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Abstract—The throughput maximization in multi-hop wireless
networks is largely limited by interference due to the reuse
of the channel resources. Although machine learning (ML) can
accelerate the optimization of wireless network capacity, however,
the existing system can become limited because of insufficient
knowledge from available data. We propose a self-renewal ML
(SRML) method that incrementally improves the throughput
maximization of future optimization instances through the design
of a data selection algorithm for scheduling structure classifica-
tion and application identification model retraining. With one
round of implementation, the SRML method outperforms the
fixed ML (FML) method, random (RAND) method and Greedy
Heuristic method in the multi-commodity flow deployment setting
with an average achievable throughput of 100% for small
flows and at least 79% for large flows, relative to the delayed
column generation (DCG) benchmark algorithm, while reducing
the computational complexity and achieving a high solution
efficiency. By leveraging the transfer learning of parameters
during self-renewal, the computational cost of model training
is reduced by at least 71.09%.

Index Terms—Capacity optimization, machine learning,
scheduling, self-renewal, wireless multi-hop

I. INTRODUCTION

The proliferation of mobile devices and internet applications
has paved way for big data analytics in wireless network-
ing (e.g cellular networks, mobile ad-hoc networks, satellite
communication networks, integrated access and backhaul net-
works, etc.), thus requiring the intelligent exploitation of such
data for improved network performance across the applica-
tion layer, network layer and link layer [1]. Fundamentally,
the time and space resources in wireless networks are so
limited that they need to be optimally scheduled to satisfy
both network quality and user traffic requirements. However,
resource allocation is considered as a complex optimization
problem which can be modeled as an independent set problem
(like the graph coloring of links), and is NP-hard [2]–[4].
The independent set problem is, finding the set of wireless
links that can be scheduled for simultaneous transmission
without interference or communication collision. In a time-
slotted wireless network, different independent sets (ISs) grab
the channel for transmission in non-overlapping timeslots to
complete a network flow demand [2].

Most of the efforts to tackle the complex resource allocation
problem in wireless networks are towards the development of
approximation algorithms [5]–[7] which are mathematically

intense and computationally expensive [4], and they do not
always guarantee global optimality. Heuristic pruning algo-
rithms such as in the cooperative communication aware link
scheduling [8] in vehicular ad-hoc networks (VANETs) have
been proposed, where the throughput maximization problem
is NP-complete and can be solved near-optimally by linear
programming. The extended link-band pairs in [8] makes the
solution space larger where a relay node needs to be selected
as either a cooperative relay node or a multi-hop relay node.
Resource scheduling in multidimensional resource space is,
thus, challenging to solve with mathematical programming
[8], [9]. However, the delayed column generation (DCG)
approximation algorithm has been found to serve as a fea-
sible benchmark for achieving near-global optimality for the
network flow problem which is solved by finding the optimal
schedulable ISs [4]. While mathematical algorithms seem to
be a viable approach to resource scheduling problems, they
only solve the optimization instances in a case-by-case manner
without any knowledge retention, thus, not benefiting a typical
wireless network (e.g wireless mesh networks, VANETs, and
wireless sensor networks) where a previously solved optimiza-
tion instance can be similar to a future optimization instance.

To address the limitations with the use of approximation
algorithms, machine learning (ML) is being explored to fa-
cilitate resource allocation decisions based on the experience
from historical optimization instances [2], [10]. While the
early works leveraging ML focused on the single-hop networks
[11], the application of ML to multi-hop wireless networks
has gained recent attention [2], [10], [12], [13]. The work in
[12] proposed an ML framework to reduce the problem scale
by pruning off unimportant links which are not part of the
solution to the network flow problem; this was extended to
the topology-aware setting in [13] by leveraging the graph
embedding technique. While [12], [13] consider an indirect
ML approach for solving the optimization problem, the recent
work in [2] proposed a self-supervised learning framework that
partially explores the ISs of historical optimization instances
to accelerate the optimization of future instances. However, the
existing method in [2] can become limited, as it assumes an
isolated learning or fixed ML (FML) framework (i.e learning is
fixed and parameters cannot be updated) in which the trained
ML model does not generalize well on larger network flows
that exceed the ones seen during training. For example, if the



model is trained with instances from 1 flow to 5 flows, the
performance on 10 flows degrades, thus yielding a maximum
achievable throughput that is sub-optimal as evidenced by the
numerical experiments in [2].

Since it is difficult to obtain sufficient data that covers all
the possible commodity flow deployments within a wireless
network, we opine that an ML model should be intelligent
to continuously learn new knowledge, i.e when the model’s
performance degrades on a set of new optimization instances
that are not part of the base training data, it should update its
knowledge through an offline self-renewal procedure. This will
facilitate the solution of future optimization instances whose
complexity has been learned from the self-renewal process.
Although the complex optimization problem can be cast as
a Markov decision process (MDP) and solved using the deep
reinforcement learning (DRL) technique, however, the iterative
operations based on the adjustment of action policies makes
this approach inefficient and time consuming to solve for larger
networks with disparate flow deployments [10]. Hence, in
this paper, we propose an ML framework with self-renewal
capability to assist the optimization of network capacity.

The self-renewal ML approach can also be referred to as
“continual learning” or “lifelong machine learning” in the
literature [14]–[16]. However, in the context of wireless net-
work optimization, we adopt the “self-renewal” term since the
learning of resource scheduling solutions can be finite rather
than lifelong, when sufficient knowledge has been learned. Our
contributions are summarized as follows:

• We collected historical optimization instances solved
using the DCG benchmark algorithm as base training
data. We implemented the Dunn’s index algorithm [17]
to find the number of clusters and leveraged a clustering
algorithm to group the scheduling structures (referring to
the scheduled ISs) of the historical optimization instances
into appropriate number of scheduling classes.

• We trained an application identification (AID) model
using the application-level information (e.g topology,
commodity flow deployment, link capacity, user traffic
constraints, etc.) as input and the clustering algorithm’s
output as labels. Each label corresponds to a class of
schedulable ISs which can be used to retrieve the ISs
to solve an optimization instance through one-round of
linear programming (LP).

• We designed an intelligence criterion α for the AID
model, to facilitate the future optimization of complex
flow demands by relearning the scheduling structures.
This requires re-clustering (i.e either to add a new cluster
or expand existing ones) and retraining the AID model.

• The AID model retraining follows the transfer learning
technique where the pre-trained weights of the base
model are used to instantiate training to speed up learn-
ing.

• We introduce the solution efficiency (SE) metric to
evaluate the AID model’s performance with respect to
throughput maximization and number of training samples.
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Fig. 1: System model illustration.

The proposed self-renewal ML (SRML) method is applied
to a small-scale network and a large-scale network of 30
nodes and 100 nodes respectively. Through experiments, our
method achieves a maximum achievable throughput of up
to 100% relative to the DCG benchmark algorithm while
reducing the computational complexity by up to 97%. Further
to that, we show the strength of our method as against the
FML approach in [2] using the SE metric and obtained
up to 6.40% improvement. The remainder of this work is
organized as follows. Section II presents the system model
and problem formulation. Section III presents the proposed
SRML framework, while Section IV presents the numerical
experiments and results. We give the related works in Section
V, and then the conclusion in Section VI. In this paper, vectors
and matrices are denoted by lowercase and uppercase boldface
letters respectively. Table I lists the main notations used in this
paper.

TABLE I: Main notations.

Notation Definition
N set of nodes
E set of wireless links
em,n communication link from node m to node n
ecapm,n Shannon capacity achievable on link em,n

N+
n set of out-neighbor nodes of n

N−
n set of in-neighbor nodes of n

A set of all schedulable ISs
A∗ set of critical ISs
γa transmission time of a scheduled IS a ∈ A
pd total throughput of flow d
wd weight of a commodity flow d
fd(m,n) amount of flow d on link em,n

(sd, td) source-destination tuple of flow d
τ model update trigger

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a generic multi-hop single-radio single-channel
wireless network which is modeled by a graph G(N , E)
with N and E denoting the set of nodes and physical links



respectively. A direct communication link em,n ∈ E exists if
the receiver of node n is within the communication range of
node m. The maximum achievable capacity ecapm,n is derived
from the Shannon capacity formula as:

ecapm,n = Blog2(1 + ψem,n) (1)

where B and ψem,n denote the channel bandwidth and
signal-to-interference plus noise ratio (SINR) respectively. We
adopt the protocol interference model [18] for the scheduling
of links, which stipulates that for a successful transmission
from node m to node n, no other node must transmit within
the interference range of node n, and also that links sharing
the same node cannot be activated concurrently due to the
half-duplex property of nodes. We use Figure 1 to illustrate
the system model of a wireless network with 8 nodes (e.g base
stations or access points) and 9 links. The wireless links1 are
represented by the overlapping communication range of the
nodes, and for a successful transmission at a certain moment,
only a set or group of interference-free links are activated
simultaneously. In Figure 1, we show an illustration of six sets2

of links that can be activated independently. Each set contains
at least a link that can be activated during a transmission period
or time-slot. For example, sets 1, 2 and 3, contain two activated
links each, while sets 4, 5 and 6 contain one activated link
each.

The throughput maximization problem thus maps to the
scheduling of links and time allocation to satisfy commodity
flow requirements by formulating a multi-commodity flow
(MCF) problem which is to be solved by LP. We denote the
set of commodity flow demands by D, with each flow d ∈ D
representing a source-destination tuple as d = (sd, td). In
an interference-prone wireless network, only non-interfering
links can be activated for simultaneous transmission, forming
an independent set (IS); this corresponds to a set of vertices
without connected arcs in the conflict graph. Several ISs within
a setA need to be scheduled in a non-overlapping time-sharing
manner (e.g TDMA) to satisfy the flow demands. Note that
the number of ISs in A can be exponentially large, in the order
of 2|E|. For each IS a ∈ A, the allocated transmission time is
denoted by γa, and the effective capacity of a link is:

eam,n =

{
ecapm,n if em,n is active in IS a

0 otherwise

Also, we denote by fd(m,n) the amount of flow d carried
on link em,n. For a commodity flow d, the total achievable
throughput pd is the net amount of flow out of the source sd,
i.e

pd =
∑

n∈N+
sd

fd(sd, n) (2)

1For the establishing of links, we assume the use of an omnidirectional
(or isotropic) antenna with power radiating equally in all directions. Nodes
within each other’s communication range, thus forms a wireless link.

2A set or group of activated links is also referred to as an independent set.

where N+
sd denotes the set of out-neighbor nodes of sd.

We define the following constraints for the formulated MCF
problem (denoted by P) where fd(m,n) and γa are the
decision variables:

1) Flow conservation constraint: The total amount of in-
coming traffic flows to a node that is neither the source nor
the destination must be equal to the total amount of outgoing
traffic flows from that node. This implicitly determines the
routing of each flow demand [2].

∑
m∈N−

n

fd(m,n) =
∑

m′∈N+
n

fd(n,m
′), ∀n ̸= sd, td;∀d. (3)

2) Link capacity constraint: The total amount of flows
allocated to a link must not exceed its maximum capacity over
all the scheduled ISs.∑

d∈D

fd(m,n) ≤
∑
a∈A

γae
a
m,n, ∀em,n ∈ E (4)

3) Scheduling constraint: The amount of time allocated to
all the ISs must sum to 1 (in a normalized fashion).∑

a∈A
γa = 1 (5)

The objective of P is to maximize the weighted sum of
achievable network capacity (i.e throughput), defined as:

Maximize
{fd(m,n)},{γa}

∑
d∈D

wdpd (6)

s.t. constraints (3), (4), (5),

fd(m,n) ≥ 0, ∀em,n ∈ E ,∀d
γa ≥ 0, ∀a ∈ A

Each weight wd represents user service-level priority. No
doubt (6) can be solved using the DCG algorithm, which
works by iteratively solving a restricted master problem and
sub-problem. The sub-problem involves searching and adding
a new entering column (i.e an IS) to the master problem to im-
prove the achievable throughput. Although the DCG algorithm
is able to converge to the optimum value, however, solving
the sub-problem is NP-hard. We use the DCG algorithm to
generate the training cases, and it also serves as a comparative
benchmark for the proposed SRML method.

III. PROPOSED SELF-RENEWAL ML FRAMEWORK FOR
WIRELESS NETWORK OPTIMIZATION

The network capacity region, termed as the convex hull to
an optimization problem, can be obtained by different sets
of ISs, however, there is always a subset of these sets of
ISs that achieves the optimal solution. This subset is called
the critical ISs (CISs) denoted by A∗, as it guarantees the
maximum achievable throughput. Note that the CISs is a
subset of the set of the exponential ISs, i.e A∗ ⊂ A and
|A∗| << |A|. The DCG approximation algorithm solves the
optimization problem to find the CISs that maximizes the
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Fig. 2: The self-renewal machine learning framework.

network throughput. Beyond the computational complexity
of the DCG algorithm, there is also no knowledge retention
of solved optimization instances. We intuit that the CISs
of historical optimization instances can be exploited smartly
to solve a future optimization instance using well-designed
ML techniques. However, in the scarce data regime (which
is the case in wireless network optimization), the capability
of ML becomes limited, except if it is based on lifelong
learning3 [15], i.e having the capability to improve on existing
knowledge as new data are observed.

Designing an SRML framework in the wireless network
context is not trivial as is the case in other domains for the
following reasons: 1) learning every newly observed data will
resort to the rote memorization of ML, and 2) identifying
newly observed data that will improve ML capability requires
the careful design of a data selection algorithm. In this paper,
we address these two challenges by first designing a two-stage
ML technique [2] and then implement the SRML procedure to
improve the solution quality of future optimization instances.
The architecture of the self-renewal ML framework is shown in
Figure 2, which is an extension to the self-supervised learning
framework in [2]. The main components are:

1) Task control system: It receives, processes and manages
the tasks that arrive in the system. When a new task (i.e batch
of optimization instances) arrives, it does the offline compu-
tation of the DCG solution and sends it to the learner where
scheduling structure classification and AID model training are
performed.

2) SRML model: The learner completes the learning task,
and outputs the SRML model for deployment. The SRML

3Lifelong learning is an ML paradigm in which knowledge learned from
previous tasks is used to help future learning. This way, a model can learn to
solve unfamiliar problems.

model is the trained and updated model.
3) Knowledge base: It stores all the previously learned

knowledge from the model (e.g schedulable ISs, model pa-
rameters, etc.) and gets the newest knowledge after model
updating.

From the architecture, the learner performs two-stages of
learning, i.e scheduling structure classification and AID model
training.

A. Scheduling Structure Classification

The scheduling structure of an optimization instance refers
to the scheduled CISs used to obtain the solution to P in
(6). For the optimization of a new instance, the scheduling
structure of historical optimization instances, called the union
of CISs (UCISs) can be utilized to approximate the solution.
The UCISs are obtained by storing the CISs of instances that
belong to the same class. Such class is derived from clustering,
by learning the similarity between the scheduling structures of
historical computed instances.

The scheduling structure of an optimization instance is
represented by an |E|-dimensional vector x (corresponding
to the number of links), and computed by the column-wise
averaging of the scheduled CISs where the e-th element in an
IS refers to the activation state of a link (either 1 or 0). The
Kmeans++ algorithm is then used to cluster similar scheduling
structures. Since this is an unsupervised learning task, there is
no prior knowledge on what number of clusters to group the
data into. The popular Dunn’s index algorithm [17], which
computes the ratio between the minimum distance between
two clusters and the size of the largest cluster, is used to obtain
the optimal K value as an input parameter to the Kmeans++
algorithm, as follows:



K∗ = arg max
K

 min
1≤i≤K

{
min

1≤j≤K
{∥µi − µj∥}

}
max

1≤k≤K
{|Ck|}

 (7)

where µi and µj denote the centroids of clusters Ci and Cj

respectively, and |.| denotes the number of data points in a
cluster. The clustering algorithm computes several iterations
to minimize the total sum of squared distance between the
data points and the K centroids as follows:

minimize
µ1,··· ,µK∈C

K∑
k=1

∑
x∈Ck

∥x− µk∥2 (8)

As a preprocessing stage, to avoid the effect of the “curse
of dimensionality” during clustering, we used the principal
components analysis (PCA) algorithm [19] to reduce the di-
mensions of the scheduling structure vector x before perform-
ing clustering with the Kmeans++ algorithm. The explained
variance ratio (EVR) in the PCA serves as a guide to determine
the number of principal components (PCs) to use in preserving
the salient features in the data. In the experiment, the PCs that
achieve an EVR of at least 0.7 is used for clustering.

B. Application Identification Model

From the clustering of the scheduling structures, the class
labels {c1, · · · , cK} are obtained and are mapped to the
instance vectors v(i) ∈ V to train an AID model in a supervised
learning manner, where v(i) is an application-level input vector
(containing e.g topology, link capacities, flow deployment,
flow weights, etc.) of instance i. Specifically, we encode
the application-level input by defining an adjacency matrix
V ∈ R|N |×|N| and a flow weight vector w = (w1, · · · , w|D|).
An instance vector v(i) is thus defined as:

v(i) = Concat (V ec(V),w) (9)

The Concat and V ec operations are for concatenation and
matrix-to-vector transformation respectively. In our experi-
ment, the dimension of v(i) is fixed as we assume that no
node leaves the network and that no new nodes join the
network. For each network size of 30 nodes and 100 nodes
in our experiment, the dimensions are different. Therefore, we
trained two AID models, each, for the small-scale and large-
scale networks (also note that the clustering of scheduling
structures is performed separately for these network sizes). The
AID model is a fully-connected neural network f(θ,V) which
is designed to learn the mapping relationship between the
application-level input of historical optimization instances and
their scheduling structures, i.e v(i) → ci, where ci corresponds
to the UCISs of the instances in class ci. The categorical cross-
entropy loss function is used to compute model performance
and for backpropagation.

The list of hyperparameters for training the AID models
are given in Table II, with Wij denoting the weight matrix
of layer i in model j, where j = 1 for the 30 nodes network
and j = 2 for the 100 nodes network. We also use a “,” to

separate the hyperparameter values for the 30 nodes network
and 100 nodes network respectively.

TABLE II: Neural network parameters and hyperparameters

Name Value
Epochs 27, 193
Batch size 500
Layers 5, 4
Hidden layer function ReLU
Output layer function Softmax
Optimizer Adam
Learning rate 0.0006, 0.0001
Dropout None, 0.25
Regularization Early stopping
W11,W12 896× 910, 448× 10010
W21,W22 608× 896, 864× 448
W31,W32 640× 608, 832× 864
W41,W42 960× 640, 1000× 832
W51 1000× 960

C. Self-Renewal Procedure

The self-renewal of the AID model stems from the need to
incrementally improve the throughput of future instances by
relearning the scheduling structures and learning the UCISs
mapping to new application-level inputs that were not part of
the base training data. This is similar to the continuous learn-
ing or lifelong learning paradigm of supervised ML [14], [15],
except that instead of using all the newly observed instances
B, we only select a subset of them, i.e B′ ⊂ B to improve the
throughput of future instances, thus slightly increasing the size
of the dataset and reducing the number of iterations required
for model updating. To update the model implies retraining it
with previous data and new data. We explain and describe the
data selection and model retraining procedure for the SRML
method in Algorithm 1 and Algorithm 2 respectively.

The AID model retraining can be time-based or need-based,
with the former occuring within a defined period (e.g weekly,
monthly, or yearly), and the latter defined by the availability of
new data or performance monitoring. We use the latter strategy
to update the AID model by selecting a data batch B′ from the
test (or inference) set B, based on an intelligence criterion α ∈
(0, 1] that defines the minimum confidence score of f(θ, v(i))
as shown in Algorithm 1.

1) Data selection: The trained base model f(θ,V) is used
to predict a new instance v(i), and based on the prediction
score of the model, i.e if f(θ, v(i)) < α, the instance will
be selected into a data batch B′. The offline DCG solution is
computed for each v(i) ∈ B′ to obtain the scheduling structure
x(i), while keeping the application-level input v̂(i) to be used
for model updating.

2) Model updating: The AID model retraining is preceded
by the re-clustering of the scheduling structures x(i) ∈ X ,
where X = {Xold ∪ Xnew} and Xnew = {x(i), · · · , x(|B′|)}.
The Dunn’s index algorithm is applied to find the optimal
number of clusters to be used for re-clustering, this is because
it is difficult to determine if Xnew will be grouped to the
existing K clusters, or if Xnew will cause a reduction or
increase in the number of clusters as shown in Algorithm 2.



The pre-trained weights of the base model f(θ,V) are used as
starting points in the updating of f̂(θ,V) in a transfer learning
manner. Note that the last fully-connected layer of f̂(θ,V) is
different from that of f(θ,V) because of the updated number
of classes from the clustering stage.

Since we do not want the AID model to always (or arbi-
trarily) update when a new instance v(i) ∈ B′ is observed, we
define a model update trigger τ , with the condition |B′| ≥ τ ,
where τ is the minimum batch size4 required. After every
self-renewal process, the data batch B′ becomes empty, i.e
|B′| = 0. The self-renewal process can be lifelong or end
when the model has learned on sufficient data.

Algorithm 1: Data Selection for Model Updating
Input: Base model f(θ,V), confidence score α, test

set B = {v(i), · · · , v(|B|)}, where
v(i) = {x(i), v̂(i)}

Output: B′,Xnew,Vnew, where B′ ̸= ∅
for v(i) in B do

/* x(i) is scheduling structure, v̂(i)

is application-level input */

if v̂(i) → f(θ, v̂(i)) < α then
B′ ← v(i);Xnew ← x(i);Vnew ← v̂(i)

end
end
return B′,Xnew,Vnew

Algorithm 2: AID Model Retraining
Input: Clustering data Xold, base model f(θ,V), old

Dunn’s index DNold, data batch B′, and old
data Vold

Output: f̂(θ,V), where |V| ≥ |Vold|
/* Re-clustering the data */
X = {Xold ∪ Xnew} ;
for k=2 to K do

Dunn’s index algorithm on X ;
if DNnew > DNold or DNnew < DNold then

update K;
do Kmeans++ clustering

end
else

do K-nearest neighbor on Xnew

end
end
/* Model updating */
V = {Vold ∪ Vnew};
load pre-trained weights f(θ,V);
update f̂(θ,V)← f(θ,V) using combined data V;
return f̂(θ,V)

4This should not be misinterpreted as the batch size hyperparameter in
Table II used for training a neural network.

Fig. 3: A 30-node network topology with 10 commodity flows:
source (blue) and destination (red).

IV. NUMERICAL EXPERIMENTS AND RESULTS

The implementation details and the results of the proposed
SRML method are presented in this section.

A. Experiment Settings

We simulated a small-scale and large-scale multi-hop wire-
less network of 30 nodes and 100 nodes respectively, using a
Python simulation environment, where the nodes are randomly
distributed within a fixed 1 Km by 1 Km square area, and
with a minimum separation distance of 30 m. The protocol
interference model is used by uniformly setting the communi-
cation range and interference range of nodes as 50 m and 70
m respectively. Each link capacity ecapm,n is calculated based
on the Shannon formula using a channel bandwidth, preset
signal power and noise power of 20 MHz, 17 dBm and -127
dBm respectively [2], with a path loss exponent of 3.5. The
30 nodes network topology is shown in Figure 3.

The experiments are run on Google Colaboratory (or Colab),
equipped with the Nvidia K80 GPUs and Intel Xeon proces-
sors @2.3GHz. Numpy [20] and Tensorflow [21] packages are
used in the Python environment.

B. Dataset Generation and Distribution

The dataset is generated using the DCG algorithm to obtain
the optimization instances and their scheduling structures,
which are used for the AID model training and clustering
respectively. For the 30 nodes network and 100 nodes network,
a total of 25,000 instances and 45,000 instances are computed
as training data respectively, spanning 1 flow up to 5 flows
and uniformly distributed. The testing set consists of 1000
instances, each, for 1 flow to 5 flows. However, in addition
to the testing set, larger flows of 6 flows to 10 flows (each



TABLE III: Performance comparison between FML and proposed SRML method for 30 nodes network.

No. of Flows 1 2 3 4 5 6 7 8 9 10
tDCG 1.97 2.49 2.61 2.90 2.98 3.10 8.0 9.51 10.11 10.68
CTRFML 0.76 0.89 0.86 0.89 0.82 0.86 0.98 0.95 0.96 0.94
CTRSRML 0.75 0.96 0.92 0.85 0.87 0.89 0.87 0.97 0.96 0.96
SOLDCG 3.47 5.52 7.10 8.24 9.24 9.99 10.96 12.04 12.48 12.92
ARFML 1.0 0.99 0.98 0.98 0.97 0.81 0.79 0.78 0.77 0.77
ARSRML 1.0 0.99 0.98 0.98 0.97 0.87 0.83 0.82 0.80 0.79
SEFML 154 243 308 358 399 359 382 419 428 444
SESRML 153 242 308 355 397 382 404 438 443 449

TABLE IV: Performance comparison between FML and proposed SRML method for 100 nodes network.

No. of Flows 1 2 3 4 5 6 7 8 9 10
tDCG 18.55 33.0 53.55 44.12 67.16 54.06 83.06 64.93 93.29 79.69
CTRFML 0.96 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.97
CTRSRML 0.95 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.96
SOLDCG 3.94 6.06 7.82 9.37 10.62 11.60 12.52 13.54 13.90 15.02
ARFML 1.0 1.0 1.0 1.0 0.99 0.79 0.80 0.78 0.78 0.78
ARSRML 1.0 1.0 1.0 1.0 0.99 0.86 0.86 0.83 0.82 0.82
SEFML 97 150 194 232 260 227 245 262 267 288
SESRML 96 149 193 229 257 244 264 276 279 301

containing 1000 instances) are computed to evaluate the gen-
eralization capability of the SRML method against the FML
method, RAND method and Greedy Heuristic method.

1) FML method: This is based on the isolated learning
approach where a model is trained only on the available data
and no further retraining or updating is performed when a
new/future data is observed. The FML method is used in [2].

2) RAND method: This is a random self-renewal approach
without the data selection strategy in Algorithm 1. With the
RAND method, the data for model retraining is selected
randomly as they are observed.

3) Greedy Heuristic method: This refers to the blind selec-
tion of a class of UCISs obtained from clustering, to solve an
optimization instance.

For the initial clustering of the scheduling structures of the
training data, K = 1000 for the small-scale and large-scale
networks. During the inference phase using the trained base
model, the test instances with prediction score below α (where
α = 0.4 in our experiment) are selected into batch B′, which
are combined with the original training data during the self-
renewal of the ML model. We set |B′| = 500 and |B′| = 1200
for the 30 nodes network and 100 nodes network respectively
(the update trigger τ is ≤ |B′|). In the self-renewal stage, the
number of scheduling classes are updated to K = 1001 and
K = 999 for the 30 nodes network and 100 nodes network
respectively, based on the Dunn’s index algorithm.

C. Performance Metrics

We evaluated the performance of the proposed SRML
framework using three metrics defined as follows:

1) Approximation ratio (AR): This is the ratio of the
average achievable throughput (in Mbps) of the SRML method
to that obtained by the DCG algorithm, computed as: SOLSRML

SOLDCG
.

2) Computation time reduction (CTR): This is the ratio of
the computation time difference between the DCG algorithm
and SRML method to the computation time of the DCG algo-
rithm, computed as: tDCG−tSRML

tDCG
. The tSRML is the sum of the LP

Fig. 4: Solution efficiency comparison in 30 nodes network.

solution time and ML inference time, i.e tSRML = tLP + tINF.
The unit of time is in seconds.

3) Solution efficiency (SE): This is the ratio of the average
achievable throughput of the SRML method to the total
amount of training samples, measured in bits per second per
sample, and computed as: SOLSRML

|Vtrain| , where |Vtrain| is the size
of the training set.

The AR and CTR metrics are used in [2], but we introduce
the SE in this paper to prove the supremacy of the SRML
method over the FML method. Also, the SE metric reveals the
benefit of our data selection algorithm for model retraining.

D. Results and Discussions

The performance of the SRML method is compared with the
FML method as shown in Table III and Table IV for the 30
nodes network and 100 nodes network respectively. Similar to
the SRML method, we allow the FML method to benefit from
the Dunn’s index algorithm in determining the optimal number
of scheduling classes to group the scheduling structures of
the training instances. However, despite such generosity, the
SRML method outperforms the FML method in the 30 nodes
network and 100 nodes network. For the AR, the SRML is
better than the FML on all the flow demands, and very obvious



Fig. 5: Throughput comparison for 100 nodes network.

in the larger commodity flows from 6 flows to 10 flows which
are the challenging cases. For 6 flows, this is 87% and 86%,
and for 10 flows it is 79% and 82% for the 30 nodes network
and 100 nodes network respectively. In contrast, for the FML,
the AR for 6 flows is 81% and 79%, and for 10 flows it is
77% and 78% for the 30 nodes network and 100 nodes network
respectively.

It should be noted that for the SRML method, we only
performed one round of model updating and retraining with
only very few instances, which we further explain as follows:

1) Effect of data selection on solution efficiency: With the
data selection strategy, extracting the scheduling structures
from only a small fraction of all the newly observed data can
improve the solution efficiency. As shown in Figure 4, the
SRML method achieves a higher SE than the FML method on
larger flows by using only 386 instances for model updating,
and this is better than the RAND method which used up to 500
instances. There is no compromise on the SRML performance
on lower commodity flows, as it achieves a tightly close SE to
the FML method. The last two rows in Table III and Table IV
show the SE for the 30 nodes network and 100 nodes network
respectively.

2) Performance comparison on achievable throughput: The
average achievable throughput using the SRML method stems
from the data selection algorithm, and this is related to the SE,
i.e the higher the SE, the higher the throughput. In Figure 5 we
show the benefit of the SRML method to the average through-
put. Again, there is an obvious difference between the FML
method and SRML method in the larger flow regime, with the
SRML method outperforming the FML method consistently.
The effect of the data selection strategy is evident when
compared with the RAND method. While the SRML method
only used 808 instances to improve throughput performance
in one round, the RAND method used up to 1200 instances,
but still performed sub-optimally to the SRML method. This
implies that the RAND method will require several rounds
with more training instances to reach a solution that is close
to the SRML method. The noticeable gap between the SRML
method and the Greeady Heuristic method shows the strength
of ML in predicting the correct class of UCISs to solve an
optimization instance. Without the supervised learning stage
of AID model training, blindly selecting a class of UCISs from

the clustering stage will not solve the optimization instance as
shown by the Greedy Heuristic method in Figure 5.

The reduction in computation time which is a benefit of
the FML method is also evident in the SRML method as
shown by the CTR in Table III and Table IV for the 30 nodes
network and 100 nodes network respectively. With the transfer
learning technique used for the model updating, the learning
parameters is significantly reduced by 71.09% and 87.04%
for the 30 nodes network and 100 nodes network respectively.
This offers benefit in storing the model, as well as increases
training speed.

V. RELATED WORK

The concept of self-renewal ML (SRML) in this paper
is strongly related to lifelong machine learning (LML) or
continual learning which has been proposed in the recent few
decades [14], [15] but its application to wireless networking is
still in its infancy and, thus, deserves attention. Applications
such as chatbots, physical mobile robots, and intelligent assis-
tants interact with humans and systems. To have an improved
user experience with these applications, there is need for a
continual learning approach to enhance their capability, and
this is based on self-motivation or self-learning. Lifelong
learning cuts across different areas of ML such as supervised
learning, unsupervised learning, semi-supervised learning, and
reinforcement learning [16], [22], [23].

Seminal works in supervised LML have proposed tech-
niques such as memory-based learning and neural networks
to facilitate a classifier’s capability in learning new tasks from
the knowledge of previous tasks [14]. The LML for neural
networks can be extended to cumulative learning5 [24] where
a new multi-class classifier is trained by combining the old
data with the new data. Other LML algorithms have been
proposed in [25], [26] to improve multi-task learning for
intelligent applications. Lifelong information extraction and
lifelong relaxation labeling methods have been proposed in
[16], [22] which follows the unsupervised LML paradigm.
For semi-supervised LML, the work in [27] proposed a never-
ending language learning learner (NELL) which began to read
and accumulate millions of entities from the web since 2010.

In the context of wireless networking, some few recent
works have considered LML or continual learning approaches
for network intrusion detection [28], resource optimization
[29] and channel estimation [30]. Since wireless networks are
dynamic, the goal of LML is to gracefully handle tasks that
continue to evolve in the network which classical machine
learning algorithms cannot handle, as learning is usually
isolated. The work in [28] examined the suitability of two
continual learning algorithms, i.e elastic weight consolidation
and gradient episodic memory, for the anomaly intrusion
detection in a wireless network. The problem of resource
allocation in a dynamic wireless environment motivate the
work in [29] to propose a continual learning approach where

5This is similar to the steps in the SRML model retraining in this paper.
With cumulative learning it is possible to encounter a new class in the data.



the learning model incrementally adapts to changing episodes
in the network - the effectiveness of the continual learning
model was evaluated. A similar study in [28] applied LML to
the channel estimation problem in 5G millimeter-wave MIMO
systems. While these papers scarcely considered the network
capacity optimization issue, in this paper, we have proposed
the self-renewal ML approach to address the resource allo-
cation problems in wireless multi-hop networks by learning
more knowledge incrementally.

VI. CONCLUSION

We have presented a self-renewal ML method for assisting
the optimization of complex commodity flow deployments
when the available data is limited. The selection of useful
samples during model inference to increase learning at the
retraining phase of the AID model shows a performance
improvement in the approximation ratio and solution efficiency
for a typical small-scale network and large-scale network.
Lifelong machine learning is a promising area in wireless
network optimization, as it helps to alleviate the problem of
limited knowledge due to insufficient available data, which is
predominant in wireless networking. The self-renewal method-
ology in this paper can be extended to other lower layer or
upper layer problems in the network protocol stack.
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