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Abstract—With the proliferation of wireless devices, wireless
networks in various forms have become global information infras-
tructure and an important part of our daily life, which, at the
same time, incur fast escalations of both data volumes and energy
demand. In other words, energy-efficient wireless networking is
a critical and challenging issue in the big data era. In this paper,
we provide a comprehensive survey of recent developments on
energy-efficient wireless networking technologies that are effec-
tive or promisingly effective in addressing the challenges raised
by big data. We categorize existing research into two main parts
depending on the roles of big data. The first part focuses on
energy-efficient wireless networking techniques in dealing with
big data and covers studies in big data acquisition, communica-
tion, storage, and computation; while the second part investigates
recent approaches based on big data analytics that are promising
to enhance energy efficiency of wireless networks. In addition,
we identify a number of open issues and discuss future research
directions for enhancing energy efficiency of wireless networks
in the big data era.

Index Terms—Wireless networks, big data, energy efficiency,
data acquisition, data communication, data storage, data com-
putation, machine learning, open issues.

I. INTRODUCTION

W IRELESS communication networks in various forms
(e.g., cellular networks, wireless local area networks

(WLANs), wireless personal area networks (WPANs), wireless
sensor networks (WSNs) and vehicular ad hoc networks) have
been developing rapidly. In contrast to wired networks, wire-
less networks offer conspicuous convenience for ubiquitous
and efficient data communication, leading to their growing
market share and making them important elements of our
daily life. For example, many people spend a long time

Manuscript received January 14, 2017; revised August 9, 2017; accepted
October 29, 2017. Date of publication November 8, 2017; date of current
version February 26, 2018. This work was supported in part by the U.S.
National Science Foundation under Grant CNS-1320736 and Grant ECCS-
1610874, in part by the National Natural Science Foundation of China under
Grant 61573103 and Grant 61628107, in part by the State Key Laboratory of
Synthetical Automation for Process Industries, and in part by the Fundamental
Research Funds for the Central Universities under Grant 2242016K41068.
(Corresponding author: Xianghui Cao.)

X. Cao is with the School of Automation, Southeast University, Nanjing
210096, China (e-mail: xhcao@seu.edu.cn).

L. Liu and Y. Cheng are with the Department of Electrical and Computer
Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA (e-mail:
lliu41@hawk.iit.edu; cheng@iit.edu).

X. Shen is with the Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/COMST.2017.2771534

every day for Web-browsing, on-line instant messaging and
information sharing with their mobile phones. Advances in
wireless networks also bring the possibility of new appli-
cations such as mobile social networking and crowdsensing
that are almost impossible with wired networks. In both
industry and academia, wireless network technologies keep
being developed and will remain a hot research area for a
long time.

With the proliferation of wireless devices (e.g., mobile
phones, wireless sensors, wireless smart meters, unmanned
vehicles and drones), wireless networks become a global
information infrastructure incurring a fast escalation of data
volume known as big data. For example, today’s smart-
phones are equipped with various sensors such as camera,
audio, accelerometer, GPS, gyroscope, compass, and ambi-
ent light sensors, making each smartphone a big data source.
Nowadays, tremendous amounts of big data traffic are brought
by broadband downloading, social connections and content
sharing, online business and entertainment, behavior monitor-
ing, health sensing, distributed storage, computing services,
and cloud radio access infrastructure, and so on [1]. As pre-
dicted by Cisco, there will be 11.6 billion mobile devices by
the year 2020 (i.e., 1.5 per capita) and an average smart-
phone will generate 4.4 GB data per month [2]. The total
traffic of mobile big data per month will grow to about
30.6 Exabyte (30.6 × 1018 bytes). Such high-volume and
high-generating-speed big data impose significant burdens on
wireless networks in terms of both networking paradigms
and every big data handling stage including big data acqui-
sition, communication, storage, and computation, which have
attracted a large amount of research and development efforts
recently [3]–[5].

At the same time, the energy expenditure of wireless
networks is huge. For example, Verizon consumes 8.9TWh
energy which amounts to 0.24% of the total energy consump-
tion of the U.S. [6]. The energy consumption of communi-
cation infrastructures grows exponentially [7], which means
fast increasing capital costs for both network operators and
end users and vast environmental expense. It is estimated that
around 3% of global energy expenditure and 2% of global CO2
emissions are from information and communication technol-
ogy, among which mobile and wireless networks take 57%
of the energy consumption [8]. It was predicted that, in the
year 2020, networks and related infrastructures will contribute
around 320 Million tons of CO2 emissions, where around
half of them pertain to mobile communications [9]. In the
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big data era, the rapidly developing and wide spreading wire-
less networks are going to consume more energy in the future,
urging worldwide researchers and engineers to consider how
to lower the energy consumption in every networking scenario
seriously.

With the energy problem becoming a globally urgent
issue, a significant trend of wireless networks is to evolve
to “green” ones with high energy efficiency (EE) in a
wide variety of aspects including CMOS level re-engineering
and green technologies for big data acquisition, com-
munication and computation [3], [7]. The revolution for
energy-efficient wireless networking (EEWN) is also spurred
by the practice of energy-constrained big data generating
devices [10], [11], e.g., battery-powered smartphones and
wireless sensors. In addition, protocols and mechanisms that
efficiently utilize renewable energy (e.g., solar and wind
energy) can reduce the cost of energy supplied by power
lines [12], [13].

While saving energy is a critical demand, it should not sac-
rifice too much performance in order to support big data appli-
cations. In other words, the key problem for wireless network
energy efficiency is the tradeoff between energy consumption
and achieved performance (e.g., throughput or quality of ser-
vice (QoS)). Technologies towards EEWN have established a
long research history where most studies focused on energy-
efficient data communications. Since the wireless medium is
open, interference is a big obstacle lies in the way towards
better performance and a significant source of energy waste.
The essence of many energy-efficient technologies is to exploit
the network spatio-temporal diversities in order to mitigate
interference [14], [15]. For instance, by properly scheduling
the network devices to transmit at different time, data deliv-
ery reliability can be improved while the energy waste due
to collisions can be reduced. Meanwhile, the power supply
can be gradually decaying for battery-powered devices or time
varying for energy-harvesting devices. The computation, stor-
age and communication capabilities of a wireless device are
also limited. These constraints raise critical challenges for
wireless network resource allocation and call for sophisti-
cated techniques in order to balance energy consumption and
performance. Recently, owing to the widespread of wireless
networks and the emergence of new wireless and networking
technologies (e.g., device-to-device (D2D) communication,
software-defined network (SDN) and cloud), energy efficiency
remains hot and has attracted a significant amount of research
efforts.

In the big data era, aside from data communication services,
today’s wireless networks also play an active and important
role in data acquisition (e.g., WSNs), storage (e.g., wire-
less data-center networks (DCNs) and mobile networks with
caching) and computation (e.g., mobile cloud networks). In
these scenarios, enhancing the energy efficiency of the wire-
less networks encounters many obstacles such as the large
scale, rapid generation and high diversity features of big
data. For example, how to gather spatio-temporally corre-
lated data with low energy cost, how to cache data within
wireless networks to support timely data querying and retriev-
ing, and how to exert collective power of resource-constrained

wireless devices in performing large-scale big data computing.
Moreover, in such wireless networks, low-complexity and dis-
tributed decisioning algorithms that offer fast data delivery and
processing are preferred. In the case of social big data gener-
ated from thousands of smartphones where each user’s quality
of experience (QoE) matters, more flexible wireless network
architectures and user-centric networking paradigms are
demanded.

This paper presents a comprehensive survey of recent
advances in EEWN in the big data era. We investigate existing
achievements in EEWN for big data applications as well as
promising technologies and opportunities that can be applied
in future EEWN, with an attempt to manifest the funda-
mental techniques in enhancing energy efficiency of wireless
networks. Specifically, the survey is divided into two main
parts depending on the roles of big data, i.e., EEWN for
big data (N4B) that focuses on energy-efficient techniques
in handling big data sets, and big data for EEWN (B4N)
that accounts for big data based learning methods offering
the opportunities of improving energy efficiency of wireless
networks. We focus our major attention on studies in recent 5-6
years and cover many emerging technologies such as cogni-
tive radio networks (CRNs), future cellular networks integrated
with D2D communications, mobile social networks, crowd-
sensing networks, cloud networks, and SDNs. In addition, we
present issues and challenging problems that remain open to
encourage future research studies.

In the literature, energy efficiency issues of wireless
networks have been studied for a long time, and a number
of surveys have been published [14]–[24] (as compared with
this work in Table I). Many of them focus on either specific
wireless networks such as cellular networks and WLANs or
specific network protocols such as routing, medium access
control (MAC) or physical layer protocols. On the other hand,
some recent surveys have discussed the wireless networking
aspects of big data [3], [5]. However, to the authors’ best
knowledge, there is short of a systematic survey of recent
developments for EEWN in the big data era.

The remainder of this paper is organized as follows.
Section II overviews the energy efficiency problem and chal-
lenges due to big data. We cover technologies in the N4B cate-
gory in Sections III-VII and B4N technologies in Section VIII.
Section IX discusses open issues and Section X concludes the
paper.

II. OVERVIEW

Big data come from a large variety of longitudinal and dis-
tributed sources, in which wireless big data that are generated
and handled in wireless networks contribute to an important
portion. Typical sources of wireless big data are mobile data
downloading, mobile social networking, mobile business, dis-
tributed storage and computing, smart grid communications,
vehicular networking, and Internet of Things (IoT) applica-
tions [1], [3]. In this section, we present the architectures of
wireless networks in the big data era and the induced chal-
lenges in designing EEWN schemes. In addition, we present
a classification of energy-efficient technologies towards N4B
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TABLE I
COMPARISON OF THIS WORK AND OTHER RECENT RELATED SURVEY PAPERS

and B4N. We summarize the main abbreviations used globally
throughout this paper in Table II.

A. Architectures of Wireless Networks in the Big Data Era

A direct extension of traditional wireless networking struc-
tures to a paradigm that embraces big-data generating devices,
components for data computing and storage and considerations
on energy efficiency is illustrated in Fig. 1.

The bottom tier contains various types of hardware that
generate and collect big data at any time, any location
and in different manners. In big data applications powered
by wireless networks, sensors (in various forms of wireless
sensors in WSNs, body sensors, and smart meters) and smart-
phones are two major types of devices that generate big data.
Smartphones are undoubtedly big-data devices, as they have
become the main tools of mobile communications. As for

sensors, although the amount of data generated by each sensor
may be insignificant, the overall traffic of large-scale WSNs
will form important source of big data [26]. Above these and
other data generating devices are wireless access networks
such as cellular networks, WLANs and WPANs. Through
them, big data can be uploaded to or downloaded from the
Internet; and lying behind the Internet are DCNs. Private
networks, e.g., enterprise private cloud, may allow WLANs or
WPANs to directly connect to data-centers. Across the tiers,
big data should be effectively collected, stored, delivered and
processed where data computation can be adaptively carried
out at local devices or remote centralized units in order to
support big data applications [1]. The overall system should
be able to balance between achieved performance in terms of
QoS, users’ QoE and system’s energy efficiency.

However, in traditional networks, routers and switches
with embedded control are self-closed systems offering little
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TABLE II
MAIN ABBREVIATIONS

Fig. 1. Architecture of wireless networks in the big data era.

opportunity to deploy different communication protocols and
control services. To address the infrastructure closure and ossi-
fication, a new network paradigm coined as SDN has been
proposed in which the network data plane and control plane
are decoupled to allow flexible and programmable control such
that new protocols and applications can be implemented more
easily [27]. Although SDN was firstly defined for Internet
systems, many efforts have been devoted toward software-
defined wireless networks (SDWN) including OpenRadio and
OpenRoad systems and SDWN based on various wireless tech-
nologies such as LTE cellular networks, WLANs, WPANs
and WSNs [28], [29]. An overview of SDWN is illustrated
in Fig. 2.

Fig. 2. A conceptual architecture of SDWN [31].

Due to its flexibility, programmability and controllability,
the SDN technology can improve the energy efficiency of wire-
less networks in the following aspects. First, the separation
of control and data makes it convenient to deploy low-cost
and energy-efficient protocols in wireless networks. Second,
SDN promises a convenient way to reduce protocol operation
overhead as well as network management and maintenance
overhead. For instance, routing decisions made by controllers
can be carried out as flow rules in the flow tables of nodes,
such that the application-specific overhead of normal nodes
is reduced [30]. Third, controllers can have global (or semi-
global) view of the network information, which will benefit
network energy optimization through joint resource allocation
(to be discussed later in Section IV-E).

B. Conventional Energy Efficiency (EE) Concepts

A wireless node may be powered in different ways that
generally fall in following three categories: (1) Constant sup-
ply ensures a constant power input, e.g., BSs in cellular
systems and APs in Wi-Fi networks that are directly con-
nected to power lines. (2) Power-constrained supply such as
capacity-constrained batteries will continuously decrease as
the node is on. (3) Renewable energy supply varies accord-
ing to external renewable energy input. Advanced wireless
devices can harvest environmental energy such as solar and
wind to support data processing and communication activi-
ties. In these scenarios, the environmental supply may vary
from time to time [13], [32]. For devices with constant supply,
although we do not need to worry about energy shortage, their
energy efficiency is critical since they usually contribute to
the most significant portions of energy consumption in corre-
sponding wireless networks. For example, in cellular networks,
it has been shown that the BSs consume 80% of the total
energy; hence reducing the energy cost at BSs is in the
kernel of improving energy efficiency of such networks [33].
On the other hand, energy efficiency of terminal devices is
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also important in the viewpoint of end-users. For distributed
networks with energy-constrained nodes, the energy efficiency
of an average node characterizes the whole network’s energy
efficiency.

Since energy efficiency is a compound of network
performance and energy expenditure, whether a network can
be considered energy-efficient depends on how we treat the
two aspects together. Most existing studies on EEWN can be
categorized into the following three classes, which respectively
correspond to three optimization paradigms.

• Type I (e.g., [34] and [35]): bits per Joule maximization.
The most popular definition of energy efficiency is the
network capacity/throughput per unit of energy, which
is also known as “bits per Joule” [34], [35]. With such
a definition, both capacity and energy expenditure are
combined together as a single function with clean physi-
cal meanings. However, since the function is nonlinear
basically, its concavity and consequently the existence
and/or uniqueness of an optimal solution are generally
not guaranteed.

• Type II (e.g., [36]): performance guaranteed energy
minimization. From the viewpoint of network QoS or
users’ QoE, the most energy-efficient way is to provi-
sion a required level of QoS/QoE utilizing energy as low
as possible [36], resulting in minimization problems with
QoS/QoE constraints. Moreover, as the security and pri-
vacy concerns of big data applications are becoming more
and more critical, quality of protection (QoP) [37] will
be another metric of network performance.

• Type III (e.g., [38] and [39]): performance optimization
under energy constraint. In some energy-constrained
cases, such as battery-powered smartphone networks and
energy harvesting networks, the problem of energy effi-
ciency concentrates on delivering best performance (e.g.,
in terms of throughput or users’ QoE) under a certain
energy budget or limited energy recharging rate.

C. Challenges of EEWN in the Big Data Era

The significance of big data is manifested in many aspects
far beyond the large-scale feature. Below is a popular 4Vs
model for characterizing big data:

• Volume captures the large amount of data.
• Velocity means that big data not only are generated at a

high speed but also should be processed, transported and
analyzed at a high rate that matches the speed of data
generation in order to deliver certain QoE to users.

• Variety: data generating devices are highly diverse which
results in high data variety in terms of various modalities
such as audio, video and SMS and also in terms of various
types such as structured, unstructured, semi-structured
and mixed data [40].

• Value that is conveyed in big data sets usually out-
weighs the data amounts. Therefore, it is important to
explore and exploit the huge hidden value in big data
sets to improve users’ QoE, help business and to improve
network security [3].

From a big data analytics point of view, the above char-
acteristics incur critical challenges such as how to extract

meaningful information from unstructured big data sets, how
to design an efficient file system for large-scale mixed data so
that they can be timely retrieved, how to manage mixed big
data, and how to efficiently execute big data analytics [40].
However, these problems, though important, have little to do
with wireless networking and hence lie out of this paper’s
scope. Instead, we focus on EEWN technologies to handle and
utilize big data where the major challenges can be summarized
as follows.

• Energy-efficient information acquisition: In most cases, it
is not only cost-expensive but also unnecessary to collect
all the redundant and highly correlated raw data from their
generating devices. Instead, we are more caring about the
value hidden behind. That is, how to efficiently gather
information of value with low energy expenditure and
low data amounts or using less devices in both static and
mobile wireless networks.

• Energy-efficient data communication: As the primary task
of wireless networks, data communications are obviously
under great pressure due to high volumes and velocities of
big data. How to deliver big data in a timely and energy-
efficient manner is the key challenge, which calls for
energy-optimized allocations of network resources such
as power, time and spectrum. In addition, in view of the
variety feature, data may be assigned different priorities,
which introduces service differentiation concerns in the
design of communication protocols.

• Energy-efficient data storage: Storing large-scale data
demands data-centers for which efficient resource man-
agement can save a great amount of electrical energy.
Meanwhile, although normal devices have limited stor-
age spaces, it is possible to utilize their own resources
to cache large-scale data collectively inside the wire-
less networks instead of transporting the data to remote
hardware. Such a way is particularly helpful but also chal-
lenging for applications (e.g., mobile social networks [4])
when data are frequently accessed.

• Energy-efficient data computation: Within the scope of
wireless networks, we focus on big data computation by
taking advantage of the collectiveness of the networked
devices. Therefore, the challenge is how to accomplish
big data computation goals with less energy under that
each participating device has only limited ability.

• Data-driven energy efficiency optimization: Depending on
theoretical models of target wireless networks, existing
energy efficiency optimizations depend on model accu-
racy and are inflexible and non-adaptive to environment
changes, yielding a considerable theory-practice gap. In
contrast, optimizations driven by big data of network
measurements are able to learn the practical network
operation status by means of machine-learning algorithms
and utilize energy more efficiently and adaptively.

D. Organization

In the following, we investigate recent research and tech-
niques for EEWN that are effective or promising to address
the above listed challenges. Corresponding to the above chal-
lenges, the survey is divided into two main parts: EEWN
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Fig. 3. Overview of EEWN techniques in the big data era.

technologies for handling big data (N4B) and big data based
technologies for EEWN (B4N). The N4B part reviews recent
studies on EEWN for collecting, storing and processing wire-
less big data. It is further divided into four sections (i.e.,
Sections III–VI) roughly following a typical procedure of how
big data are handled in wireless network environments, i.e.,
from big data acquisition, communication, storage to compu-
tation, each of which corresponds to each of the first four
challenges discussed above. The B4N part in Section VII
reviews recent studies on learning based approaches that effec-
tively utilize big data sets for improving (or promisingly
applicable in improving) the energy efficiency of wireless
networks. An outlook of our categorization of the surveyed
techniques is shown in Fig. 3.

III. ENERGY-EFFICIENT DATA ACQUISITION

This section investigates recent technologies on energy-
efficiently acquiring big data at source devices, which is the
first step of N4B. Data generated from different devices may
be redundant and mutually correlated. Therefore, energy effi-
ciency of wireless networks in the acquisition stage can be
achieved by scheduling wireless devices and reducing redun-
dant data in view of their spatio-temporal correlations. As
aforementioned, sensors and smartphones are two major types
of devices that generate big data. In the following, we shall
focus on WSNs and mobile crowdsensing networks.

A. Sensor Management in WSNs

In WSNs, sensors are deployed mainly to monitor (typi-
cally in periodic manners) its ambient environment and detect

events such as environment changes, target movements and
human body activities. During this process, coverage is an
important concern, which ensures that regular or abnormal
events can be detected with high probabilities. The defini-
tion of coverage depends on specific applications and usually
can be categorized into coverage of points of interest (PoIs),
regions of interest (RoIs) and barriers [41]. The goal of PoIs
(or RoIs) coverage is to ensure all the PoIs (or RoIs) are within
the sensing ranges of activated sensors. Barrier coverage aims
to monitor a boundary region such that the undetected prob-
ability of an intruder penetrating through the region is small
enough.

To support big data acquisition in WSNs, coverage and con-
nectivity should be ensured at the network planning stage.
Intuitively, it may be expected to deploy a large number
of sensors in WSNs for ubiquitous data acquisition, but
at the cost of high interference and energy consumption.
In [42], the placement of static sensors to minimize total
network energy consumption or maximize network lifetime
was investigated. Unlike static sensor network deployment
which requires human participation, mobile sensor networks
usually can achieve the above deployment requirements auto-
matically based on dynamic sensor replacement [43], [44].
Given an initial deployment, mobile sensors can apply a dis-
tributed virtual force to achieve an even deployment in the
way that close sensors repel while faraway sensors attract
each other. Song et al. [44] proposed several distributed
deployment algorithms based on virtual forces among mobile
sensors to optimize overall network energy efficiency in
terms of α

ϕC
ϕUϕE

, where ϕC, ϕU and ϕE represent the metrics
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for coverage, network lifetime and sensors moving energy,
respectively.

To further conserve energy at the network running stage,
the mainstream approach for energy-efficient coverage is to
schedule the sensor activities such that only a subset of sen-
sors are activated at each time while others keep in sleep
mode to save energy. The idea behind sensor selection is
that sensors are often deployed with high density so that
commanding redundantly covering nodes to enter their low
power modes can conserve energy without significantly affect-
ing the performance of coverage. The problem of sensor
scheduling for energy-efficient coverage can be formulated as
follows [45]: Given a set of sensors S = {s1, . . . , sn} each of
which has a limited initial energy, find a set of connected sub-
sets of the sensors {Ct|Ct ∈ S , t = 1, 2, . . .} that maximizes
the network lifetime (or minimizes energy consumption) while
guaranteeing a desired level of coverage. Since this problem
is NP-hard basically, existing approaches usually resort to
iterative methods for finding the optimal solutions. In [45], an
ant colony optimization algorithm was designed which takes
three types of local and global pheromones to search for the
optimal active sensor sets where probabilistic sensor detection
models were considered.

In applications such as dynamic event capturing, the PoIs
are not necessary to be always covered by active sensors; in
fact, sensors can be activated only when some event happens
within their sensing ranges. Given the knowledge of stochas-
tic properties of the event dynamics, sensors can coordinate
their sleep and wakeup activities periodically in either a syn-
chronous or an asynchronous manner to save energy while
guaranteeing a certain event detection probability [46]. Full
coverage of a large RoI requires a large number of sensors.
However, in cases that small coverage holes are acceptable,
we can turn off many sensors with the remaindering sensor
network still satisfying coverage requirement. In [47], sensor
activation for trap coverage was studied where the goal was to
maximize network lifetime while guaranteeing that the diame-
ter of each uncovered hole is no greater than a given threshold
(thus, any possible intruders will be either detected or trapped
within some small areas).

In dense networks, the spatial diversity is a rich resource
to be utilized jointly with other resources. For example, in
WSNs for environment monitoring, Nikolov and Haas [48]
explored spatial correlation among sensor nodes and divided
them into subgroups, each of which was responsible for a pre-
determined interval of measurement. A sensor only transmits a
true indicator (1bit) to the BS if its measurement falls within its
dedicated interval, thus saving a significant amount of energy
than simply sending a full measurement packet.

B. Compressive Sensing Based Data Acquisition

In response to the high volumes of big data, data compres-
sion and redundancy reduction are effective technologies to
alleviate the burdens on big data acquisition [3]. Compressive
sensing is an important one of such technologies applicable
in WSNs for data acquisition. With compressive sensing, for
some signals that are sparse in a certain basis, they can be

Fig. 4. Compressive sensing based data acquisition [52].

reconstructed from a smaller number of measurements, which
offers the opportunity of using fewer sensor measurements to
acquire high-dimension signals at good accuracy, and hence
saving energy. Specifically, if a signal x of dimension N can
be represented by a linear combination of some basis vectors
{�i} that are mutually orthogonal, i.e.,

x =
N∑

i=1

ci�i = �c, (1)

where � is the matrix constructed by {�i} and {ci} are
coefficients. If the coefficient vector c has K nonzero elements,
x is said to be of K-sparsity. Then, based on the compres-
sive sensing theory [49], x can be reconstructed based on y
consisting of M = O(K log N) measurements:

y = �x + ε, (2)

where � is the sensing matrix and ε is the noise during
acquisition. Accordingly, for acquiring a high-dimension sig-
nal using the compressive sensing strategy, when the signal
sparsity level is low, the total energy consumption of a sen-
sor node is much lower than that of conventional acquisition
schemes [50]. Roughly speaking, compared with the method
that directly acquires x, 1 − M

N percent of energy can be saved
by using compressive sensing. The smaller the sparsity level K
is, the fewer measurements are required. Compressive sensing
has been proved effective in image/video processing and has
been successfully applied in medical imaging, holography and
mobile phone camera sensors [51].

Leveraging the compressive sensing theory in the sense of
data acquisition using fewer measurements and accordingly
less computing and transmission costs, energy saving in sen-
sor networks can be achieved in many ways. One example
is to save energy by taking advantage of temporal correla-
tions of sensor samples. For monitoring a scalar environment
information, the work in [52] proposed a three-phase algo-
rithm to tune sensors’ sampling rate, where they relaxed the
conventional assumption that the sparsity of the monitored
signal was known in advance. Each sensor firstly applies a
random sampling scheme and the generated data are then
processed to recover the monitored signal at a fusion center
based on compressive sensing. Then, the fusion center eval-
uates the reconstruction quality in terms of a metric called
RQI and based on this information it commands the sensors
to adjust their sampling rates dynamically, in order to ensure
the reconstruction error within an appropriate range, as shown
in Fig. 4. Based on real world temperature sensor data, Chen
and Wassell [52] showed that, the proposed method based on
compressive sensing can reduce both the number of required
sensor samples and hence the energy consumption of the
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network for environment temperature acquisition by 75%, as
compared to the direct sampling scheme without compressive
sensing.

Compressive sensing has been successfully applied in col-
lecting wireless big data and has been shown energy-efficient.
An energy-efficient wireless data collection framework was
proposed in [53], in which the sensors report data to the cloud.
The collected data can be viewed as x in Eq. (1) with each
element be the sensory data obtained from a particular sensor
at a particular time. To save energy, the cloud runs an online
learning algorithm that determines the average data collec-
tion probability for each sensor, while each sensor applies a
local adaptive control law to decide its own collection prob-
ability. Specifically, the learning algorithm at the cloud side
first predicts the amount of principle data which corresponds
to the sparsity K defined below Eq. (1), and then computes
the average collection probability P by P = K

N where N is the
dimension of the big data x. After receiving P, each sensor
adjusts its collection probability based on the data dynamics,
unexpected issues, neighbor status, residual energy and link
quality. For instance, if the sensed data varies quickly along
time, the collection probability is increased.

The work in [54] investigated the quantization effect in
compressed sensing and proposed a configurable quantization
method to determine sampling rate and quantization rate to
improve battery efficiency in body sensor networks. A similar
approach was taken in [55] to reduce sensor’s average sam-
pling frequency based on a random down sampling matrix,
thus reducing energy consumption and extending system’s
lifetime.

Another example is sparse event detection in a certain area,
where the spatial correlation of sensor data is considered.
In [56], it was considered that events might randomly happen
at a large number of locations termed as sources. If the event
generating probabilities at the sources are low, i.e., the events
happen sparsely, instead of deploying a large number of sen-
sors with each to monitor a source, such sparsity offers a way
of using or activating only a much smaller number of sensors.
By applying the compressive sensing strategy, the number of
active sensors can be at the same lever of the number of events.
Similar as above, simulations demonstrated that the achieved
event detection probability increased as the sparsity decreased.
Furthermore, a recent work in [57] exploited both spatial and
temporal correlations of sensors based on compressive sensing
and selectively activated working sensors. The authors devel-
oped an active sensors selection approach through minimizing
both the reconstruction error and the energy consumption
of active sensors. It was shown in this paper that, with the
proposed approach, the network lifetime can be significantly
prolonged while with a relative low reconstruction error.

C. Energy-Efficient Mobile Crowdsensing

In the emerging mobile crowdsensing systems, a large num-
ber of smartphones sense data from their vicinity environment
and report to the data analysis center(s) or cloud. The pro-
liferation of sensor-enabled smartphones provides this novel
crowdsensing paradigm for real-time and ubiquitous big data
acquisition in applications (e.g., gathering real-time population

Fig. 5. The SociableSense system [61].

density at bus/subway stations, road traffic congestion/accident
information, and urban air quality information) that are too
expensive or even impossible by conventional infrastructure
based methods. However, both sensing and data communica-
tions are significant energy consumers for energy constrained
mobile smartphones, which may make users unwilling to
engage in too many activities in a crowdsensing system.

Human behavior is perhaps the most important factor that
influence the performance of their smartphones participat-
ing in a crowdsensing system. Automatic learning, predicting
and wisely utilizing the information of human activities and
environment conditions can better schedule the smartphone
sensors and hence save energy. For example, in location based
crowdsensing applications, the simplest approach is always
letting the GPS sensors on, in which state the battery of a
smartphone may be quickly depleted in hours. However, this
always-on operation is unnecessary in practice. A smart GPS
scheduling method, called SensTrack, can adaptively adjust
the GPS sampling rate and remove unnecessary sampling
activities based on the information from acceleration and ori-
entation sensors [58]. When a mobile user is moving without
changing his/her orientation, for example, future locations can
be estimated based on the motion’s inertial property without
performing GPS sampling. In a similar idea, the ENRAPT
algorithm adaptively decides the sensing rate according to
accelerometer readings that indicate whether the user is driv-
ing, walking or running [59]. Compared to the always-on
operation, ENRAPT can prolong the battery lifetime up to
8 times. Environmental conditions can be also exploited to
determine sensor activities. For example, when the light inten-
sity is excessively low, video recording modules may become
unnecessary and can be turned off to save energy [60].

As shown in Fig. 5, an adaptive sampling algorithm
and a computation distribution scheme were integrated
in a smartphone-based social sensing platform called
SociableSense [61]. A smartphone dynamically tunes the
sampling rates of its sensors (e.g., accelerometer, Bluetooth
and microphone) based on the theory of learning automata.
Specifically, the sensing probability of each sensor, denoted
as pi, is dynamically tuned as follows.

pi =
{

pi + α(1 − pi), if senses an unmissable event
(1 − α)pi, if senses a missable event

(3)

where α ∈ (0, 1). In the above, an unmissable event means
that the sensory data from this sensor indicate some interesting
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phenomenon in the environment that should not be missed. In
this case, the sensor’s sampling rate is increased as shown
above. Otherwise, a missable event happens (e.g., no motion
nor voice), the sensor can tune down its rate until sleep to save
energy. The two event types are determined by a classifica-
tion algorithm and are application dependent. The computation
distribution component decides whether locally on the phone
or remotely in the cloud to execute energy-consuming sen-
sory data processing. A multi-criteria decision approach was
proposed which maximized a combinatory utility function of
energy saving, latency and data amount uploaded [61]. Taking
smartphone resource changes such as battery charge/discharge
cycles and data plan availability into consideration, the solu-
tion resulted in a dynamic computation distribution and can
well balance smartphone’s energy and performance.

Instead of using the high-energy cellular communications
for sensed data uploading, smartphones can explore avail-
able opportunities of low-cost communication venues such as
Wi-Fi. On the other hand, continuously sampling and data
uploading—which are demanded in real-time applications—
incur the expensive task of handling big data which may be
unaffordable to smartphone users with both limited battery
supply and limited data plan [62]. However, in some cases
that the sensed data are delay-tolerable (e.g., the MIT Reality
Mining project that collects user data to analyze their interests
and activities does not require real-time operation), users with
and without data plans can cooperatively upload data. Such an
idea was realized in the effSense framework in which users
without data plans can either upload data to the cloud or trans-
fer data to other users using low-cost Bluetooth and Wi-Fi
and request them to help forwarding the data [62]. The results
showed that, with effSense, users without data plans could
upload around 50% data without extra cost.

In situations that a certain sensor or data process-
ing/communication unit is already turned on and the data are
already available (e.g., when a user is making a phone call or
browsing the GoogleMap), simultaneously carrying out sam-
pling or data uploading for crowdsensing purpose can save
a large amount of energy. To exploit such sporadic opportu-
nities, a piggyback crowdsensing scheme based on predictive
models of smartphone usage patterns was proposed in [63].
The prediction models enable selection of those opportuni-
ties to perform either one of sensing, data uploading and
computation. Based on a large-scale data set of over 1000
smartphone users, the experiment results showed that the
piggyback scheme could save more than 10% of energy com-
pared with benchmark strategies such as periodic sampling
and context-driven sampling.

IV. ENERGY-EFFICIENT DATA COMMUNICATION

After the data acquisition stage, the communication stage
is required to transport big data from their source devices
to management and processing units efficiently. In addition,
energy-efficient data communication is necessary for wire-
less network based big data storage and computation, to be
discussed later.

For the communication stage in applications such as mobile
big data, the high volume and velocity features of big data
require wireless networks to have high throughput and low
delay, which coincides with the design goals of most resource
allocation schemes in wireless networks. In other big data
applications such as IoT networks for long-term monitoring,
although the volume and velocity of each node’s traffic are not
high, the aggregated volume of the network through long-term
operation will be high [26]. This requires the network to have
long lifetime or devices in low energy states can be timely
replenished. Therefore, in this section, we shall focus on
recent technological advances in energy-efficient resource allo-
cation able to provide high-capacity, low-delay and long-term
wireless networking. Although many surveyed works did not
explicitly discuss big data, the proposed methods are effective
or promisingly effective to support big data communications
in wireless networks.

The energy of a wireless device is mainly consumed by the
computation and wireless communication components, and a
close examination of the communication component reveals
that its major energy consumption is determined by its oper-
ating power, spectrum and duration in active state. Viewed at
the network level, the total energy consumption also depends
on the spatial network deployment and the different roles
of the devices. In this sense, the key for saving communi-
cation energy and improving network energy efficiency lies
in wise utilization of several fundamental resources including
power, spectrum, time and spatial resources. Corresponding
techniques can be categorized into following four schemes.

• Power control schemes basically aim to utilize available
transmission power more efficiently.

• Time-based scheduling schemes aim to exploit temporal
diversity to mitigate interference and save energy in low-
power modes of network nodes.

• Spatial resource allocation schemes seek to activate or
assign tasks to the most appropriate devices to improve
energy efficiency of the whole network.

• Spectrum sharing based schemes allocates spectrum
resources including techniques of cognitive radio, D2D,
OFDM and general MR-MC networks.

• Joint resource allocation schemes simultaneously con-
sider multiple resources for energy-efficient data commu-
nications.

Note that the above categorization may yield some over-
lapping. For example, in networks with spatio-temporal cor-
relations in data traffic, spatial resource allocations are often
combined with time-based scheduling considerations. For con-
venience, some of such cases shall be covered in either
the second or the third category in the above depending on
whether time or spatial resource plays the most important
part in improving network energy efficiency. Others will be
considered in the last category.

A. Power Control for EEWN

Power is a basic type of radio resource that greatly affects
network connectivity, interferences and SINR. Controlling
the power usage of all the involved nodes such as sensors,
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user equipments and BSs is one of the most direct ways to
save energy of wireless networks. Big data communications
may involve a large number of distributed devices. Hence,
unlike centralized schemes that often require high signaling
overhead and have relatively low scalability, distributed and
cooperative power control is promising. In this subsection,
we discuss recent developments in distributed and cooperative
power-based resource allocation schemes. In addition, energy
management in energy-harvesting networks is also accounted.

1) Transmit Power Control: Wisely allocating transmit
power of each node plays a vital role in improving both
network capacity and energy efficiency. Power control has
been long studied in the past decades in various wireless
networks [64], [65]. Based on different techniques, recent
advances in distributed power control are achieved in the
following aspects.

• Convex optimization based distributed power control:
Conventional power control problem is to maximize
network utility under constraints of nodes’ available
power, where the utility (e.g., throughput) is usually a
function of effective transmissions, which can be con-
nected to the transmit power of the nodes via SINR. By
using the Lagrangian dual technique, the overall problem
can be decomposable if the utility is convex, and the
optimal (or suboptimal) power control solutions can be
obtained by distributively finding the optimal Lagrangian
multipliers based on method such as gradient iterative
searching [66]. The work in [66] studied hyper-dense
small cell networks and proposed a two-phase algo-
rithm based on the Lagrangian dual technique to address
the problem of distributed inter-cell power control. This
study is particularly useful in the big data era since the
deployment of hyper-dense small cell networks is envi-
sioned to significantly enhance user data rate and hence
the proposed method is able to handle the high volume
and velocity issues of big data and improve network
energy efficiency. However, such distributed power con-
trol approaches can only (optimally) handle a certain type
of problems such as convex optimization, while for oth-
ers the optimality is difficult to guarantee due to duality
gap.

• Game-based distributed power control: In a fully dis-
tributed network context without centralized coordination,
nodes may content for transmissions based on power
usage. Modeling the contention as a game, distributed
power control based on game theory has been shown
to be promising in optimizing network performance and
thereby improving energy efficiency. The Nash equilib-
rium of such a game can provide a distributed power
allocation for each node. According to the characteristics
of node behavior in wireless networks, distributed power
control is often modeled by a regular non-cooperative
game where each node decides its transmit power based
on optimizing its own utility as a function of SINR,
referring to a survey in [67]. In [68], distributed power
control in dense femtocell networks was studied, which
relates to big data for the reason mentioned above. A non-
cooperative game based on potential game theory was

established, which was shown to improve the network
throughput by 7% and at the same time reduce the aver-
age energy consumption by 50% compared to existing
methods. Whereas, game-based approaches can achieve
fully distributed operations of power control of individ-
ual nodes, but often at the cost of sacrificing some energy
efficiency due to price of anarchy—the achieved equilib-
rium points often deviate from the optimal solutions of
the energy efficiency optimization problems.

2) Energy Management in Energy Harvesting Networks:
Advances in techniques to harvest energy from ambient envi-
ronment (e.g., solar, wind, vibration, thermal energy and RF
radiation energy) and human movements (e.g., finger motion,
footfalls and exhalation) have brought to us the energy har-
vesting wireless devices and networks [12], [13], [69]–[71].
The ability of harvesting energy is also important for the so-
called wireless big data [72], where battery limited sensors
become able to work continuously to generate a large amount
of data.

In these networks, the problem of energy efficiency is often
formulated as to maximize performance under energy avail-
ability constraints. The transmit power of an energy-harvesting
node at any time must be feasible, i.e., all currently avail-
able energy is able to support the attempting transmission.
Such energy neutrality to keep balance between harvested
and utilized energy becomes a critical new constraint for
power control in energy harvesting networks [73]. In [39],
for throughput maximization under energy neutralization, it
was shown that the optimal power allocation policy should try
best to keep the power as constant as possible and that the
optimal power decreased (increased) only at energy arrivals
when the battery was full (depleted). Renewable energy (e.g.,
solar and wind energy) availability often varies along time
and locations, and may be highly stochastic, making it dif-
ficult to design deterministic power utilization strategies.
Huang and Neely [74] formulated a joint power allocation
and transmission rate control problem for network utility
maximization, where the harvestable energy followed either
independent and identically distribution or Markov process.
With the Lyapunov optimization approach, the problem was
solved through an on-line transmission scheduling algorithm.
Based on the energy queue technique, the design of online
algorithms can avoid assuming specific distribution of the
stochastic energy arrivals [75]. For both offline and online
algorithms, interested readers are referred to the survey in [13].

Recently, wireless RF charging technique is shown to be
promising to address the spatial diversity of energy levels by
allowing some nodes to wirelessly transfer energy to other
energy harvesting nodes [76]. In this field, one of the main
research challenges is the charging efficiency optimization,
and an effective way to improve the efficiency is to use multi-
antenna systems with energy beamforming strategy. Multiple
chargers can work collaboratively for energy transferring,
where the charging cost can be reduced by minimizing the
number of active chargers, referring to the survey in [77].

3) Remarks: One lesson learned from above is that the key
strategy for power-based resource allocation is to concentrate
power utilization on effective transmissions and coordinate to
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reduce mutual interferences, during which the temporal and
spatial diversities in terms of energy availability and channel
conditions should be taken into account. In this sense, the
power-based allocation can improve network throughput, thus
partially solving the large volume issue of big data. However,
due to capacity constraint, excessively large volumes of big
data cannot be supported by the network even with power
control and other allocation schemes.

In the context of big data, some important issues remain
challenging, e.g., distributed power control in dynamic
networks, low-complexity algorithms with a certain level of
performance guarantee, and fairness preservation among users.
These challenges are also common for the other resource allo-
cation schemes, and will be discussed in Section VIII. Another
challenge lies in the dynamic power management in networks
with hybrid energy supplies, e.g., in heterogeneous cellular
networks, a small cell BS can be powered by on-grid energy,
renewable energy or both [78].

B. Time-Based Scheduling for EEWN

To support big data communications over wireless networks,
it naturally calls for utilizing resources (including time) as
much as possible. However, there is still space for time-based
scheduling to improve network energy efficiency by reducing
energy consumption through alleviating mutual interference
and switching idle nodes to sleep modes if not significantly
disturbing the network performance. A typical energy con-
sumption breakdown for a wireless card shows that the modes
of transmitting and receiving data consume much higher
energy than the sleep mode [79]. Therefore, the key challenge
of such energy-saving schemes is when a node should transmit
or sleep.

1) Contention Control: In IoT and mobile big data sce-
narios with densely distributed devices, intensified channel
contention among sensors or mobile phones may result in low
throughput, which is unwanted. For WLANs, IEEE 802.11
defines the Distributed Coordination Function (DCF) as the
MAC protocol for contention control, in which the contention
window size plays a vital role. From both throughput and
energy points of view, the optimal contention window size
should be able to reflect the true contention intensity and bal-
ance the idle sensing time and the collisions. Since the power
for idle sensing is close to the power for transmission, the
optimal contention window sizes with respect to throughput
and energy efficiency are similar [80]. This shows a promis-
ing fact that, for WLANs with DCF, energy efficiency can be
improved without sacrificing too much throughput. As long
as the channel contention degree can be measured by each
contending node, the optimal contention window sizes can
be determined and dynamically tuned for higher energy effi-
ciency [81]. The channel access scheme in DCF is essentially
random access where each node may have little information of
others’ states or actions. This motivates people to model the
network as a non-cooperative game, where the access proba-
bility of a node can be viewed as the strategy taken by itself
and a combined objective of both throughput and energy effi-
ciency can be viewed as the utility function. Then with such a

game model and by exploring the corresponding Nash equilib-
rium, the optimal parameters of the protocols can be derived,
referring to strategies in [82] and [83].

IEEE 802.15.4 networks are prevalent in WSNs and
IoT systems [84]–[86]. For the contention control in such
networks, the work in [84] proposed an energy-efficient adap-
tive algorithm that allows each node to dynamically tune
its MAC parameters including backoff window size, backoff
times and retransmission times, based on average delivery ratio
and loss ratio estimates, in order to keep the network reliability
around some application-required level. In this way, channel
access contention and retransmissions are appropriately con-
trolled so that the reliability and energy consumption can be
better balanced [84].

2) Exploiting Power-Saving Modes: The power-saving
modes in networks such as WLANs and WiMAX provide an
effective way for saving energy in applications that can tolerate
a certain level of delay. For example, in voice-over-IP (VoIP)
applications, the VoIP packets may be received before its play
out deadline. This offers the opportunity of saving energy by
turning off nodes according to their packets spare time before
the deadline in multi-media big data applications. With the
power-saving mode defined in IEEE 802.11 standard, pack-
ets destined to a sleeping node will be temporally buffered
at the AP. The node periodically wakes up to contend the
channel in order to retrieve buffered downlink packets from
the AP or sends uplink packets. In [87], an energy-efficient
sleep scheduling mechanism was proposed which aimed at
maximizing the sleep time while ensuring packet delay below
some tolerable value. The sleep requests from the nodes are
coordinated by the AP in order to avoid conflicting download-
ing periods. A more flexible and dynamic sleeping scheme is
defined as Automatic Power Saving Delivery (APSD) in IEEE
802.11e. In the scheduled version of APSD, AP schedules the
Service Period (SP) for each mobile node and therefore each
node only needs to stay awake during its own SP. By minimiz-
ing the possible overlap among SPs, higher energy efficiency
can be achieved [88]. A device can be put to sleep mode when
the channel is busy transmitting to other devices, as described
in transmission opportunity power save mode (TXOP PSM) in
IEEE 802.11ac. Considering the time and energy consumption
incurred when mode transition, a very short sleep period may
not be desirable. In [89], analysis on the achievable energy
efficiency was provided and a burst transmission scheme was
proposed to overcome this issue.

Similar power saving classes are defined in IEEE 802.16e
mainly for reducing energy consumption in applications with
real-time traffic (e.g., VoIP). One of the power saving classes
adopts exponentially increasing sleep windows that can allow
both small and large inactive periods during traffic sessions,
suitable for treating traffic bursts. By exploiting the character-
istics of traffic, the sleep window parameters can be further
optimized to enhance energy efficiency [90]. In view of that
the above power saving class can result in unpredictably large
latency when the sleep window grows large, another power
saving class featuring in periodically alternating between lis-
tening and sleep states of relatively short fixed durations.
With these two power saving classes, a hybrid scheme can
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be formed that different classes are applied for silent periods
and talk-spurt periods, respectively [91].

3) BS Scheduling in Cellular Networks: In cellular
networks, the traffic load may exhibit fluctuations and
thus incur energy waste due to under-utilization of BSs.
Accordingly, BSs carrying light traffic can be powered off
to save energy. In a heterogeneous network scenario, how
many small cell traffic BSs can be turned off according to
the traffic fluctuations was investigated in [92], and the results
indicated that denser deployment of macro-BSs would allow
turning off more small cell BSs and hence might improve
network energy efficiency. The works in [93] and [94] fur-
ther investigated the BS operation in heterogeneous cellular
networks and the energy efficiency of switching-off macro-
cell BSs. In [95], a software-defined hyber-cellular networking
scheme was designed in which the BSs were classified into
control BSs (responsible for control functions such as network
access) and traffic BSs (responsible for data communications).
In this way, control BSs can make decisions and dynamically
switch traffic BSs on/off for significant energy savings.

Cell-breathing is another technique for cellular networks
which can improve the energy efficiency by dynamically
adjusting the cell size according to traffic demands. In [96],
cell breathing was exploited by putting cells with low loads
into sleep mode, where the antenna tilting was re-optimized
correspondingly such that the energy saving of sleeping would
not degrade the network performance. Based on radio-over
fiber technology, Gomes et al. [97] proposed a dynamic
multi-tier architecture for mobile wireless networks where
cells at different tiers have different sizes of coverage. With
such a framework, the authors proposed to split (or merge)
cells by turning on (or off) the BSs according to the traffic
demand of mobile users, with objectives such as minimization
of BS number, maximization of served user number and energy
consumption minimization. Simulation results showed that the
energy consumption was reduced by two thirds while the num-
ber of served users increased by 17%, compared to a single-tier
scheme.

4) Energy-Efficient Throughput-Optimal Flow Control:
The problem of transmission scheduling can be generalized
to flow control in which link scheduling is jointly consid-
ered with flow assignment. Jiang et al. [98] formulated the
problem of throughput optimization under energy constraint as
a non-linear program, and proposed a linear near optimal solu-
tion based on piece-wise linear approximation to address the
flow control. They further considered the throughput-optimal
and energy-minimal problem as a multi-criteria optimization,
with which they sought Pareto-optimal solutions and finally
achieved a throughput-energy curve, where each point on the
curve indicated a weakly Pareto-optimal solution. A generic
framework for energy-efficient flow control was formulated
in [99], in which the authors developed a multi-objective
optimization problem based on multi-commodity flow for-
mulation augmented with scheduling constraints, in order to
jointly solve the optimal flow allocation and independent set
scheduling that can maximize network capacity with minimal
energy consumption. Delay column generation was leveraged
to effectively solve the optimization problem, based on which

the proposed algorithm can improve energy efficiency with
low computation overhead.

5) Remarks: Time-based resource allocation can achieve
significant energy savings especially in low-load networks,
proving its effectiveness. However, applying these techniques
to support big data communications is challenging.

As discussed above, the time-based allocation mainly coor-
dinates the activities of the nodes over time. The above
schemes such as scheduling according to traffic demand and
the utilization of power-saving classes are able to deal with
big data with bursting traffic, which is relating to the velocity
feature of big data.

Most time-based allocation schemes are sensitive to network
traffic fluctuations that would be common in the big data era.
Therefore, efficient schemes should be able to either predict
traffic information and take proactive actions or adopt adaptive
MAC protocols closely reacting to traffic fluctuations.

Big data are generated in various devices and may be
assigned different priorities during communications, corre-
sponding to the variety feature of big data. Although some
MAC protocols, e.g., IEEE 802.11e, already can handle pri-
ority diversity [100], it remains challenging in the design of
priority-aware sleep scheduling and flow control for energy
efficiency optimization.

C. Spatial Resource Allocation for EEWN

A wireless network can leverage spatial diversity by des-
ignating or electing an appropriate subset of nodes out of all
others to perform required tasks with low energy consumption.
This involves issues such as node deployment, selection and
routing.

1) BS Deployment in Cellular Networks: To increase the
cellular network coverage and capacity, more and more
BSs are deployed which amount to around 80% of total
network energy consumption [101]. To save energy in cel-
lular networks, a pioneering work in [102] investigated the
energy efficiency of BS deployment and proposed area power
consumption (APC) as a metric of the network performance.
The APC is defined as the ratio of total energy consump-
tion of the macro and micro BSs over the cell coverage area
and has a unit of Watt per square kilometer. The results
showed that the network APC strongly depended on the BS
density: both sparse and dense deployment of BSs would
result in high APC, while the optimal APC was achieved
at a moderate density. Moreover, by adding micro BSs, the
network APC can be improved to some extent. It was fur-
ther convinced in [103] that deploying micro BSs was able to
significantly reduce the network APC without sacrificing the
network throughput performance. In [104], the optimal density
of micro BSs was studied for improving energy efficiency. The
authors showed that, if the micro BSs energy cost was lower
than a threshold, more micro BSs can be deployed. In these
studies, BS density is optimized only on peak traffic load.
Wu and Niu [105] proposed an analytical approach based on
linear topologies to analyze the energy-optimal BS deploy-
ment problem considering the traffic load variations. They
showed that their deployment scheme could save more than
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20% of energy consumption compared to the schemes focus-
ing on peak traffic load. Macrocell offloading by deploying
femtocells is able to improve network energy efficiency [106].
However, dense deployment of femtocells may increase the
total network energy consumption instead.

2) User Association in Cellular Networks: In cellular
networks, especially for downlink transmissions that contribute
to the major portion of mobile big data, a user should be asso-
ciated with a BS. The cellular network energy efficiency can
be improved by selecting appropriate serving BSs for mobile
users. In [107], the user association problem was formulated
as to optimize a linear combination of flow-level performance
(which accounts for delay and traffic loads) and energy con-
sumption. The optimal solution showed that, if the objective
function degenerated to pure energy consumption, then the
optimal BS for each mobile user was the one that had highest
energy efficiency in terms of bits per joule.

3) Energy-Efficient Clustering: Clustering to form back-
bone links in large-scale spatially distributed wireless networks
is an efficient way to save energy, since the transmission dis-
tances of ordinary nodes are significantly reduced. Selecting
the optimal cluster heads is one of the key issues for energy-
efficient clustering. Prior work has proposed many algorithms
for static networks. In [108], a particle swarm based multi-
objective optimization algorithm was proposed to search for
the Pareto-optimal solutions, where the objectives included the
number of clusters, energy consumption and a network load-
balancing factor. The proposed algorithm can be applied in
mobile ad hoc networks—it finds cluster heads and their asso-
ciated members and update the particle positions iteratively by
taking node mobility into account.

Clustering can also save energy in large-volume big data
collection with a mobile sink in dense WSNs. In [26], a clus-
tering method based on expected-maximization was proposed
and the optimal number of clusters that minimizes the energy
consumption was derived analytically. The results demon-
strated that the proposed method achieved higher energy
efficiency than two existing ones.

4) Energy-Efficient Data Routing: Energy-efficient routing
in static wireless networks has been extensively studied in the
literature (see the survey in [109]). In the following, we shall
focus on energy-efficient routing in mobile networks, where
static routes may not always exist.

• Dynamic routing: Dynamic routing in mobile ad hoc
networks aims at dynamically searching and maintaining
energy-efficient paths. For example, the routing proto-
col proposed in [110] first selects from available paths
a minimum-energy shortest path between the source and
destination pair during the discovery phase. Then, based
on the selected path, a dynamic route maintenance mech-
anism was applied to adjust the actual transmission path
with low overhead.

• Opportunistic routing: Traditional routing protocols often
require the knowledge of path quality before making route
decisions, which could be impractical since many fac-
tors such as fading, interference and multipath effects can
lead to rapid path quality fluctuation. Therefore, oppor-
tunistic routing, which allows nodes that overhear the

transmission to participate in packet forwarding, becomes
an efficient solution. Selecting appropriate forwarders
is the key to improving energy efficiency in this case.
In [111], the forwarders were prioritized and the optimal
list was selected such that the induced total energy con-
sumption for forwarding as well as that for reaching an
agreement amount of the potential forwarders was min-
imized. In [112], considering opportunistic routing, the
authors proposed an analytical model for the average
total energy consumption for transmitting a packet and
for the end-to-end throughput. In their design, forwarders
were selected and prioritized recursively based on their
resultant normalized energy consumption.

• Routing in social networks: With the explosively increas-
ing use of smartphones and tablets, social data sharing is
an important source of mobile big data [4]. In order to
increase the data delivery probability for end-to-end com-
munications, many studies apply the “epidemic” approach
by employing multiple relays for data forwarding [113];
however, the energy consumption could be very high.
Taking advantage of the small-world phenomenon, a more
energy-efficient routing approach by limiting the number
of forwarding hops and using a light-weight relay selec-
tion strategy was proposed in [114]. A non-destination
node was selected as the relay if the delivery proba-
bility of either its own or one of its neighbors was
the largest. Such a way of including neighbors into
account is based on the “high cluster coefficient” small-
world phenomenon that people are likely to make friends
with friends’ friends. In [115], in order to disseminate
the information of mobile users’ common interests in
multicast aided Pico-cells, five relay selection methods
were presented and compared, among which the SSD
method (the relays that have shorter distances away from
one of the destination mobile users will be selected) was
found to outperform others in terms of both delay and
energy consumption.

5) Remarks: Existing studies on spatial-based resource
allocation have proven their capability of improving network
energy efficiency, though their primary goals are usually on
spectral efficiency (SE). To apply these methods to support
big data applications over wireless networks, there are several
challenges as below.

• The methods of node deployment in the network planning
stage and selection in the running stage may be combined
to provide better solutions for network energy efficiency.
On the other hand, most deployment/selection methods
are centralized ones that do not suit many big data scenar-
ios (e.g., crowdsoursing) where nodes behavior is decided
individually.

• Many existing path/relay selection schemes rely on the
channel state information (CSI) and assume it remains
unchanged in a frame time. However, such memoryless
channel assumption may not hold, especially in a mobile
environment. Alternatively, [116] considered a Markov
channel model and proposed a distributed relay selec-
tion policy. After the handshaking between source and
destination, candidate relays will compete by CSMA to
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broadcast their candidate index (indicating their residual
relay energy and the channel condition). The source node
will select the one with the smallest index to cooperate,
among all the relays that successfully send their indices
to the source.

• Dense wireless networks will likely generate big data.
The network density is an important factor for the
network energy efficiency. Dense networks may have
low energy efficiency due to high interference and sig-
nificantly increased energy cost. Improving the energy
efficiency of dense networks requires jointly allocation
power, time, spectrum and spatial resources.

D. Spectrum Sharing Based Schemes for EEWN

The capacity limitation of wireless channels makes it chal-
lenging to transport high volumes of wireless big data. The
scarcity of spectrum resources and the objective of higher
energy efficiency call for more flexible spectrum utilization
schemes. Basically, technologies such as CRNs, D2D com-
munications and OFDMA networks are primarily designed
to improve the SE for higher capacity, and hence pro-
viding effective ways for delivering large-volume big data.
In this subsection, we briefly discuss recent developments
in improving the energy efficiency of such spectrum-based
schemes.

1) Cognitive Radio Networks (CRNs): In order to exploit
the underexploited spectrum resource (e.g., TV white bands),
the cognitive radio (CR) technique allows unlicensed users
(i.e., secondary users or SUs) to dynamically access the
licensed spectrum when licensed users (i.e., primary users
or PUs) are temporally absent. With CR, the optimization
of spectrum utilization will improve the network throughput
and, as a side effect, its energy efficiency. However, it is also
noteworthy that an extra amount of energy is consumed in per-
forming spectrum sensing and channel switching by CR nodes,
which raises the tradeoff problem between spectrum sensing
and transmission [117]–[119]. The solution is usually derived
based on the outcome of spectrum sensing and an SU can
adaptively select the operation mode among sensing, switch-
ing to another channel, and transmission [117]. Moreover,
aside from scheduling between sensing and transmitting states,
the problem is often coupled with deciding channel sensing
order and sensing duration in order to achieve optimal energy
utilization [118].

2) D2D in Cellular Networks: D2D communications under-
laying cellular networks (see Fig. 6) can significantly increase
network performance by better utilizing radio and spectrum
resources. D2D communications can be applied to offload
cellular traffic in mobile big data sensing [120].

Since D2D communications share the same spectrum with
cellular communications, proper resource allocation for such
spectrum sharing is a critical issue for D2D communica-
tions [121]–[124]. D2D communications have the potential to
enhance the network energy efficiency by switching between
cellular and D2D modes [125]. In [126], a joint resource
allocation and mode selection optimization scheme in D2D-
integrated OFDMA system was proposed. The optimization

Fig. 6. Device-to-Device (D2D) communications.

problem aimed to minimize total downlink transmit power
under the user QoS constraints, by subcarrier allocation, adap-
tive modulation and mode selection solved from a heuristic
scheme. The work in [121] also focused on the energy-efficient
mode selection and power allocation for D2D system under-
played cellular networks, but with an exhaustive search of
all possible mode combinations. The energy efficiency of
all the modes of devices were first obtained and then by
searching among all the combinations, the optimal solution
was obtained along with the corresponding power allocation.
Similarly, in [127], an optimization problem that jointly solves
mode selection, scheduling and power control was proposed,
where a distributed scheme was utilized that can achieve near
optimal performance in terms of energy efficiency and fair-
ness. Mode selection and power control were also considered
in [122] with a comprehensive and tractable analytical frame-
work. In the proposed scheme, the authors took both D2D
link distance and cellular link distance into consideration, and
the effect from D2D communication on cellular network was
investigated. In [128], based on the findings that the cellular
interface consumes lower amount of energy in connectivity
maintenance but higher energy in data transferring than a Wi-
Fi interface, the authors employed Wi-Fi in cellular networks
to improve the energy efficiency.

3) OFDMA Networks: Orthogonal frequency-division
multiple access (OFDMA) divides the spectrum into orthog-
onal sub-channels and assigns them to individual users so
that multiple users can simultaneously transmit data with low
interference. By doing so, the SE is improved. To further
improve OFDMA-network energy-efficient, both uplink and
downlink have been studied. For example, the work in [129]
developed low complexity schemes for uplink OFDMA
systems, which allocated bandwidth to users to optimize
the energy efficiency of the network. Both energy-efficient
link adaption and subchannel assignment schemes of low
complexity were developed and shown to achieve near
optimal energy efficiency where the optimal solutions were
obtained by exhaustive searching.

The energy efficiency of downlink OFDMA networks
was considered in [130]–[132]. In [130], OFDMA downlink
network with a large number of transmit antennas was stud-
ied. A non-convex optimization problem was formulated to
derive optimal rate adaptation policies as well as antenna and
subcarrier allocation to maximize energy efficiency. The work
in [131] studied the tradeoff between energy efficiency and
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spectral efficiency for downlink OFDMA networks with coop-
erative BSs using a similar optimization approach as above. It
used dual decomposition to derive closed-form power alloca-
tion solutions that maximize energy efficiency. The tradeoff
between energy and spectral efficiency was also analyzed
in [132], which proved that EE is quasi-concave in SE. A
low-complexity and near-optimal algorithm was developed to
achieve the desired tradeoff.

Resource allocation for both uplink and downlink OFDMA
cellular networks was considered in [133], which aimed at
optimizing energy under QoS constraints. Both the optimal
solution and a low-complexity suboptimal solution were
derived.

4) General MR-MC Networks: One mathematical general-
ization of CRNs, OFDMA networks and WiMAX systems is
multi-radio multi-channel (MR-MC) wireless networks, where
each node has multiple radios that can operate on multiple
channels [134]–[136]. Based on the observation that idle radios
incur energy waste, the work in [137] proposed an approach
to turn off unneeded radios if the network performance is not
impaired. Both a heuristic algorithm and a mixed-integer linear
program were proposed in the paper to find optimal channel
assignment and routing solutions. The optimality of energy
efficiency in generic MR-MC networks was exploited in [99],
in which the conditions to achieve optimal energy efficiency
were analyzed. With this work, the optimal multi-dimensional
resource allocation to achieve maximized energy efficiency
at full network capacity can be obtained by selecting proper
number of active radios and channels in the network.

5) Remarks: With advances in self-interference cancella-
tion, full duplex radios can transmit and receive data simulta-
neously, thus reusing the scarce frequency resource. Deploying
full duplex relaying systems is expected to improve SE by
a factor at most 2 as compared with traditional half-duplex
ones [138]. Whereas, the EE of full duplex wireless networks
has not been well explored.

Nowadays, wireless networks present a tendency of exploit-
ing multiple radios or channels. In general, resource allocation
problems in MR-MC networks are of higher complexity due
to the multiple dimension nature [139]. Energy efficiency
optimization problems in generic MR-MC networks calls for
low-complexity and efficient algorithms to solve the coupled
problems of radio and channel allocation and transmission
scheduling, which remains an open issue.

E. Joint Resource Allocation for EEWN

Taking advantage of the full resource space information and
jointly allocating different resources, significant improvement
to the overall network EE can be anticipated. For exam-
ple, as a combination of two techniques, MIMO-OFDMA
systems [140] can bring more benefit but demand for joint
spatial and frequency allocation. In the above, some joint
resource allocation algorithms have been already discussed
such as those exploiting spatio-temporal diversities of wire-
less networks. Another representative application scenario of
jointly allocating all the above resources is heterogeneous
networks (HetNets) that are deployed with both macro cells

and small cells (e.g., femtocells) for better coverage, higher
capacity and QoE. In HetNets, femtocell BSs operate with
much lower power than macro cell ones, thus improving the
network EE demands wise deployment and power manage-
ment of femtocell BSs to mitigate inter-cell interference under
coverage constraints. Scheduling these BSs to adapt to network
traffic conditions (e.g., turning off some femtocell BSs in areas
with no traffic demand) calls for novel load-balancing tech-
niques. In addition, enhancing network EE calls for joint power
and spectrum allocation schemes [141].

Besides, there is a large volume of research on cross-layer
optimization approaches for designing energy-efficient wire-
less network protocols. For instance, crossing the bottom MAC
and PHY layers will allow jointly allocating power, spec-
trum and time resources in order to achieve higher energy
efficiency [142]. Since the fundamental energy-preserving
techniques are almost mentioned above, we refer interested
readers to excellent surveys on joint allocation schemes
in [17], [22], [142], and [143].

1) Remarks: Most joint resource allocation approaches
result in solving complex optimization problems over the
whole network. Nevertheless, they may encounter significant
challenges in practical implementations due to lack of suffi-
cient management of network heterogeneity, complexity and
consistency [144], [145]. For example, in mobile big data
networks, the BSs are often unaware of user status, mak-
ing it difficult to obtain the optimal solutions. In addition,
since network service providers focus on their own profit, to
implement the optimization solutions on devices belonging to
different providers is challenging.

In addition, in the big data era, new features such as high
volume data traffic loads and great pressure on spectrum uti-
lization call for more flexible resource allocation schemes
across the network. To this send, a prominent solution is the
SDN framework. With data and control separation, controllers
are able to jointly allocate network resources. For example,
in the SDN based VANET concept as proposed in [29], the
system can make more informed decisions on path selection,
channel/frequency coordination, and power control.

V. ENERGY-EFFICIENT DATA STORAGE

IN WIRELESS NETWORKS

The acquired big data must be stored for querying, access-
ing and computing. Storing big data is a vital and challenging
problem which involves issues such as file systems (e.g.,
Google’s GFS) and database technologies (e.g., NoSQL) [3].
Although important for big data, such issues are not closely
related to wireless networking. In this section, we investigate
the wireless networking aspect of big data storage and hence,
based on the above energy-efficient wireless communications,
we shall focus on the in-network data caching technologies.

Conventionally, data from their source devices are trans-
mitted to some remote servers for storing and processing.
However, such a centralized paradigm is significantly energy-
inefficient over wireless networks in the big data era due
to high communication cost. Therefore, communication cost
and data storage cost should be balanced in order to improve
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energy efficiency. On the other hand, big data generated from
IoT sensors/devices and mobile devices may be frequently
accessed by on-site controllers, end-users and edge nodes in
mobile networks, demanding that the data are cached closer
to them for fast querying. To this end, distributed storage in
WSNs and mobile caching in mobile big data scenarios are
two important ways.

A. Distributed Data Storage in WSNs

In big data applications in IoT and WSNs, using fixed sinks
for collecting all sensory data is almost impractical since the
fast energy depletion of nodes around the sinks will create
energy holes and break network connectivity as a result. In
addition, in hostile, harsh and catastrophic application envi-
ronments, the WSNs may frequently loss connectivity due to
failure of either wireless communication links or sensor nodes.
Some studies have suggested the use of mobile sinks to col-
lect sensor data, but it is hard to guarantee that all the data
are collected reliably and with low latency. To tackle these
challenges, distributed data storage is to store sensory data
(with redundancy) at the sensor nodes themselves to ensure
reliable data reconstruction for the mobile sink nodes by vis-
iting only a subset of the sensors. Energy-efficient distributed
storage in WSNs focuses on saving energy through reducing
number of transmissions and receptions for data collection and
dissemination, while maintaining the reliability of sensor data
recovery.

1) Compressed Network Coding: Data dissemination con-
tributes the major portion of power consumption in distributed
storage of WSNs, which includes data transmission and recep-
tion. In order to reduce energy consumption, an effective
way is to reduce the number of data transmissions during
dissemination. In densely distributed WSNs, sensing results
of neighboring sensors usually have high correlation. Taking
advantage of this feature, compressed sensing can be exploited
to reduce data transmission. In addition, by allowing node
to forward linearly combined data, network coding technique
can be applied to further reduce the number of transmissions.
Based on these approaches, Yang et al. [146] proposed a
compressed network coding based distributed storage scheme
for WSNs. They exploited the correlations of sensor read-
ings based on compressed sensing theory and network coding,
and designed a data format to control data reception. This
can achieve reduction in both transmissions and receptions
while guaranteeing the reliable recovery of data. Further, in
order to improve the efficiency, the same authors proposed
an adaptive method in [147], where, based on the random
geometric graph theory, the expressions of the numbers of
transmissions and receptions were derived, which indicated
that the number of transmissions can be reduced by using a
smaller forwarding probability. On the other hand, the forward-
ing probability should be large enough to maintain acceptable
level of recovery error. It was observed in [146] that using the
same forwarding probability for all the nodes was not optimal
since each node’s ability of disseminating messages is affected
by neighbors. A node with a larger number of neighbors can
use a smaller forwarding probability, while it should more

frequently forward messages when with less neighbors. Based
on these, an adaptive scheme was proposed with which the
forwarding probability of nodes was adjusted according to the
number of neighbors of each node.

In addition to the spatial correlation of neighboring sen-
sors, Gong et al. [148] took temporal correlations over time
slots into consideration for sensor reading collection, which
can further reduce the transmissions required for data recov-
ery. Specifically, sensor readings from consecutive time slots
were linearly combined with a network coding scheme. Then
to recover the readings, only a subset of nodes need to be
visited, which greatly reduces the number of transmissions.
It was shown that the proposed scheme could achieve the
same recovery performance with much less transmissions and
receptions.

2) Information-Based Querying: In view of the “value”
dimension of the big data, the information stored in WSNs
may be more important than the big data themselves. For
example, instead of storing all generated measurement data,
a sensor node may only store the average or maximum values
of the data [149]. Targeting at highly connected and dynamic
WSNs with massive data, Bergelt et al. [149] proposed
a database-orientation system for information querying in
WSNs, where the whole network was viewed as a virtual
database with each sensor corresponding to a row. Together
with a wake-up mechanism and an aggregation strategy, the
proposed system enables efficient use of energy.

In complex environments where the sensing data are
with multiple attributes, i.e., with multi-dimensional data,
Tissera et al. [150] proposed an energy-efficient querying
mechanism that resolved two types of queries: ANY-type
query was resolved when the query packet reached a sensor
node that contained data relating to an attribute, while ALL-
type query was resolved when this sensor node had all data of
the attribute. Then, a load balancing problem was considered
and a distributed algorithm was applied to construct multiple
trees from information source node. Simulation results showed
that the proposed mechanism reduces query response time and
energy cost.

3) Practical Considerations: Considering the practical sce-
narios where sensor readings may not be compressible in
the discrete cosine transformation domain, the work in [151]
improved the spatio-temporal compressive coding scheme to
guarantee data recovery by training dictionaries adaptively to
achieve sparse representation and optimize measurement accu-
racy. In [151], a two-dimensional dictionary training method
was proposed and the measurement matrices were redesigned
for both the spatial and temporal dictionaries. Considering
both sparseness and incoherence, an adaptive column com-
bination method was developed that can achieve better energy
efficiency with more accurate data recovery.

Another practical consideration is to estimate the real dis-
tribution and addresses of sensor nodes. In [152], sensing data
is mapped to clusters such that the storage among sensors can
be balanced, according to the estimated distribution. Then a
cluster-based routing is performed, where the cluster head is
rotated among cluster members to balance the energy con-
sumption within each cluster. With this method, the sensor
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Fig. 7. Architecture of proactive caching based on a big data platform [153].

nodes are not required to equip with localization system, thus
further energy savings can be achieved.

B. Mobile Caching of Big Data

In mobile networks, it is observed that duplicate downloads
of some popular contents (e.g., pop music and videos) con-
tribute to an important portion of big data traffic. Motivated
by this, mobile caching aims at proactively caching popular
contents at edge devices in order to reduce both the traffic and
energy cost of backhaul links, especially during peak traffic
hours. Meanwhile, big data in mobile networks face not only
the challenge of huge data amount, but also the limited storage
space and power supply, which should be considered in the
design of energy-efficient mobile caching.

1) Proactive Caching: Since human behavior is highly pre-
dictable, proactive caching can be utilized in mobile networks
for caching at the edges, which are usually at BSs. With
human behavior prediction and predictive resource manage-
ment, proactive caching moves content closer to users, and
hence is promising in improving user experiences and back-
haul offloading gains. At the same time, a large amount of
data enables big data analytics and machine learning (ML)
techniques, based on which content popularity estimation can
be carried out to enhance caching efficiency and performance.

As shown in Fig. 7, a proactive caching scheme to handle
huge amounts of big data was proposed in [153] and [154],
where the authors leveraged big data analysis for content pop-
ularity computation such that strategic contents can be cached
at BSs to improve user satisfaction and backhaul offloading.
Popularity estimation under such a scenario is highly chal-
lenging due to high sparsity of spatio-temporal user behavior,
large number of users and content catalog. As a solution, the
authors exploit ML tools to enable parallel computations of
content popularity on big data platform (details to be dis-
cussed in Section VII). The results showed that 100% user
request satisfaction and 98% reduction on backhaul usage were
achieved.

Further, the work in [155] reduced the energy consumption
of mobile user devices in proactive content caching by increas-
ing transmission time of requests and dynamically scheduling
when to download the content according to channel condi-
tions. At the same time, since users’ cache memory is usually
limited, the energy efficiency of proactive caching is also lim-
ited by the cache capacity constraint. In this case, an offline
optimization was performed to derive the upper bound of the
proactive caching gain, together with a backward water-filling
algorithm to obtain the optimal caching strategy.

2) Social Networking for Caching Mobile Big Data: Since
mobile networks are highly related to human activities, social
networking plays an important role in mobile caching. For
example, the work in [156] leveraged social networking and
mobile caching network to improve the energy efficiency of
edge nodes in fog computing systems. Considering the energy
conservation and QoS requirements of fog computing, the
paper exploited social and spatial structure of the network,
and designed an edge node selection scheme based on the
social centrality of users, which was obtained from encounter-
ing history information and location information of end users.
Then the content placement among edge nodes was optimized
by minimizing the energy consumption in the network.

In order to store a very large volume of mobile big data
in mobile social networks, a content-centric framework with
caching in content store was proposed in [4]. Each node has
a content stores and the mobile big data are distributed and
stored at the content stores cooperatively. In this way, a data
request from a mobile user can be fulfilled more rapidly with
less traffic whenever a replica of the data is cached in a nearby
content store. Further, it was proposed that the mobile big data
can be served with different priorities based on information
from user plans and potential profits of data. Then the data
value can be explored for decision making and optimization
of the network in order to support fast management of the
big data, which resolves the issues regarding variety of value
(aside from volume) features of big data.

3) Context Awareness: In practice, mobile caching faces
many challenges. Due to user mobility, the caching scheme
has to be carefully designed to balance the communication
and storage costs for big data. Besides, the storage decision
should be made to avoid bottleneck problems in which a
user is accessed by too many neighbors. In addition, users
may have different data access preferences that should be
accounted in the design. These issues can be effectively tackled
with context-aware storage schemes, where context informa-
tion such as user mobility patterns, network condition and
access preferences can be jointly considered. For example,
the work in [157] developed a context-aware scheme that
accounted these factors in a mobile cloud computing envi-
ronment and studied the problem of minimizing the expected
global transmission time in data access of all users.

In addition, content popularity, preference, user character-
istics and operator objective were also considered as context
information in [158]. The content popularity was first learned
online by observing users’ requests on cache content without
assuming priori knowledge. Then, the content popularity was
modeled with users’ personal characteristics, equipments, and
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external factors, based on which the context-specific content
popularity can be learned. In addition, the proposed scheme
also enables service differentiation with customer prioritiza-
tion. With the learned content popularity, cache content can
be updated accordingly and thus content placement strategy
can be optimized.

VI. ENERGY-EFFICIENT DATA COMPUTATION

Based on the data acquisition, communication and stor-
age technologies, the collected massive data will be computed
for extracting meaningful information, which is the core part
of big data research. In this section, since we are focusing
on the wireless networking aspect, we narrow our scope to
energy-efficient big data computation platforms based on wire-
less networks, such as wireless cloud networks and wireless
data-center networks, and shall focus on recent studies for bet-
ter service provisioning, smarter resource utilization, higher
flexibility and plausibly lower costs in these platforms.

A. Data-Center Networks (DCNs)

Data-centers carry out the most data storage and computa-
tion services and probably consume the most significant part
of energy in handling big data. As reported in [159], a nor-
mal data-center consumes roughly the same energy as 25,000
households. Therefore, the energy efficiency of data center
networks is of great importance for big data.

In the literature, the most commonly mentioned data-centers
are based on wired communications. Three primary obsta-
cles that limit the application of most wireless technologies
in DCNs are low data rate, unreliability due to wireless
interference and fading, and security issues such as infor-
mation leakage [160]. However, driven by the demand for
flexible and low cost data-centers in contrast to wired ones,
recently, there have been a few studies attempting to develop
wireless DCNs. An important method is to establish wire-
less links based on the emerging 60 GHz RF technology
which can achieve throughput as high as 15Gbps [161]. The
60 GHz RF can protect information security since the emitted
wireless signals will not penetrate walls if the data-centers
are properly placed in concrete rooms [160]. Technologies
such as directional antenna, beamforming and beamsteer-
ing are integrated to further enhance reliability and mitigate
interference [160], [162]. Based on the 60 GHz technology,
it is demonstrated that fully wireless data-centers (except for
the power supply wires) are practically feasible and, compared
with traditional wired data-centers, are promising in improving
latency and reducing energy consumption [161], [163].

In the literature, the energy efficiency aspect of wire-
less DCNs has not been well studied. However, to improve
the energy efficiency, many existing mechanisms originally
designed for wired data-centers might be applied. While
energy saving can be achieved by reducing the active com-
ponent in DCNs, it potentially increases the appearance prob-
ability of hotspot and congestion. Considering such a trade-off,
approaches have been taken from the following aspects.

1) Sleep Scheduling Based on Virtualization: Data-centers
are often over provisioned in order to accommodate traffic

upsurges, which leads to that the data-centers are under-
utilized in most time. Virtualization in DCNs allows for
dynamic migration of virtual machines (VMs) among phys-
ical nodes according to workload demands and performance
requirements. Within a data-center, VMs can be consolidated
to reduce the number of active physical servers so that idle
servers can be turned off to save energy without violating
service level agreements (SLA). However, aggressive VM
placement strategies may concentrate workloads on a subset
of the machines and hence cause hot spots and congestion,
which may not only degrade the system performance but also
incur extra energy cost for cooling. In [164], a two-level con-
trol approach was considered, where the local controller of
each VM allocated resources (e.g., CPU, memory and storage)
to guarantee application performance, while the data-center
employed a global controller to determine VM placement at
the initial stage. The VM placement was formulated as a multi-
objective optimization problem aiming at jointly minimizing
conflicting objectives including energy consumption, thermal
dissipating cost and total resource wastage. A grouping genetic
algorithm was designed to search for optimal solutions where
a fuzzy logic based approach was embedded to evaluate each
solution. To dynamically determine VM placement to save
energy, a double-threshold idea was proposed in [165], in
which: 1) a server would be commanded to sleep and all its
VMs would be migrated to others if its CPU utilization was
below the lower threshold: 2) some of the server’s VMs would
be migrated to others if its CPU utilization exceeded the upper
threshold. In order to save communication energy of VMs, one
useful way is to consolidate groups of communicating VMs
in a small area of a data center network in order to reduce the
path length of the flows. To solve such a VM consolidation
problem that is NP-hard, a topology-aware recursive algorithm
was proposed which prevented the formation of network bot-
tlenecks and had the advantage of handling a large number of
VMs without sacrificing energy efficiency [166].

Network virtualization was exploited in [167] and a heuris-
tic scheduling algorithm was proposed for mapping in virtual
networks to turn off idle servers and network resources.
Similarly, the work in [168] proposed a greedy approach to
find a sub-network according to traffic condition which can
fulfill flow demands, and the rest of the network can be turned
off to reduce energy consumption. Considering the energy
consumption on routers and switches, Nam et al. [169] com-
bined server consolidation and idle logic, which can rapidly
turn on/off sub-components, based on dynamic traffic activi-
ties. The fluctuation pattern of traffic can also be explored to
power on/off idle devices, such as powering off devices during
off-peak time. As discussed in [170], both the hosts and the
network were considered, and a joint optimization of virtual
machine placement and flow routing was studied.

2) Traffic Routing: The VM placement problem is often
coupled with traffic routing in order to handle dynamic work-
loads in which the key idea for energy saving is to shutdown
unneeded network devices such as idle switches. Under given
routing requirement, the energy-aware routing problem aim-
ing at minimizing the number of switches while guaranteeing
a certain level of throughput was studied in [171]. Given the
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network traffic flow matrix, it was shown that the problem is
NP-hard. A heuristic algorithm was proposed that, based on
an initial basic routing, iteratively removed switches until the
achieved throughput decreased to its threshold value. With the
objective of minimizing total energy consumption, a joint VM
placement and routing problem was formulated and proved to
be NP-complete in [172]. The problem was then decomposed
into three sub-problems including traffic-aware VM grouping,
distance-aware VM-group to server-rack mapping and power-
aware inter-VM traffic flow routing. The third sub-problem
was transformed into a multi-commodity flow problem that
was solved based on Greedy Bin-Packing algorithm.

Wang et al. [173] analyzed the network-as-a-service model,
based on which the energy-efficient routing was formulated
as an optimization problem under multiple resources. Flows
were selected progressively with a greedy algorithm to exhaust
node capacity, while paths assignment was done according
to residual capacities and flow demand. The work also lever-
aged regularity of DCN structure for a topology-aware method.
Considering deadline constrained flows, the work in [174]
proposed an approximation algorithm to jointly perform flow
scheduling and routing based on relaxation and randomized
rounding methods. Further, dependency based virtual deadline
approach was proposed in [175], which set virtual deadlines
according to the dependencies of tasks for scheduling, thus
tasks can be dynamically assigned to servers based on link
and server load.

B. Mobile Cloud Computing Networks

Cloud computing is a new service provisioning paradigm
that offers dynamic and scalable computing services in differ-
ent manners referred to as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), Software as a Service (SaaS)
and so on. Users can purchase and enjoy these services any-
where and anytime on demand. The cloud structure can be
integrated with wireless networks yielding, for example, cloud
base station networks and mobile clouds, which provide flex-
ible and rich computing platforms for storing and computing
mobile big data. On the other hand, the increasing amount
of mobile big data due to proliferation of mobile devices and
increase of mobile data demand are accelerating the develop-
ment of mobile cloud computing systems. It is hence important
to develop energy-efficient mobile cloud computing networks
to be applied in the big data era. In this subsection, we present
a survey of recent such efforts.

1) Cloud Base Stations: In traditional cellular networks,
BSs are managed roughly in a distributed manner and the
computation resources are provisioned according to traffic load
conditions at each BS to ensure certain QoS. However, with-
out close coordination among the BSs, there is an inevitable
amount of computation resource waste when handling big data
due to highly dynamic traffic loads. The cloud radio access
networks (C-RAN) and Wireless Network Cloud (WNC)
projects promoted the transition from distributed to central-
ized cloud framework by consolidating the baseband units of
multiple BSs into a virtual one. In this manner, the baseband
cellular signals can be processed in a central location, which

Fig. 8. Architecture of mobile cloud computing [181].

potentially saves energy. As an example, the eBase system for
baseband unit clustering can save around 20% of the total
energy [176]. Exploring the load variations of the BSs, a
cloud based framework, called CloudIQ, was proposed which
partitioned the BSs into groups and scheduled them to meet
real-time requirements [177].

With the virtualization technology based on software-
defined hardware, the computation resources in cloud-based
cellular systems can be pooled and dynamically allocated. In
such virtual BSs, investigating the energy efficiency should
take both computation and communication costs into account.
In [178], a power-delay tradeoff problem was studied in
which the total power consisted of baseband signal process-
ing power and the radio (including radio circuits) power. The
optimization solution can jointly optimize the data rate and
the number of CPU cores. Such a computation-resource-aware
approach over virtualized BSs can save much more energy
(more than 60% as demonstrated in [178]) than conventional
BS systems.

To overcome the performance limitation of C-RAN as
constrained by the limited-capacity fronthaul, heterogeneous
C-RAN (H-CRAN) has been proposed that takes advantages
of both C-RAN and heterogeneous networks. H-CRAN has
emerged as a cost-efficient network architecture for support-
ing mobile big data, and achieves higher energy efficiency than
C-RAN [179], [180].

2) Mobile Edge Computing: Mobile edge computing
(MEC), sometimes also termed as mobile cloud computing
(MCC), extends cloud computing services to mobile end users.
As illustrated in Fig. 8, through wireless accessing networks
and cloudlets (can be viewed as small-scale wireless data-
centers), MEC systems can offer ubiquitous computing service
access with high scalability [181] and has emerged as a useful
platform for mobile big data computing [182].

In an MEC system, computation intensive applications
can be migrated from resource-constrained mobile devices
to resourceful cloud such that the servers or other mobile
devices can help carry out the computation. By means of such
offloading, we may expect that the energy expenditure of the
mobile node can be saved and its battery lifetime can be pro-
longed. However, in handling mobile big data, the problem of
energy efficiency remains challenging for offloading in such
a mobile cloud due to high communication overhead, despite
many existing energy-efficient communication protocols and
mechanisms for cellular networks and Wi-Fi networks (refer-
ring to relevant sections above). To illustrate this, consider the
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Fig. 9. When does offloading save energy? [183].

example in [183] where a mobile node sends D bytes of data
to a server to offload an application with C instructions for
computation. It then comes that the amount of energy that the
node can save by performing the offloading can be written as

�E = αC − β

B
D, (4)

where α and β are constants depending on the power con-
sumption of the node and the cloud server, respectively. B
is the available bandwidth for communication. As suggested
in (4), whether the offloading can save energy depends on the
amounts of both computation instructions D and communica-
tion data C. As illustrated in Fig. 9, when D is much larger
than C, it is intuitively more energy-efficient to offload such
a computation intensive application to the server. In contrast,
when communication is expensive, this application is better
carried out at the mobile node itself. It is worth noticing that
the condition also depends on the bandwidth B in the sense
that a large B can save communication time (and hence energy)
and thus can improve the energy efficiency.

The above simple example demonstrates the basic tradeoff
problem between communication and computation costs when
investigating the benefit of offloading in MEC networks. As
suggested by Fig. 9, more energy may be saved by either
reducing the amounts of communications or increasing the
amount of offloaded computations. In this sense, energy-
efficient offloading methods can be categorized into three
classes as follows.

• Computation-based approaches: By means of some fine-
grained code management schemes (e.g., MAUI [184]
and ThankAir [185]) which partition the whole offload-
ing application program and (adaptively) offload those
computation-intensive partitioned parts, the average
amount of computation D to be offloaded can be
increased. To reduce the burden on programmers, the
entire program can migrate from the mobile device to
cloud servers, which, however, saves less energy.

• Communication-based approaches: Another way is to
reduce the amount of communication by means such
as data aggregation (to merge sporadic data packets)
and data compression (to reduce the number of com-
munication bits) [186], [187]. Also, the cloud can store

certain data and perform computation on it, making the
mobile node more convenient and energy-efficient to send
short data pointers instead of transmitting the whole pro-
gram or data to cloud servers [183]. In practice, wireless
communications suffer from time-varying connectivity
and available bandwidth constraints, which further affect
the energy efficiency of offloading in MEC. Taking
the time-varying communication quality into account,
Shu et al. [188] proposed an energy-efficient data trans-
mission strategy eTime for offloading in MEC. eTime
dynamically seizes opportunities of good wireless con-
nectivity of 3G or Wi-Fi to prefetch frequently used data
while deferring delay-tolerant data to save energy.

• Hybrid and Joint Optimizations: In some cases, rather
than completely offloading or executing a certain program
locally on the mobile node, a hybrid method can better
utilize the cloud resource and may yield higher energy
efficiency. Zhang et al. [189] considered that the tasks
of an application can be collaboratively executed on the
mobile node and the cloud, and investigated the problem
of minimizing the energy consumption of the mobile node
while guaranteeing the total execution of the tasks. Based
on a tree-topology task model and a stochastic channel
model, they showed that the most favorable task schedul-
ing policy was to conduct task offloading at most once.
Their results also advocated the collaborative tasks execu-
tion over completely offloading or no offloading. Partial
computation offloading can be realized by applying the
dynamic voltage scaling technique which can adaptively
adjust computational speed based on computation load
to reduce energy consumption. Considering the partial
computation offloading problem of a mobile device in
MEC, Wang et al. [190] studied two joint optimization
problems: one was energy consumption minimization and
the other was execution latency minimization, where the
decision variables for the mobile device were its com-
putational speed fl, transmit power Pt and the fraction
of data bits to be executed locally λ. Specifically, in the
first minimization problem, the objective was to mini-
mize total energy consumption which accounts for the
local computing cost (depending on both fl and λ) and the
transmitting and receiving energy (depending on both λ

and Pt) during the offloading process between the device
and the cloud server. The minimization program is subject
to a constraint on the application execution latency which
is modeled as the larger value of local computing time
and the total time with offloading to the server (including
execution and round-trip communication time), since the
two processes run in parallel. The second minimization
problem aims at minimizing the total application exe-
cution latency while guaranteeing that the total energy
is bounded. The results showed that partial offloading
was beneficial in terms of energy saving. In multi-user
offloading cases, a joint optimization of communication
resources (in terms of users’ transmitting precoding matri-
ces relating to data rate) and computation resources (in
terms of CPU cycles) of each mobile users was stud-
ied in [191]. The problem was formulated as a nonlinear



CAO et al.: TOWARDS ENERGY-EFFICIENT WIRELESS NETWORKING IN BIG DATA ERA: SURVEY 323

Fig. 10. Fog computing for IoT [192].

program to minimize the total energy consumption of
each mobile user while ensuring bounded overall latency
experienced by each user and under power budget con-
straints. The results confirmed that the joint optimization
outperforms disjoint optimization approaches.

3) Fog Computing: In IoT networks, devices (e.g., sensors)
are often densely distributed that will generate and process big
data sets. For service real-timeliness and energy efficiency,
it is advisable to process big data within the vicinity of the
data source devices. This can be achieved with fog comput-
ing, which is usually referred to as a distributed paradigm that
offers real-time computing, distribution and storage services to
IoT devices. As shown in Fig. 10, a fog computing system con-
sists of both edge and core networking devices (e.g., routers,
APs, BSs and switches devices) and, unlike MEC, can also
extend cloud services such as IaaS, PaaS and SaaS to edge
devices [192].

Compared to centralized cloud computing platforms, the
distributed fog computing can provide more convenient ser-
vices to proximal IoT devices. However, whether such a
paradigm shift from centralized to distributed schemes will
save energy has not been well studied. In [193], the energy
consumption of a service provided by centralized data-centers
(DCs) in traditional cloud and nano data-centers (nDCs,
smaller servers that can host and distribute data and applica-
tions in a peer-to-peer manner) in fog computing was analyzed
and compared, where the energy consumption accounted for
all that in IoT devices, access network, edge and core networks
and DCs or nDCs. The results showed that nDCs can save a
small amount of energy in some cases, but generally the energy
saving depends on the type of access networks, nano server
scheduling and type of applications. It was also shown that the
best energy efficiency was achieved in applications generating
and distributing IoT big data that were infrequently accessed.

4) Ad Hoc Cloud Computing: The current prominent cloud
computing systems necessitate a cluster of expensive and ded-
icated cloud servers, incurring significant capital and energy
costs. Moreover, accessing the cloud infrastructure may not
be always available especially when the mobile devices move
out of the coverage of cellular BSs, Wi-Fi APs or cloudlets.
On the other hand, the proliferation of mobile devices such as
smartphones and tablets provides us the opportunity to utilize
voluntary untapped proximal computing and storage resources,
forming a new cloud computing paradigm termed as mobile
ad hoc cloud (MAHC) [194], [195].

With MAHC, battery-constrained mobile devices can
offload computations to other nearby mobile devices that are
resource rich or underloaded. In [196], a virtual cloud com-
puting framework was proposed for mobile phones, where
a task can be partitioned into portions such that some can
be executed locally while others can be offloaded to nearby
mobile devices. It was shown that the task processing time
was reduced, implying the reduction of energy consumption.
As designed in [197], mobile devices having spare resources
can form a dynamic MAHC to provide computing services
to others. A mobile device that is unaffordable for executing
certain tasks can launch a resource discovery process to find
an appropriate node in the MAHC for executing the task. In
order to save energy, the target node is selected as the one
having minimum estimated task execution cost.

In MAHC, human activities (e.g., mobility, social ties,
smartphone recharging, smartphone usage habits, and data
demand preferences) play a vital role. For example, weather
and news data may be more demanded in the morning.
Considering such information would help make fine-grained
resource allocation decisions and may achieve more energy
saving. Specifically, sociality-aware neighbor discovery and
transmission scheduling for D2D communications can be
further explored in the future [198]. Social ties and reputa-
tion information may be utilized in computation outsourcing
applications for better efficiency.

VII. BIG DATA ANALYTICS FOR ENHANCING ENERGY

EFFICIENCY OF WIRELESS NETWORKS

Although big data will continue to impose great pressure
on wireless networks in terms of storage, communication and
computation, the benefits that big data can bring are also
significant. Most existing approaches for network energy effi-
ciency optimization are model-based which strongly rely on
model accuracy; whereas in practice, various kinds of noises,
obstacles, interferences and other factors hardly accounted in
the models will limit the optimality (or even feasibility) of
these approaches. On the other hand, network optimization
problems based on accurate models are often too complicated
to be solved analytically or the solutions are difficult to be
implemented due to high complexity. However, the value con-
veyed in the big data can be learned by means of some data
mining and ML algorithms and further used to develop rela-
tively low-complexity solutions, and hence will improve the
network performance including energy efficiency. More impor-
tantly, learning-based approaches are able to learn and adapt
to time-varying wireless environment, which is an uneasy task
for model-based approaches.

In the literature, data analytics have been successfully
applied in WSNs [25] and CRNs [199] dealing with issues
such as data aggregation, routing, localization, clustering,
security, dynamic channel allocation, transmission control and
cross-layer resource allocation. However, there are not many
works explicitly discussing the application of data analytics
for enhancing EE of wireless networks in the big data con-
text. In this section, we present a review of recent studies
closely relating to the B4N category.
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A. Mining Valuable Information

It was reported that 4.2 Exabytes of mobile data traffic
were generated per month in 2015 and this number was pre-
dicted to increase to 24.3 Exabytes per month in 2019 [4].
The big data generated by sensors, smartphones and vehi-
cles may convey useful information of users, e.g., user habit,
behavior, preferences, and ambient environment, making big
data themselves as precious resources [200]. Under regula-
tion and privacy guarantee, such information can be extracted
and utilized to improve the network configurations for better
performance. For example, Xu et al. [201] proposed to extract
spatial and temporal information from social media big data
to identify urban emergency events. Such a method can be
useful in mobile crowdsensing networks, e.g., we can predict
network traffic bursts if we learn the emergence of certain
social events.

Further, with ML based methods, valuable information (e.g.,
primary user’s state in cognitive radio systems) from big data
sets to achieve various goals such as signal classification,
MAC protocol identification, attack detection and network
throughput improvement [202]. Big data were exploited
in [203]–[205] for anomaly detection in the network. In [203],
a big data analytics platform was presented for anomaly detec-
tion and root cause analysis in mobile wireless networks. The
proposed method learned the symptoms of network anoma-
lies and built a knowledge database with historic data. Then
an ML approach was employed to identify new anomalies
and mapped the detected anomalies to the database for root
cause analysis. Similarly, big data analytics were exploited
in [204], where an effective QoS management was proposed
to perform root cause analysis and predict traffic congestion.
Moreover, Parwez et al. [205] employed big data analytics
with ML tools for user anomaly detection, which helped in
identifying regions of interest for resource allocation and fault
avoidance solution. The work in [206] provided an overview
of the challenges in mobile big data, and proposed exploiting
deep learning in extracting meaningful information and hidden
patterns from big data. Specifically, a Spark based framework
was developed to execute distributed deep learning that was
time-efficient in large-scale mobile systems, which can speed
up the learning rate of deep network with many hidden layers
and millions of parameters.

The vast amount of geolocated data generated from per-
vasive mobile devices can be exploited in analyzing human
behavior, but with some technical challenges such as the col-
lection and storage of data, noise removing and analyzer. To
this end, a big mobile data analytical framework was devel-
oped in [207], which defined data processing rules, constructed
user trajectories by extracting user location data from different
sources and reduced oscillations to remove data noise.

The learned valuable information can be further utilized to
enhance the energy efficiency of wireless networks. A proac-
tive caching scheme that utilized cache-enabled unmanned
aerial vehicles (UAVs) was proposed in [208]. In order to pro-
vide required QoE to mobile users in C-RAN with minimum
transmit power of the UAVs, an ML algorithm was proposed,
which leveraged human-centric information to predict content

request distribution and mobility pattern of each user and used
the prediction results to determine the UAVs placement and the
content to cache. The human information is the data of gender,
occupation, age, and type of mobile device in use. That paper
showed a good example of how to improve wireless network
energy efficiency based on learning useful information from
big data. In [209], a reinforcement learning based MAC proto-
col was proposed for WSNs, in which the learning algorithm
helped a node to infer the states of other nodes. By doing so,
a near-optimal MAC policy can be learned that achieves high
throughput and low power consumption.

B. ML for Performance Evaluation

High volumes of user data also provide a credible way to
evaluate users’ QoE that is important for user-centric networks.
For example, in cellular handover management, existing meth-
ods that usually select cells merely based on signal strength
may result in bad QoE after handover. To tackle this problem,
the work in [210] proposed an ML scheme consisting of two
levels of feed-forward artificial neural networks to learn the
impact of handover on user QoE from historic data. The first-
level neural network outputs the successful file downloading
rate of users; while the second-level neural network outputs the
file downloading time which is further used as the key QoE
to decide the handover cell. The two neural networks were
trained with measurements obtained from user equipments.
Their simulation study showed that the proposed algorithm
was able to select the handover cell with better expected QoE
and the achieved performance was close to the optimal one.
Similarly, the performance of LTE network was investigated
in [211] with big data techniques. In [211], a large amount
of network measurements and diagnosis data were utilized to
evaluate and predict the network capacity. A forecasting algo-
rithm was proposed, which can predict the network resource
consumptions based on network traffic and service growth.

We envision that such methods can provide credible models
of network performance in terms of QoE, capacity and EE,
and hence facilitate the formulation of EE optimization under
QoE constraints when accurate models of the EE and QoE
are unavailable. Such an EE optimization strategy is worthy
of future investigations.

C. ML for Resource Allocation

Big data assisted resource allocation was investigated
in [212], for improving the system capacity in LTE networks.
By learning from a large amount of network measurements and
diagnosis data, an interference management algorithm using
big data analytics was proposed that can cluster users based
on specified metric and perform resource allocation accord-
ingly. Further, in mobile networks especially in the context
of self-organizing networking, allocating resources in order
to provision required QoS and QoE for users is a challeng-
ing issue. A learning-based approach that dynamically assigns
frequency and bandwidth resources in LTE small cell networks
was developed in [213]. The key idea is shown in Fig. 11.
The prediction engine estimates the network key performance
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Fig. 11. A learning-based resource allocation scheme [213].

indicators (KPIs) that relate to changes in QoS and QoE,
based on measurements (e.g., throughput, delay and SINR per
resource block) obtained from users and the small cells. It
also predicts the network KPI by means of some ML and
regression methods. Then, the Optimization Engine decides
the resource allocation based on both the PE output and the
measurements; specially, it updates the network parameters to
reconfigure frequency and bandwidth assignments if by doing
so, some performance benefits can be achieved. The main nov-
elty lies in the prediction engine for which the authors tested
and compared various ML algorithms including linear regres-
sion, bagging tree, boosted tree, K-nearest neighbor (KNN),
support vector machine, Kohonen networks and projection pur-
suit regression. Their results showed that the learning-based
approach can achieve 95% of the optimal network performance
and that the bagging tree based method outperformed others.
Although energy efficiency is not an issue in that work, the
proposed learning-based approach can be applied to optimize
network energy efficiency if it is accounted as a KPI.

As network operators possess a large amount of data relating
to user behavior and network performance, they can operate
the network in a proactive manner if equipped with big data
learning abilities. In other words, the network paradigm trans-
forms from base-station-centric to user-centric. In this regard,
in order to improve cellular backhaul offloading in cache-
enabled 5G wireless networks, a proactive scheme to cache
contents at BSs was developed in [153]. The problem was for-
mulated as a minimization of backhaul load, which requires
joint optimization of cache decisions (i.e., the caching time
and BS of each content) and content popularity (which char-
acterizes user demand of the contents). To this end, the authors
proposed a Hadoop platform to process the big data of BSs
and estimate the contention popularity based on ML tools. The
platform analyzes over 20 billion downlink packets and over
15 billion uplink packets, which amount to over 80 TByte of
total data daily. Numerical results demonstrated improvements
in user satisfaction of backhaul load. The paper did not explic-
itly mention network energy cost, however the idea manifested
can be further extended to study energy efficiency optimization
of cache placement at BSs in cellular networks.

Learning based frameworks are promising in addressing
data processing and resource management in IoT. However,
the unique features in IoT such as resource constraints,
heterogeneity and strict QoS requirements may limit the
application of learning frameworks. This issue was discussed

in [214], where several emerging learning frameworks were
presented with their advantages, limitations and applications.
Particularly, by introducing the cognitive hierarchy theory, a
novel framework was proposed to overcome the heterogeneity
issue in IoT, which mapped different devices to multiple levels
of rationality such that different learning frameworks can be
used according to resource availability.

D. Discussion

As we can see from the above literature, ML based
big data analytics are powerful tools in enhancing network
performance. However, applying such methods for improving
wireless network energy efficiency, though promising, have
not been well studied. There are a hand of tools available
to develop such learning-based energy-efficient algorithms;
however, which tool is most suitable depends on specific
networks and their application scenarios. On the other hand,
since the learning approaches often require a training stage
to gradually adjust important algorithm parameters, an extra
amount of computation energy is incurred which calls for
future investigations to account it in the network energy effi-
ciency optimization problems. In [215], in view of the great
complexity of the flow allocation problem for EE optimization
in MR-MC wireless networks, a deep learning based algo-
rithm was developed, which first evaluates the links at the
training stage and then allocates flows by solving a reduced
optimization problem that only considers the links with high
scores.

As big data may be continuously generating over time, the
performance of the big data analytics tools used should be able
to scale with the increase of data volume. To this end, deep
learning has been shown more scalable than traditional tech-
niques such as back propagation neural networks and support
vector machines.

As discussed in the big data acquisition and storage sections,
the collection of both training and testing big data is itself
a challenge in large-scale and dense wireless networks. For
applying big data analytics in such networks, learning algo-
rithms that can be distributedly implemented (e.g., sequential
learning and reinforcement learning [214]) are preferred.

VIII. OPEN ISSUES

With the proliferation of wireless devices and rapidly gen-
erating big data, the demand for more EEWN technologies is
vast. There has been a much larger volume of literature on
techniques that are promising for EEWN in the coming big
data era than what have been surveyed in the above. Still,
there are many research issues remaining open and calling for
further investigations.

A. Energy Efficiency Optimization

Rethink the EE optimization paradigms mentioned in
Section II-B. It is known that minimizing energy consumption
and maximizing network performance are often conflicting
objectives. As a result, each paradigm has its own issues.

Since both link capacity and communication energy con-
sumption can be modeled as functions of physical layer
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parameters such as transmit power and antenna configura-
tion of the wireless nodes, this offers great mathematical
convenience for formulating the energy-efficient power con-
trol problem under the Type-I optimization paradigm with
objective function in form of bits per Joule. Despite the conve-
nience, such a formulation encounters two challenges. Firstly,
the objective function is generally non-convex, which limits
the application of many mature convex optimization methods.
Distributed solutions based on system decomposition are either
mathematically difficult to derive or hard to guarantee global
optimality. Secondly, unconstrained optimal solution may be
found at physically less meaningful points (e.g., to achieve
high bits-per-Joule performance, nodes may tend to use exces-
sively low transmit power, which incurs unsatisfactorily low
capacity). Therefore, the optimal solutions should be searched
within a subspace of the whole space spanned by all possible
transmit power allocation, where the subspace can be con-
strained by energy budget or desired level of capacity. This
is perhaps an important reason that optimizing other network
parameters such as link scheduling, routing, and flow control
usually do not take the Type-I EE concept.

Usually, utilizing more resource that implies spending more
energy will result in better performance, and vice versa. In this
case, the Type-II and Type-III EE optimization paradigms will
degenerate to searching for the energy-minimal resource allo-
cation within the subspace where performance exactly meets
its requirement and searching for the performance-optimal
resource allocation within the subspace where energy expen-
diture exactly meets its budget, respectively. However, those
optimal allocation points may not be optimal from a bits-per-
Joule perspective. Take the Type-II case for example. It is
possible that, at those optimal points, slightly increasing the
energy by exploiting more resources will introduce significant
performance improvement.

In future wireless networks, especially when dealing with
big data of large volumes and high variety, we may more
often talk about multi-objective optimization or apply differ-
ent optimization frameworks at different performance/energy
intervals. Such a multi-interval hybrid approach may cir-
cumvent the shortcomings of the above three optimization
paradigms.

B. Mobility Management

A significant portion of wireless big data is generated
by mobile devices such as mobile phones, wearable sensors
and vehicles. In such mobile networks, connectivity, chan-
nel quality and traffic flows become highly dynamic, making
energy-efficient protocols and algorithms difficult to design.
For instance, in many transmission time based scheduling
techniques [216], [217], the scheduling decisions are made
based on prediction or estimation of channel quality, user
mobility or traffic conditions. Consequently, the accuracy of
prediction plays an important role in the final performance.
Therefore, the design of effective on-line learning algorithms
with high accuracy and low power consumption is a promising
but challenging issue for EE optimization.

C. Scalability and Fairness

In the big data era, scalability of protocols and algorithms is
an important practical issue in potentially large-scale networks
such as crowdsensing networks, vehicular networks and cloud
computing networks. To improve EE, the energy overhead for
running the optimization algorithms should not exceed the
energy savings offered by them. Sophisticated algorithms may
be discouraged if they incur too much signaling and compu-
tation overhead. Centralized schemes, which require powerful
central units to retrieve and process the whole network infor-
mation, may result in high overhead and consequently low
EE and low scalability. Alternatively, distributed and cooper-
ative methods, which require only local communications and
information processing, could be more energy-efficient and
scalable. However, a key challenge for distributed and scal-
able methods lies in the coordination among nodes within
their local subnetwork (e.g., neighbors). As another funda-
mental challenge, distributed methods often can only achieve
sub-optimality of EE optimizations. A plausible solution can
be a hybrid scheme in which distributed cooperation among
neighboring nodes can be coordinated by some central units
with (partial) global view of network operations.

Besides, for big data applications over wireless networks,
it is often required to provide fair QoE, in a long-term run,
for all participating users. However, with such a fairness con-
straint, the network may deviate from its optimal operation
points, which incurs the tradeoff problem between fairness
and network energy efficiency.

D. Energy-Efficient Data Security Provisioning

Data security and privacy are becoming more and more
important concerns of network users. To enhance the network
robustness against various security attacks and preserve the
privacy of sensitive information against possible eavesdrop-
pers, we have to spend significant amounts of energy for
computation- and communication- expensive tasks such as
data encryption/description, authentication, attack detection
and defending [85]. For example, transmitting and receiv-
ing security-related packet headers incur a considerable extra
amount of communication overhead. A challenging research
direction for future study is to reduce energy cost while
preserving required quality of protection (QoP) [37]. For
example, in the big data era, it becomes quite inefficient and
expensive to strictly protect every piece of data. Instead, in
view of the “variety” and “value” dimensions of big data, it
calls for system-level solutions with security service differen-
tiations by taking the information conveyed in big data into
account.

E. Energy Efficiency in Wireless Cyber-Physical Systems

In most existing EEWN protocols, data are treated as of
equal values and importance. For example, network throughput
accounts for all transmitted data. However, in the big data era,
data may be of different meanings and of different values. This
is particularly true in wireless cyber-physical systems (CPS)
in which physical dynamic systems (e.g., habitant environ-
ments, smart grid, drones) are controlled in real-time and the
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information exchanges among sensors, actuators, routers and
controllers are carried out by wireless networks [218]–[221].
In such systems, the performance may be no longer judged
by the network throughput where data are deemed of the
same value, but by the monitoring and control quality where
the reliability and real-timeliness of critical data transmis-
sions are more emphasized [218]. From the networking aspect,
new allocation methods involving all the above resources are
demanded to improve the system EE. For example, event-
triggering strategy that transmits data only when necessary
can save energy while preserving a certain quality of real-time
control [220]. An approach that jointly allocates temporal and
spectral resources was shown to be promising to improve the
EE of remote state estimation systems [118]. In particular, sys-
tematic approaches that co-design communication, networking
and control are demanded in wireless cyber-physical systems.

F. Big Data As Resources

Through the above survey, we may learn that the essence
of EEWN is to optimally utilize available resources to pro-
vide satisfactory performance with low energy consumption.
Traditional EEWN techniques usually take power, time, spec-
trum and spatial resources into account, but only a few are
aware of that storage and computing resources should be seri-
ously considered in the design of energy-efficient protocols
and algorithms. In the big data era, all the resources may
be jointly optimized for higher network energy efficiency.
Whereas, the resulting optimization problems may be too
complex to be solved optimally. Instead of searching for sub-
optimal solutions, the idea of B4N as discussed in Section VII
provides a promising approach. In fact, big data themselves
can be viewed as resources that can provide network designers
with valuable information about the network operation sta-
tus, service quality and quality of users’ experience. Assisted
with advanced ML techniques, big data can be utilized to
solve those complex optimization problems of joint resource
allocations, calling for interdisciplinary research.

IX. CONCLUSION

We have presented a survey of recent studies that are
effective or promising for developing energy-efficient wire-
less networks for big data. It is concluded that the essence
of most energy-efficient protocols and algorithms is to utilize
network resources (e.g., nodes’ power, time, spatial, spec-
trum, computing and storage resources and also the network
generated data themselves) in an optimized manner, i.e., to
provision best performance at lowest cost. We also have identi-
fied several open issues critical for enhancing wireless network
energy efficiency in the big data era, including issues such as
energy-efficient data security and energy efficiency in wire-
less cyber-physical systems. This survey should spur more
novel perspectives and design approaches for energy efficiency
enhancement in future wireless networks with big data.
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