbox problem.

Theorem 1. Themin-throwbox problem is NP-hard.

Proof. We first show how to reduce the set cover problem to our
min-throwbox problem. Given an instance of set cover problem
where m subsets S1; S2; . . . ; Sm are defined over a set of n ele-
ments e1; e2; . . . ; en, as shown in Fig. 3, we can construct an
instance of the min-throwbox problem as follows. We treat all
elements as mobile users and all subsets as throwboxes and
construct a space-time graph with only two time slots , as
shown in Fig. 3. For each element ei, we add one temporal link
in the first time slot, and add n� 1 spacial links to all other ele-
ments in the second time slot. For each subset Sj, we add two

temporal links and some spacial links in both time slots. If an

element ei 2 Sj, we add two spacial links e0i S
1
j

��!
and S1

j e
2
i

��!
. All

links have the same reliability of 1. The reliability requirement g
of the min-throwbox problem is also set as 1. By this overall
construction, it is easy to verify that a solution of the con-
structed min-throwbox problem is a solution of the original set
cover problem. Since the construction can be done in polyno-
mial time and the set cover problem is NP-hard, thus the min-
throwbox problem is also NP-hard. tu
The NP-hardness of the k-throwbox problem is not very

straightforward. However, if we define the reliability of the topol-
ogy as the summation of path reliability in the space-time graph,
then a similar construction in Fig. 3 can be used to reduce the k set
cover problem to our k-throwbox problem.

Theorem 2. The k-throwbox problem is NP-hard, if the topology reli-
ability is defined as summation of path reliability.

4 THROWBOX SELECTION ALGORITHMS

Since both throwbox optimization problems are computationally
hard, in this section, we propose a set of different heuristics to

carefully select active throwbox placements fulfilling the reliability
requirement or maximizing it. Once again, we assume that the
space-time graph G ¼ ðE;VÞ, including n mobile users and m
potential throwboxes over time period of T , is given as the input.
LetN andM denote the total number of nodes and links in graph G
(i.e., jVj and jEj), respectively. Notice that N ¼ ðnþmÞðT þ 1Þ and
M ¼ OððnþmÞ2T Þ.

4.1 General Greedy Approaches

Finding the optimal solutions for throwbox optimization problem
by exploring all possible combinations of throwbox selection is
very challenging and time consuming, thus, our greedy
approaches simply make a single throwbox choice in each round
by adding or removing one active throwbox from the network. The
procedure will guarantee to terminate after at most m rounds,
which is much more efficient than exponential brute force algo-
rithm. The same approaches work for both k-throwbox problem
and min-throwbox problem, and the only difference is the termina-
tion condition. One is when k active throwboxes are selected, while
the other is when the reliability requirement is achieved or void.
The detailed general methods are given in Algorithm 1 and
Algorithm 2.

Algorithm 1. Greedy-Adding Throwboxes (GrdAddTBs)

Input: the original space-time graph G (including potential
throwbox set Vthrowbox), a constant k (or a threshold g).

Output: the selected throwbox set Vselected�throwbox and the
corresponding new space-time graphH.

1: H G� fVthrowboxg and Vselected�throwbox ¼ ;
2: while jVselected�throwboxj < k (or rðHÞ < g) do
3: Greedily select a throwbox vi from all unselected throw-

boxes Vthrowbox � Vselected�throwbox, i.e., vi ¼ GreedySelect
ðVthrowbox � Vselected�throwbox;HÞ

4: H  Hþ fvig
5: Vselected�throwbox  Vselected�throwbox þ fvig
6: return Vselected�throwbox andH

Algorithm 2. Greedy-Deleting Throwboxes (GrdDelTBs)

Input: the original space-time graph G (including potential
throwbox set Vthrowbox), a constant k (or a threshold g).

Output: the selected throwbox set Vselected�throwbox and the
corresponding new space-time graphH.

1: H G and Vselected�throwbox ¼ Vthrowbox

2: while jVselected�throwboxj > k (or rðHÞ > g) do
3: Greedily select a throwbox vi from Vselected�throwbox, i.e.,

vi ¼ GreedySelectðVselected�throwbox;HÞ
4: H  H� fvig
5: Vselected�throwbox  Vselected�throwbox � fvig
6: return Vselected�throwbox and H (or Vselected�throwbox þ fvig and
Hþ fvig )

Fig. 2. Select one active throwbox (marked as blue).

Fig. 3. Illustrations for NP-hard proof of the min-throwbox problem.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016 1665



The first algorithm (GrdAddTBs) starts with a space-time
graph H only including mobile users (v1; v2; . . . ; vn). Then it
greedily adds in active throwboxes until either k throwboxes are
activated (for k-throwbox problem) or the reliability of H
reaches the required threshold (for min-throwbox problem). The
second algorithm (GrdDelTBs) starts with the original space-
time graph G with all throwboxes activated, and gradually dele-
tes active throwboxes until only k active throwboxes are left or
the reliability constraint breaks. In both algorithms, during the
process, our method greedily selects one single active throwbox
in each round based on certain criteria (as shown in Line 3 in
both algorithms, and we will introduce different criteria in the
next section). Hereafter, we generalize such greedy selection of
a single throwbox vi from a set of throwboxes Vx based on
current space-time graph H as a function GreedySelectðVx;HÞ
with vi as its output. Let us denote the time complexity of
GreedySelectðÞ as X.

Both GrdAddTBs and GrdDelTBs can obviously satisfy the
number of throwboxes requirement (or reliability requirement) of
H. For the k-throwbox problem, the time complexities of
GrdAddTBs and GrdDelTBs are OðkXÞ and Oððm� kÞXÞ, respec-
tively. For the min-throwbox problem, the time complexities of
GrdAddTBs and GrdDelTBs are Oðk maxfX;Y gÞ and Oððm�
kÞ maxfX;Y gÞ, respectively. Here, Y denotes the time complexity
of checking the reliability constraint, which is OðnðM þN logNÞÞ
if Dijkstra’s algorithm is used.

4.2 How to Pick the Best Throwbox

Now we are ready to describe two different criteria for the
GreedySelectðÞ: based on node degrees or reliability changes, to select
the best throwbox in each round to be added in or removed from
the network.

4.2.1 Based on Node Degrees

Each throwbox may bring new contact and forwarding opportuni-
ties to the mobile users in the network. One way to measure such
improvement over connectivity of a throwbox vi is its total node

degree added to the network, i.e., dðviÞ ¼
PT

t¼1ðdðvtiÞÞ, where dðvtiÞ
denotes the number of links from/to vti to/from other mobile users

at time slot tþ 1 or t. In each greedy iteration, we simply add the
throwbox with largest dðviÞ (or remove the throwbox with smallest
dðviÞ). The intuition behind it is trying to use the throwboxes with
better connectivities (larger node degree over time) to improve the
reliability among mobile users. The time complexity of
GreedySelect based on node degrees is OðmDT Þ where D is the
maximum node degree of a throwbox at time t or tþ 1. Clearly D

is bounded by 2n. Thus, the time complexity is OðmnT Þ.

4.2.2 Based on Reliability Changes

More directly, we can use the reliability changes due to adding
or removing throwbox, i.e., rðviÞ ¼ rðH þ fvigÞ � rðHÞ for
GrdAddTBs or rðviÞ ¼ rðHÞ � rðH � fvigÞ for GrdDelTBs. In each
greedy iteration, we simply add the throwbox with largest reli-
ability improvement rðviÞ (or remove the throwbox with the
smallest deduction rðviÞ). Obviously, this metric is more direct
to our optimization goal or constraint than node degrees. The
time complexity of this method is around OðmnðM þN logNÞÞ
if m rounds of n times of Dijkstra’s algorithm are used. In term
of complexity, in the worst case, this could be much larger than
those based on node degrees.

Hereafter, we use postfixes -D and -R to represent which
greedy criterion is used by the general approach. For example,
GrdAddTBs-D or GrdAddTBs-R denotes the greedy algorithm
which uses node degree metric or reliability change metric to select
a throwbox to be added in each round.

4.3 Performance Guarantee of GrdAddTBs-R

It is always nice to have performance guarantee for some simple
greedy heuristics. However, it is not always an easy case to prove
any approximation ratio. Fortunately, we can prove the following
lemma (Lemma 1) that the reliability function rðHÞ is non-negative,
monotone, and submodular. Consider an arbitrary function fðAÞ
that maps subsets of a finite ground set U to non-negative real
numbers. We say that f is submodular if it satisfies a natural
diminishing returns property: the marginal gain from adding an
element to a set A is at least as high as the marginal gain from add-
ing the same element to a superset of A. Formally, a submodular
function satisfies

fðA [ fvgÞ � fðAÞ � fðB [ fvgÞ � fðBÞ

for all elements v and all pairs of sets A � B. Next, we prove that
the reliability function rðHÞ is submodular.

Lemma 1. The reliability function rðHÞ is non-negative, monotone, and
submodular.

Proof. Non-negative property is obvious. Let H0 and H00 be two
subgraphs of G which include selected sets A and B of throw-
boxes, respectively. Assume that A � B, i.e., H0 � H00 and H00
uses additional throwboxes other than H0. Since all subgraphs
use n mobile users, hereafter, we only use the throwboxes set in
the reliability function. Thus, rðAÞ ¼ rðH0Þ and rðBÞ ¼ rðH00Þ,
then the equation rðA [ fvgÞ � rðAÞ denotes the reliability
increase due to add a new throwbox v to A. Obviously, it is
non-negative value, since adding one more throwbox can
increase the reliability. This implies that reliability function r is
a monotone function. Now consider rðB [ fvgÞ � rðBÞ, which is
the reliability increase due to adding the throwbox v to B. Any
improvement of reliability is associated with an original path in
H00. If the improved path does not use any throwbox which is in
B but not in A, then the same level of improvement should also
occur for A (i.e., rðA [ fvgÞ � rðAÞ ¼ rðB [ fvgÞ � rðBÞ). If the
improved path does use some throwboxes which are not in A,
then the improvement over B is much less than A (i.e.,
rðA [ fvgÞ � rðAÞ > rðB [ fvgÞ � rðBÞ) since rðBÞ � rðAÞ.
Therefore, overall rðA [ fvgÞ � rðAÞ � rðB [ fvgÞ � rðBÞ and r
is submodular. tu

Submodular functions have a number of nice properties. One of
them is a result from [22], [23], summarized as the following
theorem.

Theorem 3. For a non-negative, monotone submodular function f , let S
be a set of size k obtained by selecting elements one at a time, each
time choosing an element that provides the largest marginal increase
in the function value. Let S� be a set that maximizes the value of f
over all k-element sets. Then fðSÞ � ð1� 1=eÞ 	 fðS�Þ; in other
words, S provides a ð1� 1=eÞ-approximation.

Notice that our k-throwbox problem is exactly the type of prob-
lem described in Theorem 3. Theorem 3 and Lemma 1 together
implies:

Theorem 4. GrdAddTBs-R (Algorithm 1 with greedy metric based on
reliability changes) guarantees a ð1� 1=eÞ approximation for the
k-throwbox problem.

On the other hand, to prove the approximation ratio for the
min-throwbox problem is relatively harder. In the min-throwbox
problem, we aim to find a minimum set of throwboxes which can
achieve certain reliability threshold. Such a problem is more like
the minimum submodular cover problem [24], whose goal is to
find a covering set of minimum cost. Our reliability threshold can
be treated as the covering requirement. However, for the minimum

1666 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



submodular cover problem, the greedy algorithm cannot give a
constant approximation ratio. In [24], Wolsey has shown that
greedy algorithm can give a HðbÞ-approximation for the minimum
submodular cover problem where b is the maximum value of the
submodular function f over all singletons and HðbÞ is the bth har-
monic number. However, his proof requires that f is integer val-
ued. Notice our reliability function is not necessarily an integer
valued. Fortunately, recently Wan et al. [25] have proved a more
general result and extended the approximation proof to fractional
submodular function. From Theorem 3.1 of [25], we can directly
have the following theorem.

Theorem 5. GrdAddTBs-R (Algorithm 1 with greedy metric based on
reliability changes) guarantees a ð1þ lnðrðGÞ=rðoptÞÞÞ approximation
for the min-throwbox problem, where opt is the optimal solution of
throwbox selection.

Notice that in our case r ¼ 1 (a parameter in Theorem 3.1 of [25]
reflects the curvature of the submodular cost), since the cost (the
total number of selected throwbox) is linear. In addition, the mini-
mum submodular cover problem studied in [25] asks for full cover-
age (i.e., rðHÞ � rðGÞ) and requires rðH;Þ ¼ 0 (here H; ¼ G�
fVthrowboxg means a H with only n mobile users and no throwbox
selected). However, defining a new submodular function r0ðSÞ ¼
minfrðSÞ; gg � rðH;Þ can solve the problems.

4.4 Another Greedy Solution

So far all greedy algorithms only add/remove a single throwbox in
each round, we now introduce a method which adds multiple
throwboxes in each round. This algorithm is only for the min-
throwbox problem. Note that to achieve the reliability constraint g,

basically we need a reliable path between each pair ðv0i ; vTj Þ for
i; j ¼ 1; . . . ; n. Let Z represent the set of pairs of ðv0i ; vTj Þ for

1 � i; j � nwhose reliabilities in current space-time graphH are still
smaller than g. In each round, the new greedy algorithm tries to add
some throwboxes along one single reliable path to improve the reli-

ability of paths between at least one pair of nodes in Z. Thus, after n2

rounds, all pairs of nodes in the original Z are guaranteed to be con-
nected by reliable paths in H. The greedy criteria of which path to
pick among all possible reliable paths is simply the onewith the least
number of unselected throwboxes. By doing so, the algorithm hope-
fully only uses the minimum number of throwboxes at the end.
Algorithm 3 gives the detailed algorithm. We use GrdAddTBs-P to
denote this greedy algorithm. To obtain the reliable path with the
least number of unselected throwboxes alone is not an easy task. It is
basically a variation of the restricted shortest path problem [26], a NP-
hard problem. Thus, we use an existing heuristic, Backward-For-
ward method (BFM) [27], which is one of the most efficient methods
among all existing methods (its execution time is about three times
that of Dijkstra’s algorithm). The overall computational complexity

of GrdAddTBs-P is roughly Oðn3ðM þN log NÞÞ, since in each
round OðnÞ times of Dijkstra’s algorithm are running on the space-

time graph and there are n2 rounds.

5 SIMULATIONS

To evaluate our proposed algorithms for throwbox optimization
problems, we have conducted extensive simulations over ran-
domly generated time-evolving networks and real DTNs extracted
from realistic contact traces [15]. We implement and test the follow-
ing algorithms:

� GrdAdd(Del)TBs-D: greedy algorithms adding/deleting
throwboxes based on node degrees.

� GrdAdd(Del)TBs-R: greedy algorithms adding/deleting
throwboxes based on reliability changes.

� GrdAdd(Del)TBs-Ra: greedy algorithms randomly adding/
deleting throwboxes.

� GrdAddTBs-P: greedy algorithm adding throwboxes based
on reliable path with least throwboxes.

� OPT: the optimal solution for throwbox optimization prob-
lem obtained by brute force method.

Algorithm 3. Greedy-Adding Throwboxes based on Reliable
Path with Least Throwboxes (GrdAddTBs-P)

Input: the original space-time graph G (including potential
throwbox set Vthrowbox) and a reliability threshold g.

Output: the selected throwbox set Vselected�throwbox and the
corresponding new space-time graphH.

1: H G� fVthrowboxg and Vselected�throwbox ¼ ;
2: while rðHÞ < g do

3: Z ¼ fðv0i ; vTj ÞjrHðv0i ; vTj Þ < g and i; j 2 ½1; n�g
4: for all pairs ðv0i ; vTj Þ 2 Z do
5: Find a reliable path between v0i and vTj in G (i.e., its reli-

ability � g), which contains the least number of unse-

lected throwboxes. Denote it as PLeast�TBsðv0i ; vTj Þ
6: Pick the path using the least number of unselected throw-

boxes among all PLeast�TBsðv0i ; vTj Þ for all ðv0i ; vTj Þ 2 Z.

Assume it is PLeast�TBsðv0k; vTl Þ.
7: for all throwbox vp 2 PLeast�TBsðv0k; vTl Þ and vp =2

Vselected�throwbox do
8: H Hþ fvpg
9: Vselected�throwbox  Vselected�throwbox þ fvpg
10: return Vselected�throwbox andH

Here for reference purposes we include two randomized
algorithms (GrdAdd(Del)TBs-Ra) where a randomly selected
throwbox is added or deleted in each round. The performance
metrics are the reliability of resulting network (i.e., rðHÞ) for
k-throwbox problem and the number of selected throwboxes for
min-throwbox problem. In addition, we also measure the actual
running time of each method.

5.1 Simulations on Random Time-Evolving Networks

We first test our algorithms on randomly generated networks. We
generate a sequence of static random graphs with nþm nodes (n
mobile users and m potential throwboxes) over T ¼ 10 time slots.
For each static snapshot, the link between two mobile users or one
mobile user and one throwbox is randomly inserted based on a
probability p. Clearly, the larger value of p is, the denser the net-
work is. For each link e we then randomly generate its reliability
rðeÞ in a range ½rmin; rmax�. We test different settings of these param-
eters in our simulations, and the discoveries and conclusions are
consistent. Due to space limit, we only report the results for the fol-
lowing setting. We set p ¼ 0:11, rmin ¼ 0:3, and rmax ¼ 0:6 for links
between a pair of mobile users; and set p ¼ 0:22; rmin ¼ 0:6; and
rmax ¼ 1:0 for links between a mobile user and a throwbox. Obvi-
ously, throwboxes are usually more reliable than normal mobile
devices. Finally, we generate the weighted space-time graph based
on the sequence of static graphs. For each setting, we generate 100
random time-evolving networks and report average performances
of our proposed algorithms.

5.1.1 k-Throwbox Problem

We first test our proposed algorithms for k-throwbox problem,
where k throwboxes need to be selected and the goal is to maxi-
mize the reliability of the network (i.e., rðHÞ). Here, we first run
our algorithms on random networks with n mobile users and m
throwboxes (i.e., n ¼ 20 and m ¼ 10), and let k range from 1 to 9.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016 1667



For these small networks, we are able to find the optimal solution
OPT with brute force algorithm. Fig. 4a shows the reliabilities
reached by each algorithm with different number of throwboxes. It
is clear that with more throwboxes a higher reliability can be
achieved. The straight blue line at the bottom shows the reliability
without any throwboxes. Fig. 4b also plots the running time of each
algorithm. Via these two figures, we can find: (1) Brute force algo-
rithm can find the optimal solution with maximum reliability but
the running time is the largest among all methods; (2) Both random
algorithms (GrdAddTBs-Ra and GrdDelTBs-Ra) preform poorly in
term of achieved reliability; (3) GrdAddTBs-R and GrdDelTBs-R
can achieve the best reliability among all proposed methods and
almost match the OPT , which confirms our theoretical analysis on
approximation ratio; (4) GrdAddTBs-D and GrdDelTBs-D achieve
the same reliability since they are based on the same degree order.
Although they cannot achieve the same level of reliabilitywith those
based on reliability changes, their running times are much less than
those of GrdAddTBs-R and GrdDelTBs-R. Thus there is a tradeoff
between network reliability and time complexity. We also test the
performance of proposed algorithms in larger random networks to
discover the scalability of our algorithms. We can draw the similar
conclusions. Overall, GrdAddTBs-R and GrdDelTBs-R can achieve
the highest reliability.

5.1.2 Min-Throwbox Problem

For the min-throwbox problem, we test all algorithms (includ-
ing GrdAddTBs-P) over the same sets of random networks,
with the reliability constraint g ranging from 0:40 to 0:60. Fig. 5

shows the detailed results. It is clear that higher reliability
requirements lead to more throwboxes involved. This also con-
firms that more throwboxes can introduce more contact oppor-
tunities in the network. Again OPT needs the smallest number
of throwboxes, however its running time is the largest and
increases exponentially. Both GrdDelTBs-R and GrdAddTBs-R
perform very well (requiring small number of throwboxes) as
expected. What is interesting is that GrdDelTBs-D also uses
quite small number of throwboxes. Generally, greedy deleting
throwboxes scheme uses less throwboxes than greedy adding
throwboxes scheme. GrdAddTBs-P is slightly better than
GrdAddTBs-D.

5.2 Simulations on Real DTN Tracing Data

Taking advantages of public wireless tracing data, we also test our
algorithms over a realistic contact traces: the Infocom 2006 trace
data [15]. This data set includes Bluetooth sightings by groups of
users (i.e., 78 participants) carrying iMotes for four days during
Infocom 2006 conference in Barcelona, Spain. In addition, 20 sta-
tionary iMotes were deployed throughout the hotel, with more
powerful batteries and extended radio ranges. For this set of simu-
lation, we randomly choose 40 mobile users from the 78 mobile
iMotes, and treat 20 stationary iMotes as 20 potential static throw-
boxes. We generate 30 random time-evolving networks, and report
average performances of our proposed algorithms. The reliabilities
of links are randomly generated as we did for random networks.
Figs. 6 and 7 show the results for k-throwbox problem and min-
throwbox problem, respectively. All the conclusions are consistent
with those from random network experiments and confirm
our theoretical analysis. Methods based on reliability changes
(GrdDelTBs-R and GrdAddTBs-R) perform very well in solving
both optimization problems. In addition, GrdDelTBs-D also works
well for min-throwbox problem and uses less running time.

5.3 Mobile Throwboxes

So far we only consider static throwboxes. Static throwboxes may
help with increasing contact opportunities at certain time, however,
they might be idle in other time slots. If throwboxes can move, they
can change to better places during their idle time slots. Thus, it is
possible to introduce mobile throwboxes into DTN to further

Fig. 4. Results on random nets (n ¼ 20,m ¼ 10) for k-throwbox problem.

Fig. 5. Results on random nets (n=m ¼ 20=10) for min-throwbox problem.

Fig. 6. Simulation results for k-throwbox problem on networks from Infocom 2006
trace data [15] (n ¼ 40 andm ¼ 20 static throwboxes).

Fig. 7. Simulation results for min-throwbox problem on networks from Infocom
2006 trace data [15] (n ¼ 40 andm ¼ 20 static throwboxes).

Fig. 8. Simulation results rðHÞ on networks from Infocom 2006 trace data [15]
(n ¼ 40 andm ¼ 20mobile throwboxes).

1668 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



increase the contact opportunities. Our model and proposed meth-
ods can be directly applied to mobile throwboxes, since the space-
time graph only describes the contact relationship among mobile
users and throwboxes. As long as the future contact can be pre-
dicted, no change is needed to handle mobile throwboxes. Fig. 8
shows a set of results from experiments over Infocom traces [15],
where 20 mobile devices are chosen as throwboxes instead. Results
confirm that mobile throwboxes can also significantly improve the
reliability and our proposedmethodsworkwell in such scenario too.

5.4 Broadcast Reliability

Previously, we assume a single-copy DTN routing protocol is used.
If multiple copies are allowed during the propagation, the reliabil-
ity will increase [28], [29], [30]. The simplest multi-copies routing is
flooding routing or epidemic routing [28], where a node with a
message will relay it to every node it encounters. For flooding-
based routing, we can define a new type of reliability, broadcast reli-
ability, as follows. For a given source-destination pair u; v in H, the
rHðu; vÞ is the probability that a packet sent from node u over the
topology H reaches node v under flooding-based DTN routing. To
efficiently calculate the pair-wise broadcast reliability is not an
easy job. Actually, it is known that the computation of such reliabil-
ity over general graphs is a NP-hard problem [31]. Fortunately, the
space-time graph in our model is a very special directed acyclic
graph where all paths from the sources to the destinations are T

hops and there are no loops. This property allows us to compute

the reliability rHðu; vÞ efficiently by using Dynamic Programming
(DP) [14], with the same time complexity as that of Dijkstra’s algo-
rithm. Thus, all of our proposed algorithms except for
GrdAddTBs-P can then work with broadcast reliability. The only
difference is using the DP algorithm to check the reliability of a
topology. Fig. 9 shows results over random time-evolving net-
works based on broadcast reliability. No significant difference is
found for these simulations compared with those with unicast reli-
ability. The only fact is that for the same network, broadcast reli-
ability is much higher than its unicast reliability.

6 CONCLUSION

Recent studies have shown the enhancement of DTN performances
with throwboxes. This paper investigates a key problem, throwbox
selection, in a time-evolving throwbox-assisted DTN modeled by a
weighted space-time graph. Two throwbox optimization problems
are formally introduced: min-throwbox problem and k-throwbox
problem. We formally analyze the hardness of both problems and
propose a set of greedy algorithms which can efficiently provide
quality solutions. We show the efficiency of the proposed methods
through extensive simulations over both random time-evolving
DTNs and real life DTN traces. One limitation of the proposed
problems and solutions is the assumption on predictability of
future contacts. For some of large-scale real DTNs, it is difficult to
obtain accurate prediction on future contacts among devices. One
possible solution is leveraging the social pattern among devices
which can be discovered via mining of historical records [32].

ACKNOWLEDGMENTS

The work is partially supported by the National Natural Science
Foundation of China under Grant Nos. 61370192, 61432015 and
61428203, and the US National Science Foundation under Grant
Nos. CNS-1319915 and CNS-1343355. Yu Wang is the correspond-
ing author.

REFERENCES

[1] C. Liu and J. Wu, “Scalable routing in delay tolerant networks,” in Proc. 8th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2007, pp. 51–60.

[2] P. Hui, J. Crowcroft, and E. Yonek, “Bubble rap: Social-based forwarding in
delay tolerant networks,” in Proc. 9th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., 2008, pp. 241–250.

[3] V. Erranmilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation for-
warding,” in Proc. 9th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2008,
pp. 251–260.

[4] Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based routing in
delay tolerant networks: positive and negative social effects,” IEEE Com-
mun. Survey Tuts., vol. 15, no. 1, pp. 387–401, Jan.-Mar. 2013.

[5] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine, and E. Zegura,
“Capacity enhancement using throwboxes in DTNs,” in Proc. IEEE Int.
Conf. Mobile Ad hoc Sens. Syst. Conf., 2006, pp. 31–40.

[6] N. Banerjee, M. D. Corner, and B. N. Levine, “Design and field experimen-
tation of an energy-efficient architecture for DTN throwboxes,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 554–567, Apr. 2010.

[7] M. Ibrahim, A. Al Hanbali, and P. Nain, “Delay and resource analysis in
MANETs in presence of throwboxes,” Perform. Eval., vol. 64, no. 9, pp. 933–
947, 2007.

[8] B. Gu and X. Hong, “Latency analysis for thrown box based message dis-
semination,” in Proc. IEEE Global Telecommun. Conf., 2010, pp. 1–5.

[9] M. Ibrahim, P. Nain, and I. Carreras, “Analysis of relay protocols for throw-
box-equipped DTNs,” in Proc. 7th Int. Conf. Modeling Optim. Mobile, Ad Hoc,
Wireless Netw., 2009, pp. 222–230.

[10] B. Gu and X. Hong, “Capacity-aware routing using throw-boxes,” in Proc.
IEEE Global Telecommun. Conf., 2011, pp. 1–5.

[11] E. L. Lloyd and G. Xue, “Relay node placement in wireless sensor
networks,” IEEE Trans. Comput., vol. 56, no. 1, pp. 134–138, Jan. 2007.

[12] X. Cheng, D.-Z. Du, L. Wang, and B. Xu, “Relay sensor placement in wire-
less sensor networks,”Wireless Netw., vol. 14, no. 3, pp. 347–355, 2008.

[13] M. Huang, S. Chen, Y. Zhu, and Y. Wang, “Topology control for time-
evolving and predictable delay-tolerant networks,” IEEE Trans. Comput.,
vol. 62, no. 11, pp. 2308–2321, Nov. 2013.

[14] F. Li, S. Chen, M. Huang, Z. Yin, C. Zhang, and Y. Wang, “Reliable topol-
ogy design in time-evolving delay-tolerant networks with unreliable links,”
IEEE Trans. Mobile Comput., vol. 14, no. 6, pp. 1301–1314, Jun. 2015.

[15] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau. CRAW-
DAD trace set cambridge/haggle/imote (v. 2009-05-29). [Online]. Avail-
able: http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote, 2009.

[16] F. El-Moukaddem, E. Torng, and G. Xing, “Mobile relay configuration in
data-intensive wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 12, no. 2, pp. 261–273, Feb. 2013.

[17] W. Wang, V. Srinivasan, and K.-C. Chua, “Using mobile relays to prolong
the lifetime of wireless sensor networks,” in Proc. 11th Annu. Int. Conf.
Mobile Comput. Netw., 2005, pp. 270–283.

[18] S. Merugu, M. Ammar, and E. Zegura, “Routing in space and time in net-
works with predictable mobility,” Georgia Institute of Technology, Atlanta,
Georgia, USA, Tech. Rep. GIT-CC-04-07, 2004.

[19] C. Liu and J. Wu, “Routing in a cyclic mobispace,” in Proc. 9th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput., 2008, pp. 351–360.

[20] N. Baccour, A. Koubaa, L. Mottola, M. A. Z. Zamalloa, H. Youssef, C. A.
Boano, and M. Alves, “Radio link quality estimation in wireless sensor net-
works: A survey,” ACM Trans. Sens. Netw., vol. 8, no. 4, pp. 34:1–34:33,
Sep. 2012.

[21] W. Su, S.-J. Lee, and M. Gerla, “Mobility prediction in wireless networks,”
in Proc. 21st Century Mil. Commun. Conf., 2000, pp. 491–495.

[22] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, “Location of bank
accounts to optimize float: An analytic study of exact and approximate
algorithms,” Manage. Sci., vol. 23, no. 8, pp. 789–810, 1977.

[23] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions-I,” Math. Program., vol. 14, no. 1,
pp. 265–294, 1978.

[24] L. A. Wolsey, “An analysis of the greedy algorithm for the submodular set
covering problem,” Combinatorica, vol. 2, no. 4, pp. 385–393, 1982.

[25] P.-J. Wan, D.-Z. Du, P. Pardalos, and W. Wu, “Greedy approximations for
minimum submodular cover with submodular cost,” Comput. Optim. Appl.,
vol. 45, no. 2, pp. 463–474, 2010.

[26] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz, “An overview of
constraint-based path selection algorithms for QoS routing,” IEEE Commun.
Mag., vol. 40, no. 12, pp. 50–55, Dec. 2002.

[27] D. S. Reeves and H. F. Salama, “A distributed algorithm for delay-
constrained unicast routing,” IEEE/ACM Trans. Netw., vol. 8, no. 2, pp. 239–
250, Apr. 2000.

Fig. 9. Results on random nets (n=m ¼ 20=10) with broadcast reliability.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016 1669



[28] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc
networks,” Duke Univ., Durham, NC, USA, Tech. Rep. CS-200006, Apr.
2000.

[29] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing in
intermittently connected mobile networks: The multiple-copy case,” IEEE
Trans. Netw., vol. 16, no. 1, pp. 77–90, Feb. 2008.

[30] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling of
epidemic routing,” Comput. Netw, vol. 51, no. 10, pp. 2867–2891, 2007.

[31] A. Agrawal and R. E. Barlow, “A survey of network reliability and domina-
tion theory,” Oper. Res., vol. 32, no. 3, pp. 478–492, 1984.

[32] Y. Zhu, C. Zhang, X. Mao, and Y. Wang, “Social based throwbox placement
schemes for large-scale mobile social delay tolerant networks,” Comput.
Commun., vol. 65, pp. 10–26, 2015.

1670 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


