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ABSTRACT
In this paper, we demonstrate that traffic modeling with
the fractional Brownian motion (FBM) process is an efficient
tool for end-to-end performance analysis over a network pro-
visioning differentiated services (DiffServ). The FBM pro-
cess is a parsimonious model involving only three parameters
to describe the Internet traffic showing the property of self-
similarity or long-range dependence (LRD). As a foundation
for network-wide performance analysis, the FBM modeling
can significantly facilitate the single-hop performance analy-
sis. While accurate FBM based queueing analysis for an in-
finite/finite first-in-first-out (FIFO) buffer is available in the
existing literature, we develop a generic FBM based analysis
for multiclass single-hop analysis where both inter-buffer pri-
ority and intra-buffer priority are used for service differenti-
ation. Moreover, we present both theoretical and simulation
studies to reveal the preservation of the self-similarity, when
the traffic process is multiplexed or randomly split, or goes
through a queueing system. It is such self-similar preserva-
tion that enables the concatenation of FBM based single-hop
analysis into a network-wide performance analysis.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
operations—network management, network monitoring ; C.4
[Computer-Communication Networks]: Modeling tech-
niques

General Terms
Performance, Management, Theory

1. INTRODUCTION
The current trend in service consolidation over Internet Pro-
tocol (IP) requires the best-effort service model of the legacy
Internet to be enhanced to provide quality-of-service (QoS)
guarantees, where the network performance analysis is of
great importance.

The network calculus [1, 2] provides a theoretical framework
for determining worst-case bounds on delay and buffering
requirements in a network, under the condition that a traf-
fic conditioning scheme (e.g., the leaky bucket) is applied
at the source to force an arrival envelope. However, net-
work calculus takes a deterministic approach to provision-
ing service based on worst-case scenarios, which leads to
a low resource utilization in networks aggregating a large
number of random traffic processes. Moreover, the delay or
loss incurred by the traffic conditioner (i.e., traffic condition-
ing effect) needs to be counted for an accurate end-to-end
performance analysis, which adds extra complexity into the
network calculus framework. The resource utilization issue
motivates the recent efforts on stochastic network calculus
[3, 4]. Applying the stochastic network calculus incurs extra
effort in designing the traffic conditioner to force a particu-
larly selected arrival envelope, in addition to analyzing the
traffic conditioning effect.

Another performance analysis approach is to construct a
traffic model that can accurately describe the stochastic
characteristics of the traffic process, and then apply queue-
ing analysis to the traffic model. The Markov chain model
and associated queueing analysis have been studied exten-
sively and intensively as a tool to evaluate the performance
of voice or video applications [5, 6]. However, the Markov
model based analysis has the following limitations: 1) In
high-speed networks, the loss probability in a finite buffer is
hard to be obtained, which is often very conservatively ap-
proximated by the overflow probability in an infinite buffer
system [5, 7]; 2) When a large number of Markovian sources
are multiplexed, the large state space of the aggregate arrival
process results in computational infeasibility; 3) Network-
wide performance analysis requires accurately modeling the
output process from a queue for next-hop analysis; the out-
put process modeling of a Markovian input is also a diffi-
cult problem [8, 9]; 4) Extensive network traffic measure-
ment/analysis studies suggest that Internet traffic exhibits
self-similar property or long-range dependence (LRD) [10,
11], which can not be captured by the short-range depen-
dent (SRD) Markovian model.

In this paper, the input traffic is modeled as a fractional
Brownian motion (FBM) process [12]. In high-speed net-
works, the high degree of multiplexing justifies modeling the
traffic aggregate as a Gaussian process according to the Cen-
tral Limit Theorem [13]. The FBM process is a self-similar



Gaussian process, which is therefore a suitable model for
stochastic multiplexing analysis as well as for capturing the
long-range dependence within the traffic.

Accurate single-hop queueing analysis is the foundation for
network-wide performance analysis. With FBM modeling,
both the overflow probability in an infinite buffer [13] and
the loss probability in a finite buffer [7] can be accurately
computed. In this paper, we generalize the FBM based
queueing analysis to a multiclass environment where both
inter-buffer priority and intra-buffer priority are used for
service differentiation. Particularly, we develop accurate
overflow/loss analysis techniques for a partitioned buffer sys-
tem [14], which can provide different levels of loss protection
within the buffer to implement an assured per-hop behavior
(PHB) [15]. We also integrate the partitioned-buffer anal-
ysis with the FIFO buffer analysis through an inter-buffer
priority scheme to achieve a complete performance analysis
of a network node provisioning differentiated services.

Extending the FBM-based single-hop performance analysis
to end-to-end or network-wide scenarios is facilitated by in-
vestigations showing that the self-similarity retains when the
traffic process undergoes multiplexing, random split, and
buffering in the network. In this paper, we theoretically
prove that the superposition of independent FBM processes
still maintains or can be upbounded by an FBM process,
depending on whether homogeneous or heterogeneous Hurst
parameters are involved in the multiplexing. Moreover, the
correlation structure of a traffic process is exactly preserved
after a random split. In addition, we resort to theoretical
analysis, intuitive reasoning, and simulation studies to in-
vestigate the buffer smoothing effect on a self-similar traffic
process; we demonstrate that directly taking the FBM input
process as the output process can give a reasonable accurate
next-hop performance analysis, particularly when the buffer
size is very small to support real-time data delivery, or quite
large to guarantee a small loss probability.

The remainder of this paper is organized as follows. Section
2 describes the system model. Section 3 presents the single-
hop performance analysis based on FBM modeling. Section
4 investigates the impact of multiplexing, random splitting,
and buffering on the self-similarity. Section 5 presents some
simulation results. Section 6 concludes this research.

2. SYSTEM MODEL
2.1 DiffServ Network
Our objective is to develop an analytical tool for end-to-
end performance analysis over a differentiated services [16]
network as illustrated in Fig. 1. In the network, when traffic
reaches a router at one of its input ports, packets within
the traffic aggregate will be split into multiple streams and
forwarded to different output ports for different destinations.
At an output port, multiple traffic streams from different
input ports may be multiplexed and enter the same output
buffer. In a DiffServ capable router, the output buffer is
normally divided into multiple logic queues, served under a
certain scheduling algorithm, to provision different classes
of services. Thus, the traffic aggregate associated with an
output port needs to be split again according to the DiffServ
code point (DSCP) carried in each packet header [16] to
generate the input process to the queue for each class.
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Figure 1: A differentiated services network.

A simple and efficient approach to differentiate services is
to use a set of buffers served with priorities. There are two
levels of priority. One is the inter-buffer priority (or priority
queueing), where the traffic in a buffer of higher priority is
served before that of lower priority. Typically, three buffers
(served with high, medium, and low priority, respectively)
are used at an output port to provision the two standard
DiffServ per-hop behaviors (PHBs), i.e. the expedited for-
warding (EF) PHB characterizing the premium service [17]
and the assured forwarding (AF) PHB characterizing the
assured service [15], and the default best-effort service. The
other level of priority, intra-buffer priority, is to serve traffic
with a partitioned buffer [14], which provides different loss
priorities while keeping the order of packets from the same
traffic flow. The buffer for the assured service is usually a
partitioned buffer.

In order to carry out the end-to-end performance analysis
over the DiffServ network, two basic issues being addressed
in this paper are accurate single-hop queueing analysis un-
der the priority structure and proper traffic characteriza-
tion under the effect of multiplexing, random splitting, and
buffering. It is noteworthy that we assume the stochastic in-
dependence when we investigate the multiplexing and split-
ting effect: 1) The multiple arrival processes forwarded to an
output port are considered independent; 2) A packet coming
from an input port will be independently forwarded to one
of the output ports at a certain probability, which defines
the random splitting of an input process to the router. The
random splitting is also applied when the aggregate process
associated with an output port is further distributed into
different service queues. The independence assumption is
justified by the heterogenous, large-scale, high-multiplexing
environment in the Internet, where the traffic streams along
an Internet link normally consist of packets from different
access networks as well as from various applications.

2.2 LRD, Self-Similarity, and FBM
Extensive measurements in recent years demonstrate that
Internet traffic has the property of self-similarity or LRD [11,
10]. A wide-sense stationary process X(t) in discrete time1 is
said to exhibit long-range dependence, if its autocorrelation
function rX(k) decays with time lag k taking the form

rX(k) ∼ k−γ , as k → ∞ (1)

1In this paper, X(t) is defined as the traffic volume, mea-
sured in packets or bits, arriving in the tth time unit. We
use A(t) to denote the cumulative process indicating the total
traffic volume from time 0 up to time t. X(t) is also termed
as the increment process of A(t) as X(t) = A(t) − A(t − 1).



where 0 < γ < 1 and f(k) ∼ g(k) means limk→∞ f(x)/g(x) =
a, a nonzero constant. The Hurst parameter H is commonly
used to measure the degree of LRD, and is related to the pa-
rameter γ in (1) by H = 1 − γ/2.

Let the aggregated process X(m) = {X(m)
k } be obtained by

averaging the original traffic process X over non-overlapping
intervals, with each interval being m time units in length.

The autocorrelation function of X(m) follows r
(m)
X (k) ∼ k−γ ,

as m → ∞, k → ∞, meaning that the correlation structure
of X(t) is asymptotically preserved under the time aggrega-
tion. Thus, X(t) is also defined to be asymptotically second-
order self-similar (as-s). In fact, with 1

2
< H < 1, as-s and

LRD imply each other [11], and self-similarity and LRD are
often used interchangeably in practice.

There are other definitions of self-similarity. X(t) is exactly

second-order self-similar (es-s) if rX(k) = σ2

2

[
(k + 1)2H −

2k2H +(k − 1)2H
]
, where σ2 = var[X(t)]. The cumula-

tive process of X(t), denoted as A(t), is distributional self-
similar with Hurst parameter H (H-ss) if Y (t) =d αHY (αt)
for all α > 0 and t ≥ 0, where “=d” denotes that the ran-
dom process on both sides are equivalent in the sense of
finite-dimensional distributions. The relationship between
different levels of similarity are [11, 18]

{H-ss} ⊂ {es-s} ⊂ {as-s}. (2)

In this paper, the FBM is used to model the cumulative
input process A(t). The standard (normalized) FBM pro-
cess {Z(t) : t ≥ 0} with Hurst parameter H ∈ [0.5, 1) is a
centered Gaussian process with stationary and ergodic in-
crements which possesses the following properties [12]: (a)
Z(0) = 0, (b) Var{Z(t)} = t2H , and (c) Z(t) has contin-
uous sample path. The FBM input {A(t) : t ≥ 0} can be
represented by

A(t) = λt + σZ(t) (3)

where the mean arrival rate E{A(t)/t} = λ, and the variance
Var{A(t)} = σ2t2H . Note that σ2 is the variance of traffic
in a time unit. FBM is an H-ss process; when 0.5 < H < 1,
the FBM is both self-similar and long-range dependent.

3. SINGLE-HOP ANALYSIS
In this section, we present the FBM based overflow/loss
analysis under the priority structure. Specifically, we con-
sider that each output port use a FIFO buffer and a parti-
tioned buffer to provision the EF PHB and the AF PHB, re-
spectively. The best-effort service is ignored without the loss
of generality. The overflow probability is defined as the ratio
of the period that the queue length in the infinite buffer sys-
tem spends above an indicated threshold to the total time.
The loss probability is defined as the long-term ratio of the
amount of the lost traffic to the amount of the total input
traffic.

3.1 FIFO Buffer
In a FIFO buffer with a stationary Gaussian input, the over-
flow probability can be accurately estimated by the maxi-
mum variance asymptotic (MVA) approach [13, 10]. Let λ
denote the mean arrival rate, and σ2 the variance of traffic
in a unit time of the Gaussian input process. Let κ = c−λ,

Xt = A(t) − ct, and mx the reciprocal of the maximum
of σ2

x,t = Var{Xt}/(x + κt)2 for a given x, i.e., mx =
1/ maxt≥1 σ2

x,t. The MVA approximation of the overflow
probability is then given by

P{QI > x} ≈ exp
(
−mx

2

)
(4)

where QI is used to denote the steady-state queue length in
the infinite buffer system. For FBM input with parameters
(λ, σ2, H) , mx can be explicitly computed by [10]

mx =
4κβx2−β

Sββ(2 − β)2−β
(5)

where β = 2H and S = σ2. The explicit expression of mx

leads to the explicit expression of the overflow probability
for the FBM input.

In [7], a simple method is proposed to estimate the loss
probability PL(x) in a finite buffer system with buffer size
x from the overflow probability P{QI > x}. By simulation
studies and theoretical proof in the asymptotic case as x →
∞, it is shown that

PL(x) ≈ αP{QI > x} (6)

where α is a constant. With a Gaussian input, the constant
α can also be explicitly calculated [7].

With the results in (4) - (6), the packet loss probability for
a finite buffer with an FBM input can be explicitly calcu-
lated. Extensive simulation results have been presented in
[7], showing that the above overflow/loss calculation tech-
niques give an accurate estimation of the overflow/loss prob-
ability for the entire buffer range, where x can be set from
a very small value to a very large value. The EF buffer,
supporting the realtime multimedia applications, can par-
ticularly benefit from the accurate small buffer overflow/loss
analysis.

3.2 Partitioned Buffer
The AF PHB is provisioned by a partitioned buffer, where
the input traffic includes J (≥ 2) classes that have different
loss probability requirements. The traffic admission policy
is based upon a space reservation scheme, using the buffer
partition vector Bt = (B1, B2, · · · , BJ−1) to provide J loss
priorities, where 0 = B0 < B1 < B2 < · · · < BJ−1 <
BJ = B (B is the buffer size). Let Q(t) be the amount of
traffic queued in the buffer at time t. When Bj−1 ≤ Q(t) <
Bj (1 ≤ j ≤ J), only traffic of classes {j, j + 1, · · · , J}
is admitted into the buffer; traffic in the buffer is served
according to the FIFO rule. With the partitioned buffer,
the class-J traffic is served with the highest priority and the
smallest loss probability, while the class-1 traffic the lowest
priority and the largest loss probability.

We consider the total input process A(t) including J classes
of traffic. Assume that all the traffic classes are independent
and have the same Hurst parameter H . The class-j input
Aj(t) is an FBM process characterized with λj , σ2

j , and H .
The number of class-j packets arrived during [0, t] is

Aj(t) = λjt + σjZj(t), 1 ≤ j ≤ J. (7)

In Section 4, we prove that the total input process A(t) =∑J
j=1 Aj(t) is also an FBM process with parameters of λ =



∑J
j=1 λj , σ2 =

∑J
j=1 σ2

j , and H . We also prove that the

multiclass FBM modeling in (7) is supported by the ran-
dom splitting procedure. In practice, a self-similar video
traffic process may be generated by the multi-layer coding,
where a base layer contains the most important features of
the video and some enhancement layers contain data refin-
ing the reconstructed video quality. If each video packet is
randomly and independently associated with a layer with
a certain probability, the layer-coded video traffic can then
be modeled according to (7). With the AF PHB, different
layers are marked to different classes for different levels of
loss protection.

From the FBM based FIFO buffer analysis, we develop the
overflow/loss calculation techniques for the partitioned buffer
system with the multiclass FBM input. We resort to a local-
ized steady state (LSS) assumption regarding the queueing
behavior in a partition region (confined by two neighboring
partition thresholds) that the steady-state overflow proba-
bility in a partition region can be determined by the initial
status entering the region, the localized queueing behavior in
the region (as in a separate buffer with the corresponding in-
put), and the correlation within the input process character-
ized by the Hurst parameter H . Under the LSS assumption,
we develop an iterative algorithm to calculate the overflow
probabilities for all the J classes and then obtain the loss
probability for each class by exploiting the “loss versus over-
flow” mapping relationship between a finite size partitioned
buffer and an infinite partitioned buffer.

Let PV (x) denote the overflow probability P{QI > x} and
P j

L (1 ≤ j ≤ J) the loss probability for class-j, the over-
flow/loss calculation algorithm is:

Step 1: Set PV (B0) = PV (0) = 1

Step 2: for j = 1 : J

[
− ln

(
P m,j

V (Bj)
)] 1

2−βj ≈ [− ln (PV (Bj−1))]
1

2−βj

+ z
1

2−βj

j (Bj − Bj−1) ; (8)

if j 
= J P j
L ≈ PV (Bj) ≈ αjP

m,j
V (Bj) ; (9)

else P J
L ≈ αJP m,J

V (BJ ) ; (10)

end

In the algorithm, (8) indicates the overflow analysis accord-
ing to the LSS assumption, where the localized queueing
behavior in a partition region is characterized by (4). In the
jth partition region, the input is an FBM process with pa-
rameters

∑J
r=j λr,

∑J
r=j σ2

r and H ; with κj = c − ∑J
r=j λr

and Sj =
∑J

r=j σ2
r , we have zj =

2κ
β
j

Sjββ(2−β)2−β . In the

algorithm, the overflow probabilities in the infinite parti-
tioned buffer are mapped from overflow probabilities (i.e.,
P m,j

V (Bj)) in a promoted system, as indicated by (9), which
is defined to facilitate the analysis [20]. When considering
the loss probabilities in the finite partitioned buffer system,
we find that the loss probabilities for class 1 to j − 1 can be
well approximated by the overflow probabilities PV (B1) to
PV (BJ−1), while the buffer truncation effect mainly applies

to class J as indicated by (10). The theoretical details of
the proposed partitioned buffer analysis and the calculation
of the mapping factors αj (1 ≤ j ≤ J) can be found in [20].

3.3 Inter-Buffer Priority
In the DiffServ router as shown in Fig. 1, the EF buffer has
priority over the AF buffer and can access the full channel
capacity c. The FIFO buffer analysis presented in section 3.1
can be directly applied for EF PHB performance analysis.

On the other hand, the low-priority AF buffer can only ac-
cess the channel after serving out all the EF traffic. The
critical issue in the AF buffer analysis is to determine the
leftover serving capacity. If the output process from the
high-priority EF buffer is denoted as DEF (t), the serving
capacity available to the AF buffer is c − DEF (t). How-
ever, it is difficult to accurately model the output process.
We can see that the output process is upbounded by the
arrival process. The studies in [21] demonstrate that using
c−AH-priority(t) as the leftover capacity provides a conserva-
tive performance analysis to the low-priority queue, with a
reasonable accuracy in the large buffer regime in high-speed
networks. In the next section, we show that using the input
process as an approximation of the output process is partic-
ularly justified for self-similar traffic. Now consider the AF
buffer with input AAF (t) and serving capacity c − DEF (t)
(≈ c − AEF (t)). The queueing system can be equivalently
analyzed as a system having the capacity c and the input
AAF (t) + AEF (t) [14].

4. SELF-SIMILARITY IN NETWORKS
4.1 Superposition of FBM Processes
The superposition of self-similar processes has been inves-
tigated in [18]. For two independent es-s processes X1(t)
with Hurst parameter H1 and X2(t) with H2, if H1 = H2 =
H , X1(t) + X2(t) is es-s with parameter H ; if H1 
= H2,
X1(t) + X2(t) is as-s with parameter max(H1, H2). The
FBM has a stronger self-similarity being H-ss, for which we
have the following proposition.

Proposition 1: For two independent FBM processes A1(t)
with parameters (λ1, σ

2
1 , H1) and A2(t) with parameters (λ2,

σ2
2 , H2), if H1 = H2 = H , A1(t) + A2(t) is an FBM process

with parameters (λ1 + λ2, σ
2
1 + σ2

2 , H); if H1 
= H2, A1(t) +
A2(t) is as-s with parameter max(H1, H2).

Proof: The effective bandwidth of a cumulative process A(t)
is defined as [22]

Eb(s, t) =
1

st
log E

[
esA(t)

]
. (11)

Particularly for an FBM process, the effective bandwidth is
given by [22]

Eb(s, t) = λ +
s

2
σ2t2H−1. (12)

Let Eb,1(s, t), Eb,2(s, t), and Eb,a(s, t) denote the effective
bandwidth of A1(t), A2(t) and the aggregate A(t) = A1(t)+
A2(t), respectively. Due to the independence between A1(t)
and A2(t), we have

Eb,a(s, t) = Eb,1(s, t) + Eb,2(s, t)

= (λ1 + λ2) +
s

2
(σ2

1 + σ2
2)t

2H−1 (13)



when H1 = H2 = H . As a random traffic process can be
uniquely characterized by its effective bandwidth, which is
in the form of moment generating function, (13) indicates
that A(t) is an FBM process with parameters (λ1 +λ2, σ

2
1 +

σ2
2 , H).

When H1 
= H2, for example, H1 < H2, we have

Eb,a(s, t) =
(
λ1 +

s

2
σ2

1t2H1−1
)

+
(
λ2 +

s

2
σ2

2t2H2−1
)

< (λ1 + λ2) +
s

2
(σ2

1 + σ2
2)t

2H2−1 (14)

which indicates A(t) is not an FBM process, but its effective
bandwidth is upbounded by that of the FBM process with
parameters (λ1 + λ2, σ

2
1 + σ2

2 , max(H1, H2)). As {H-ss} ⊂
{as-s}, we have

rX1
(t) ∼ k−γ1 , rX2

(t) ∼ k−γ2 , as k → ∞ (15)

where γ1 = 2 − 2H1, γ2 = 2 − 2H2, and X(t) denotes the
increment process. Due to the independence between A1(t)
and A2(t), we can have the autocorrelation function rX(k)
of the aggregate increment process X(t) = X1(t) + X2(t) as

rX(t) = rX1
(t) + rX2

(t) ∼ k−γ , as k → ∞ (16)

where γ = 2 − 2max(H1, H2). Thus, the aggregate process
A(t) is as-s with parameter max(H1, H2). �

Although the superposed process is not FBM when H1 
=
H2, (14) indicates that taking the FBM process with param-
eters (λ1 + λ2, σ

2
1 + σ2

2 , max(H1, H2)) as an approximation
can give a conservative performance analysis, which is a fa-
vorable property for QoS guarantee [5, 4, 13]. In addition,
Proposition 1 can be readily applied when more than two
FBM processes are aggregated.

4.2 Random Splitting of an FBM Process
Regarding random splitting of a random process, we have
the following proposition.

Proposition 2: All the subprocesses generated by random
splitting of the arrival process X(t) maintain the same cor-
relation structure as that of X(t).

Proof: Without loss of generality, we consider that the input
process X(t) is split into two subprocesses: each packet in
X(t) is assigned to subprocess X1(t) with probability p and
subprocess X2(t) with probability 1 − p. Let V denote a
Bernoulli random variable.2 With X(t) indicating the num-
ber of packets arriving in the tth time unit, the subprocess

X1(t) =
∑X(t)

i=1 Vi, where Vi are independently and identi-
cally distributed (iid) Bernoulli random variables being in-
dependent of X(t). If we denote E[X(t)] = λ and E[V ] = v,
based on the independence assumptions, it is easy to derive
by the probability generating function (PGF) technique [23]
that

E[X1(t)] = E

⎡
⎣

X(t)∑
i=1

Vi

⎤
⎦ = E[X(t)]E[V ] = λv. (17)

2The Bernoulli random variable V takes the values of 1 and
0 with the probability of p and 1−p, respectively, with mean
value E[V ] = p and variance var[V ] = p(1− p).

The autocovariance of X1(t) can be calculated as

rX1
(k) = E[X1(t)X1(t + k)] − λ2v2

= E

⎡
⎣

X(t)∑
i=1

Vi ·
X(t+k)∑

i=1

Vi

⎤
⎦ − λ2v2

= E
[
X(t)X(t + k)E2[V ] | X(t), X(t + k)

] − λ2v2

= v2rX(k).

Similarly, X2(t) =
∑X(t)

i=1 (1 − Vi), and we can get rX2
(k) =

(1 − v)2rX(k). �

Although Proposition 2 shows that the random splitting
does not change the correlation structure, the marginal dis-
tribution of the subprocesses changes. Letting GX(z) and
GV (z) denote the PGF of X(t) and V , respectively, we have
GX1(z) = GX(GV (z)) [23]. By calculating GX1(z), it can
be seen that X1(t) is not Gaussian when X(t) is Gaussian
as the increment process of an FBM process. However, con-
sidering that each subprocess still consists of packets from
a large number of traffic flows in a high-speed network, a
Gaussian marginal distribution is a good approximation ac-
cording to the Central Limit Theorem. While the mean of
the subprocess is given by (17), its variance can also be de-
termined by the PGF technique. For example, the variance
of X1(t) can be computed as

var[X1(t)] = E[X(t)] var[V ] + (E[V ])2 var[X(t)]. (18)

Summarizing the above discussions, the subprocess gener-
ated by randomly splitting an FBM process, for example
X1(t), can be well approximated by an FBM process with
parameters (E[X1(t), var[X1(t)], H ]). In fact, after some te-
dious algebra, we can also find that the effective bandwidth
of each subprocess according to (11) is upbounded by that
of the approximated FBM process.

4.3 Output Process
In the case that the input process to a buffer is as-s or es-s
with Hurst parameter H , it has been proved that the out-
put process is as-s with the same Hurst parameter H by
both time-domain analysis [18] and frequency-domain anal-
ysis [24]. Furthermore, the studies in [19] show that the
buffer smoothing effect takes place only for traffic with a
small Hurst parameter by analyzing the inter-departure time
distribution of the output process. The insensitivity of the
self-similar traffic (particularly with a large Hurst parame-
ter) to the buffer smoothing effect is also supported by the
queueing analysis that log P{QI > x} ∼ x2−2H , which indi-
cates that buffering is not effective in reducing the overflow
by smoothing out the burstiness [11, 10].

We can use intuitive reasoning to gain further insight into
the buffer smoothing effect. Define a busy cycle as the time
period between two consecutive time points at which the
server changes from an idle state to a busy state. During a
busy cycle, the amount of departures is equal to the amount
of arrivals. If we construct the input process at a larger time
scale, where the amount of arrivals in a busy cycle is consid-
ered as arrivals in a time unit and the busy cycle distribution
is set as the interarrival time distribution, the departure pro-
cess and the arrival process would be the same. This virtual



construction procedure intuitively reveals that if the domi-
nant time scale that determines the overflow behavior [13,
10] in the next-hop queue becomes larger than the average
busy cycle in the upstream queue, the smoothing effect will
gradually fade out.

On the other hand, the upstream buffering effect will not
be obvious either when we consider next-hop overflow at a
small queue length. It is noteworthy that the smoothing
effect is in fact due to the truncation of the arrival process
when the traffic load in a time unit exceeds the link capacity
c. If the burstiness size leading to the overflow (at a small x)
in the next-hop queue is smaller than the link capacity, the
truncation effect or smoothing effect in the upstream will
not take place in this context.

In summary, the above discussions suggest that for self-
similar traffic, directly taking the input process as an ap-
proximation of the output process can give a reasonable ac-
curate next-hop performance analysis when the buffer size is
very small to support real-time data delivery, or quite large
to guarantee a small loss probability.

5. SIMULATION RESULTS
In this section, we present simulation results to demonstrate
the accuracy of the FBM based queueing analysis and the
validity of approximating the output process with the input
FBM. The MATLAB software is used to code and run the
simulations, and the FBM process is generated by a modified
Random Midpoint Displacement (RMD) algorithm [25].

5.1 Partitioned Buffer Analysis
As the accuracy of FBM based overflow/loss analysis in a
FIFO buffer has been examined in [13, 7], we here focus on
examining the accuracy of the newly proposed partitioned
buffer analysis.

We consider a two-class FBM input served with a partitioned
buffer of size 500. The class-1 traffic is an FBM with λ1 =
10, σ2

1 = 50, and class-2 an FBM with λ2 = 300, σ2
2 =

100. The Hurst parameter H = 0.8 for both classes. The
buffer is partitioned into two regions to differentiate the loss
behaviors of class-1 and class-2, according to the admission
policy described in Section 3.2. The units of mean arrival
rate and channel capacity are packet/second, and the unit of
buffer size is packet. Fig. 2 shows the loss probabilities of two
classes versus the partition threshold B1, obtained from the
analysis given in Section 3.2 and simulation. Furthermore,
two scenarios are compared with c = 312 and c = 315. It
is observed that the simulation results and the calculated
loss probabilities are in a close match in both scenarios and
with different partition configurations. It is also observed
that for the self-similar FBM input, the loss probability is
not very sensitive to the buffer space, while a small increase
of the channel capacity can result in an obvious decrease of
the loss probability.

5.2 Output Process Approximation
As we have rigorous theoretical propositions regarding FBM
modeling under multiplexing and random splitting, here we
use simulations to examine the validity of approximating
the output process with the input FBM. We consider a two-
hop scenario, where the first hop use an infinite FIFO buffer
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Figure 2: Loss probabilities for the two-class FBM
input in a partitioned buffer.
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Figure 3: Overflow probability in the second-hop
queue.

with the link capacity c = 83.3 packets/second (i.e., c = 1
Mbps with packet size of 1500 bytes) and the second hop use
an infinite FIFO buffer with the link capacity of 0.95c.3 We
consider the infinite buffer system in order to investigate the
upstream buffering effect on the next-hop queueing analysis
at different time scales. The input FBM has parameters
λ = 0.85c, σ2 = 0.75λ, and H = 0.77. We use simulations
to estimate the second-hop buffer overflow probability in
two cases: 1) the input is the output process from the first-
hop queue and 2) the input is approximated by the first-
hop input (i.e. the first-hop output is approximated by the
first-hop input). We also compute the overflow probability
by the analytical techniques presented in Section 3.1. All
the simulation results and analytical results are presented
in Fig. 3.

Comparing the simulation results in the two cases as de-
scribed, we can see that the overflow curve with the approx-
imated input process is above the overflow curve with the
real input process, giving a conservative performance esti-
mation. In addition, the two overflow curves are very close
when the queue length changes from a very small value 10

3The second-hop link capacity is set slightly smaller in order
to observe overflow in the second-hop buffer in simulations,
as the first-hop output rate is limited by the link capacity c.



packets to a large value of 200 packets, which indicates that
directly taking the input FBM as the output process is a rea-
sonable approximation in the perspective of next-hop per-
formance analysis. Moreover, it can be observed that the
gap between the two curves is very small at both ends of
the queue length range and reaches a maximum value in the
middle. This observation justifies our intuitive reasoning
presented in Section 4.3 that the smoothing effect grows at
first along with the time scale, reaches the maximum point at
the time scale approximately equal to the buffer busy cycle,
and then gradually fades out when the time scale increases
further. It is noteworthy that the analytical overflow curve
with the input approximation also closely matches the sim-
ulation curves in a conservative manner, which shows that
FBM based modeling and approximation is an appropriate
tool for end-to-end performance analysis.

6. CONCLUSIONS
In this paper, we present both theoretical and simulation
studies to demonstrate that FBM based traffic modeling
and associated queueing analysis are an efficient and conve-
nient tool for end-to-end performance analysis over DiffServ
networks. In fact, our studies support an FBM based net-
work calculus framework. On one hand, we develop accurate
FBM based overflow/loss analysis under the priority struc-
ture, where both inter-buffer and intra-buffer priorities are
applied for service differentiation. On the other hand, we
show that FBM based single-hop analysis can be concate-
nated into an end-to-end performance analysis due to the
preservation of self-similarity, where a traffic process under-
going the multiplexing, random splitting, or buffering effect
can always be modeled as a properly parameterized FBM
process. For future work, we plan to use practical Inter-
net traffic data to further examine the FBM based network
calculus framework.
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