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Abstract—Motivated by the demands of time-sensitive appli-
cations, our paper studies methods for the age of information
(AoI) minimization over a WiFi Network. Specifically, the AoI
of a labeled device sending updates to the access point (AP)
is of our concern. However, it is non-trivial to investigate the
AoI optimization problem in such a scenario where an arbitrary
number of background devices are also delivering updates to
the AP; all of the network devices follow IEEE 802.11 based
Medium access control (MAC) protocol to contend for the channel.
Current works on AoI optimization over a WiFi network do not
offer any practical methods for a single user to minimize its
AoI readily and adaptively, limited to system AoI optimization
with homogeneous traffic modeling or simplified MAC modeling.
This paper develops a deep learning facilitated AoI optimization
algorithm that provides direct guidance for easy implementation.
Our novel method integrates service time analysis in 802.11 MAC
and AoI queueing analysis with the deep learning enabled channel
condition prediction. Specifically, we gather traffic rates of each
node from the AP and train a channel condition estimation model.
A labeled node can leverage the well-trained learning model to
obtain accurate expected MAC service time and adaptively adjust
its sending rate for minimal AoI. Simulation results show that
our learning model can accurately estimate channels, and our
algorithm guarantees fast adjustment of AoI-minimized sending
rate.

Index Terms—Age of information, WiFi, deep learning, queue-
ing systems, medium access control, optimization.

I. INTRODUCTION

With the considerable advancements in network technology

and the enormous growth in portable devices, modern life

has undergone a significant transformation. The widespread

connectivity and development of mobile devices foster real-

time applications like remote monitoring and draw attention to

timely information updates. As a result, the age of information

(AoI), which indicates the amount of time since the most

recent update, has lately been considered as a vital metric for

determining how fresh the information is. Therefore, it is crucial

to investigate the AoI minimization problem for remote moni-

toring via a WiFi network since many internet-of-things (IoT)

devices access the internet via this technology. In addition, it is

vital to recognize that ”minimizing the AoI” and ”minimizing

the network delay” should not be used interchangeably.

AoI minimization is challenging in this situation because

wireless devices could use generic and heterogeneous data

flow to convey updates. Users’ competition for channel access

also has a complicated impact on queue analysis. The AoI-

minimizing update rate using queue analysis has been studied

in the past [1]–[6]. [7]–[10] analyze AoI optimization in random

access networks, such as Slotted-ALOHA networks, CSMA

networks, and massive Internet of Things (IoT). Specifically,

to lower the network-wide AoI, the authors of [7] propose

an ALOHA-like stationary random access. The fixed channel

access probability that is assigned to each IoT device is not

practical in most situations. Stochastic Hybrid Systems (SHS)

are used by the authors of [10] to model a CSMA environment

with the goal of lowering the overall average AoI of the

entire network. [11], [12] study AoI optimization in centralized

multiple access mechanisms. However, because the analyses

are either based on a symmetric configuration in which the

background nodes compete to access the wireless channel with

a homogeneous traffic arrival rate or are oversimplified with

strong assumptions, these studies only have a limited potential

for practical application. Therefore, it is crucial to look for ways

for portable devices to behave logically to get the best AoI in

various network settings.

This work focuses on minimizing a WiFi user’s AoI in a

heterogeneous and arbitrary network environment and offers

a straightforward solution for easy implementation. Notably,

we study the method for a WiFi station to adjust its message

updating rate to achieve minimal AoI. Since the contention-

based WiFi network brings much fluctuation and uncertainty to

the wireless environment, we thus leverage the deep learning

technique for quick and robust channel condition prediction,

thereby getting an accurate estimation of the current service

rate of the device’s MAC queue. Then following an AoI-

optimal offered load we discovered through simulation, one can

determine its traffic updating rate for a minimal average AoI.

We also define a successful transmission probability among

all the background nodes for accurate service rate estimation.

With the assistance of our well-trained deep learning model,

our simulation results reveal that our strategy is both universal

and successful in a WiFi network with an arbitrary number of

nodes of different updating rates.

The main contributions of this paper are listed as follows.

1) We propose a deep learning facilitated framework that

minimizes a WiFi device’s AoI. We combine the MAC

layer service time analysis in 802.11 protocol and the AoI

analysis in Single-Source Single-Server queues to enable

the WiFi user to achieve optimal AoI promptly.

2) We design an innovative and reliable deep learning

method to efficiently obtain the current channel condi-

tions, providing crucial information for accurately eval-
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uating service time. To the best of our knowledge, the

current literature does not include an approach capable

of reducing AoI while maintaining a low level of com-

plexity.

3) To tackle the analysis of the network with heterogeneous

background WiFi devices, We extract the actual success-

ful transmission probability across all of the background

nodes based on the packets received rates at AP from

each device. Such a valuable method ensures accurate

service time estimation and has little burden assisted by

our well-trained deep learning model.

4) We gather vast amounts of data via simulation and

develop a deep learning model with great accuracy for

channel condition estimation. Such a fine-tuned model is

valuable to the community.

5) We do simulations with different network configurations.

The simulation findings support the efficacy and precision

of our research by demonstrating that the minimum AoI

may be very nearly reached using the suggested strategy

in any network context.

The remainder of this paper is structured as follows. The

system model is illustrated in Section II. In Section III, we

describe the methods proposed for AoI optimization. Numerical

results and methods of the simulation are presented in Section

IV. The related work to the problem we investigate is discussed

in Section V. Finally, we summarize our work in Section VI.

II. SYSTEM MODEL

In this part, we outline our proposed framework, give major

aspects of the AoI analysis for the scenario of interest, and

show each step in detail.

A. Data Updating over WiFi

In the context of an IEEE 802.11 network, we are interested

in a scenario where a specific wireless device known as a

labeled device (labeled DEV) is associated with an access point

(AP). The other wireless devices that are linked to this access

point are referred to as background devices. These electronic

devices compete with one another to access the wireless channel

per the contention-based IEEE 802.11 standard. In this scenario,

we plan to investigate a rational strategy for the labeled DEV to

achieve optimal average AoI based on the knowledge requested

from the AP and the prediction of the deep learning model in

a cost-efficient manner. The terms DEV and node may be used

interchangeably for the rest of this study.

A WiFi network with various wireless devices coupled with

an AP is illustrated in Fig. 1. The AP serves as a server for

the MAC queues of all connected wireless devices, acting as

a portal for network services. The data updates are transmitted

by the labeled DEV at arrival rate λ via a MAC queue and

served by the AP with a service rate µ. In order to attain

the ideal AoI for the labeled DEV, we request from the AP

the packets received rates from each background device as the

input of the learning model and compute the service rate mu

 

AP

λ

μ

Background node

Labeled DEV

Fig. 1: A labeled DEV transmits updates across a WiFi net-

work’s MAC queue.

age

t

Qn

tn-1 t'n-1 tn t'n

Tn

TnYn

∆(t)

Fig. 2: Sawtooth age waveform.

using the channel condition prediction produced from a well-

trained deep learning model. Then, using the improved AoI

queue analysis led by simulation findings, determine the ideal

arrival rate lambda that minimizes the AoI.

AoI specifies how much time has passed since the most

recent update. The update i is sent through the system and

eventually arrives at the monitor when a source creates update

i with timestamp ui(t). The monitor observes that its most

recent update was received at time t and was time-stamped by

ui(t) with age t − ui(t). The term ”AoI” in this work refers

to the average AoI, which is assessed graphically using the

sawtooth age waveform ∆(t), demonstrated in Fig. 2.

〈∆〉τ =
1

τ

∫ τ

0

∆(t)dt (1)

suppose τ is large enough. For the nth update, the interarrival

and system time are represented by Yn = tn − tn−1 and Tn =
t
′

n − tn, respectively. According to Fig. 1, the sum of each

59

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 21:19:43 UTC from IEEE Xplore.  Restrictions apply. 



shaded area

Qn =
1

2
(Tn + Yn)

2 −
1

2
T 2
n (2)

equal to the integral denoted by (1). The average AoI is

calculated using

∆ = lim
τ→∞

〈∆〉τ =
E[Qn]

E[Yn]
. (3)

B. Distributed Coordination Function

In the IEEE 802.11-based WLAN standard (Wi-Fi), the dis-

tributed coordination function (DCF) is a layout for preventing

collisions. It is a carrier-sense multiple access with collision

avoidance (CSMA/CA) sublayer technology for medium access

control (MAC). To address the hidden-terminal issue, a sup-

plementary but commonly-adopted method known as request-

to-send/clear-to-send (RTS/CTS) is used. Fig. 3 shows the

RTS/CTS mechanism of IEEE 802.11 MAC layer protocol.

The station changes to a backoff stage once the channel senses

idle for a period greater than DCF Interframe Space (DIFS).

The backoff stage time is slotted and uniformly selected from

[0, CW − 1], where CW is the size of the contention window.

If an empty slot is detected, the backoff counter will drop

by one, while a busy channel will cause it to freeze. The

frozen backoff counter will continue when the channel is idle

for more than a DIFS. Once the backoff counter is zero, the

node would transmit an RTS at the start of the subsequent slot

and would then receive a CTS following a Short Interframe

Space (SIFS). The node may then begin transmitting at the

start of the next slot after receiving the CTS for SIFS. An

acknowledgment (ACK) will be sent to the sender when the

transmission is complete for SIFS, confirming receipt of the

data frame. When the CTS timeout expires and the sender does

not receive the CTS, the RTS is said to have collided. Therefore,

a retransmission will be set with a new contention window size

that is twice as large, up to CWmax. The sender will discard

the data frame after the maximum number of retransmissions

has been met.

C. AoI in Single-Source Single-Server Queues

We consider the WiFi device produces data updates and sends

through a MAC queue of a single-source single-server type.

Update packets created by the top layer are typically put into

the MAC queue and await service by the IEEE 802.11 radio.

The packet service time is the amount of time between the

beginning of a packet’s channel contention and the dequeuing

event, which may be caused by a successful transmission or a

failed transmission that is discarded if it meets the maximum

retransmission limit. In queueing theory, the offered load of

a queue is ρ = λ/µ, where λ is the arrival rate and µ is

the service rate. Assuming a queue with constant and fixed

µ, updates with high λ will contain detailed observations but

may congest the queue, resulting in poor throughput and a

high system time E[T ]. However, a low λ can eliminate the

congestion but increase the interarrival E[Y ]. As indicated in

equations (2,3), we need to research an optimal point of λ for

minimizing average AoI.

From the viewpoint of a single node, adjusting the lambda
and measuring the AoI directly is not feasible since it takes a

long time for the AoI to converge to its minimal value. Ac-

cording to the discussion in [1], if a queue is an M/M/1 queue,

the ideal point for minimum average AoI is ρ∗ ≈ 0.53. For

the M/D/1 and D/M/1 queues, the ρ∗ value is slightly different.

This ρ∗ offers theoretical guidance for AoI minimization. Once

the device knows the queue’s service rate, it can adjust its

arrival rate λ to approach this target ρ∗. The monitoring of

the queue to determine the service rate, however, consumes

a lot of node resources. Additionally, the medium access’s

randomization introduces unpredictable fluctuations in the as-

sessment of service time. The conditional collision probability

of the node is a method offered by [13] for computing the

expectation of µ. However, the service rate would also vary

as a result of changing the update rate. It is challenging to

attain ρ∗ in a short time because of the intricate interactions

between the background node traffic, the single test node λ,

and the computed µ. We will outline our approach to quick

and precise arrival rate adjustment in the following section.

III. AGE OF INFORMATION OPTIMIZATION

This part shows our deep learning-facilitated optimization

approach for minimizing AoI by determining the appropriate

data update rate. The PGF approach is then used to compute

the average frame service time at layer 2. Specifically, we

define a transmission success probability over all background

devices to precisely determine the expected service time. Our

technique can handle generic, heterogeneous background traffic

at a meager cost.

A. Deep Learning Facilitated Optimization Framework

Fig. 4 illustrates the proposed deep learning facilitated op-

timization framework. In this WiFi network, multiple devices

coupled with the AP are deemed as background nodes. More-

over, a labeled device is of our interest to AoI minimization.

Our framework requires the AP to collect the number of

received data frames from each device. After entering the WiFi

network, the labeled DEV would make an inquiry request to the

AP inquiring about the network’s current statistics; specifically,

the rate arrived at the AP from each device in the unit of frames

per second. Secondly, the labeled DEV inputs the network’s

current statistics into the deep learning model and fetches the

transmission success probability over all background devices

denoted by Psuc and the conditional collision probability of

the labeled DEV, denoted by Pc. The labeled DEV may easily

obtain the mean of the MAC layer service rate µ using the

MAC service time calculation methods described in [13] and

substituting our newly defined Psuc for the one in [13]. The

labeled DEV’s last step is to begin transmitting data updates

at the rate λ = µ× ρ∗. Thus, it is anticipated that the updates

will have a minimum average AoI. In addition, the network’s

statistics inquiry should be performed periodically and use the
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Fig. 3: RTS/CTS mechanism of IEEE 802.11.
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Fig. 4: The proposed deep learning facilitated AoI optimization

framework.
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Fig. 5: Generalized state transition diagram for transmission

process. [13]

newest channel information to adaptively adjust the DEV’s

traffic arrival rate for a long-term optimal AoI.

B. MAC Queue Service Rate

A first-come, first-serve (FCFS) queue’s MAC layer service

time measures the time between when a packet moves to the

front of the queue and starts to compete for medium access

and when an acknowledgment is received, or when the packet

is discarded because it has exceeded the allowed number of

retransmissions. Obtaining the service rate by measurement

requires precise timing and constant MAC queue monitoring,

which uses a significant amount of the mobile device’s re-

sources and time. Using the PGF analysis and Markov chain

analysis of 802.11 DCF, [13] offered a technique for computing

service time based simply on the observed collision probability.

According to the IEEE 802.11 DCF, Fig. 5 redraws the gener-

alized state transition diagram for the transmission process. The

label of each branch in the generalized state transition diagram

is produced by multiplying the state transition probability by

the state transition duration, which is given as an exponent of

the Z variable. Using the well-known Mason formula [14], it is

possible to get the probability generating function of the total

transition time from the generalized state transition diagram.

Let W stand for the size of the initial contention window,

alpha for the retransmission limit, and m for the maximum

backoff stage. The successful transmission time and collision

time, which can be easily calculated in accordance with the

802.11 MAC standard, are denoted by the variables Tsuc and

Tcol, respectively. And their corresponding PGF equal ZTsuc

and ZTcol . These formulas used to calculate the PDF of the

data frame’s service time, abbreviated as B(Z), are as follows

[13]:

HWi(Z) =

{

∑2jW−1
j=0

(Hd(Z))j

2iW , (0 ≤ i ≤ m)

HWm(Z), (m < i ≤ α)
(4)

Hi(Z) =
i
∏

j=0

HWj(Z), (0 ≤ i ≤ α) (5)

B(Z) =(1− Pc)St(Z)
α
∑

i=0

(PcCt(Z))iHi(Z)

+ (PcCt(Z))α+1Hα(Z)

(6)

Thus, the mean of the service time E[TS ] can be obtained by

differentiation:

E[TS ] =
dB(Z)

dZ
|Z=1 = µ−1. (7)

In the calculation shown above, the term Hd(Z) stands for

the PGF of the random time needed for the backoff counter to
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decrease by one. We discovered that the referenced study in [13]

only addresses the case with homogeneous background devices.

They simplify Hd(Z) that each background device updates

at the same data arrival rate. Obviously, the existing solution

is insufficient for practical demand. The following subsection

defines a more general Hd(Z) to handle an accurate service

rate calculation in arbitrary heterogeneous WiFi networks.

C. Accurate µ in Heterogeneous WiFi Networks

From [13], the signal transfer function of the decrement pro-

cess of the backoff timer’s generalized state transition diagram

is

Hd(Z) =
(1− Pc)Z

σ

[1− PsucSt(Z)− (Pc − Psuc)Ct(Z)]
, (8)

where σ denotes the empty slot time.

In a WiFi network containing n users, the labeled DEV’s

conditional probability Pc is equivalent to the probability that

at least one user among other n−1 is transmitting data frames.

As a result, after σ, the backoff timer of the labeled DEV has a

chance of 1−Pc to decrease by 1. Psuc indicates the probability

that given the labeled DEV does not transmit, there is one and

only one user among all the background nodes successfully

transmitting a data frame. Consequently, PsucSt(Z) denotes

that the labeled DEV’s backoff timer has a Psuc probability

of remaining in its initial state for Tsuc time as a result of

a successful background node transmission. Similarly, (Pc −
Psuc)Ct(Z) represents that the labeled DEV’s backoff timer

has a (Pc − Psuc) probability of remaining in its initial state

for Tcol time as a result of a collided transmission.

In a WiFi network containing wireless users with hetero-

geneous transmission traffic, mathematically expressing Psuc

becomes infeasible due to the random essence of the IEEE

802.11 protocol. However, for each practical case, we can get

Psuc via traffic monitoring on the AP side. To calculate the

exact value of Psuc, in a certain testing period, AP should

count the number of all the successful transmissions from the

background devices, the number of idle slots where nobody

transmits, the number of successfully received data transmission

virtual slots from all devices, and the number of collided slots,

denoted as NotherSuc, NnoNodeTx, NallSuc, and NcolSlots,

respectively. Thus, by definition,

Psuc =
NotherSuc

NnoNodeTx +NallSuc +NcolSlots

. (9)

Also, the Pc is measured at the labeled DEV’s side using

Pc =
NcolRTS

NallRTS

. (10)

Recall that the above measurement regarding Psuc and Pc

needs to be implemented every time, which is still not feasible

since 1) the measurement increases computational and trans-

mission overheads and 2) these two characteristics are subject

to changes during this slow procedure. These disadvantages

impel the development of an efficient and fast evaluation

strategy. In recent years, a tremendous amount of research has

been conducted on machine learning (ML) to learn from a

large number of previous occurrences to generate intelligent

judgments or accurate predictions in networking problems [15].

Therefore, the deep learning technique fits well for solving this

complex problem. Once we establish a fine-tuned deep learning

model that is able to output Psuc and Pc close enough to the

actual values according to the current channel condition, an

accurate MAC queue’s service rate can be obtained.

D. Accurate Channel Estimation Using Deep Learning

As defined in the contention-based IEEE 802.11 protocol,

the channel access for every WiFi user is random. To avoid the

aforementioned disadvantages of Psuc and Pc measurements, a

well-trained deep learning model would be a good option. We

want to put the training process offline and then directly use

the model as a black box for fast and precise prediction of the

current channel condition reflected by Psuc and Pc.

The factors influencing the Psuc and Pc should be listed

as candidates for ML input. In the WiFi network, the traffic

generating rate of each node is the key. However, collecting

the traffic generating rate in a practical WiFi environment is

challenging. It may require even more communication overhead

between the labeled DEV and each background device. Also,

the background nodes may not be willing to share due to certain

privacy concerns or extra burdens.

An alternative solution is to use each device’s traffic received

rate at AP. This method would only require the deployment of

an AP featuring counting the incoming traffic and answering

the inquiry from the labeled user. Also, each device’s traffic

received rate at AP contains information about the arrival rate in

each device’s MAC queue, the overall channel utilization, and

the interplay between all the WiFi users. Let the Ri denote the

ith background user in the WiFi network, where i ∈ [0, N ], N
is the maximum number of background nodes considered in our

model, which is equivalent to the total number of background

inputs. Besides, we define one more input as RA, which is the

packet arrival rate of the labeled DEV. Thus, the input vector of

the DL model is of the form: (R1, R2, · · · , Ri · · · , RN , RA).
The outputs of the DL model contains Psuc and Pc.

The training dataset Dtrain �
{

(x(i),y(i))
}

i
captures the

optimization results of the past problem instances collected

through simulation. x(i) represents the input vector i, and y(i)

is the ground truth of the output vector values (P
(i)
suc, P

(i)
c ). A

multilayer perceptron (MLP) is trained over training set Dtrain

to learn a reasonable mapping from x(i) to y(i). When a new

problem instance x(j) was input to the trained MLP model, the

output vector ŷ(j) indicates the predicted probability P
(j)
suc and

P
(j)
c .

During the training process, the parameters of the MLP are

updated iteratively via a supervised learning technique called

backpropagation (BP), with the goal of minimizing a loss

function that quantifies the discrepancy between the predicted

output and the ground truth. Since the target y(i) is a continuous

variable that is always in the range [0, 1], the probability

prediction is a classic regression task. In this way, we choose

mean absolute error (MAE) to be the loss function, i.e.,

62

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 29,2023 at 21:19:43 UTC from IEEE Xplore.  Restrictions apply. 



L(ŷ(i),y(i)) =

∑n

i=1

∣

∣ŷ(i) − y(i)
∣

∣

n
, (11)

where n is the total number of instances in our training dataset.

The training process is to solve a optimization problem

minimize L(ŷ(i)(θ),y(i)) (12)

ŷ
(i)(θ) � φ(x(i);θ), (13)

where ŷ(i) is the output produced by DL model φ parameterized

by θ according to the input x(i). An ideal DL model should be

very well-trained with a minimal loss across all the instances.

E. AoI-minimizing offered load ρ∗

Assuming that we already know an accurate service rate µ
of the MAC queue, we still need to find a target offered load

ρ∗ resulting in a minimum average AoI. Theoretical results

given in [1] indicate that the optimal ρ∗ of a first-come-first-

serve M/M/1, M/D/1, and D/M/1 queue is around 0.53, 0.625,

and 0.48, respectively. In the simulation, we first apply these

rules and also do a wide range search with different offered

load ρ. The results suggest a down-shifting between the actual

optimal point and the theoretical ones. Detailed results and

more discussion will be in the next section.

IV. NUMERICAL RESULTS

This section presents our simulation setup using the discrete-

event network simulator NS-3. Simulation results indicate opti-

mal sending rates given specific total background traffic. Also,

the DL model is trained using an existing software framework

Pytorch in Python. The details of the MLP training process are

demonstrated as valuable guidance to the community. Finally,

we show the excellent performance of our well-trained DL

model.

A. AoI over WiFi Simulations Setup

The simulations construct a WiFi network following the

MAC protocol’s IEEE 802.11b distributed coordination func-

tion. We adopt the RTS/CTS scheme to eliminate uncertain

influence caused by hidden terminal problems. Also, to make to

network analysis clean and neat, all the WiFi users are sending

via UDP protocol. The detailed configurations are shown in

Table I.

We consider the WiFi network to be within a circle of 80

meters radius. The WiFi users are randomly distributed at the

edge of the area. The AP is allocated at the center of the

circle. The number of background users ranges from 5 to 15,

each equipped with a traffic generator following constant bit

rate or Poisson distribution. Each successful data transmission

only contains 1 data frame. All the users’ MAC queues have

infinite buffer sizes. We run each simulation for 300 seconds

and disable the default ARP table update to eliminate any effect

on AoI calculation.

(a) Total backround traffic λ = 150

(b) Total backround traffic λ = 300

(c) Total backround traffic λ = 450

Fig. 6: Labeled DEV’s AoI vs. λ in M/M/1 queue

B. Investigation for the Optimal ρ∗

Although the literature has offered ideal offered loads ρ∗ for

various types of FCFS MAC queues, we still do a wide range of

tests to verify these suggested values through simulation results,

as the practical values always deviate from the theoretical ones.

We show our simulation results with the tests containing 5,

10, and 15 background nodes, respectively. The traffic model

of each user is regulated as needed to construct the labeled

DEV’s queue types as M/M/1, M/D/1, and D/M/1. Specifically,

we define three levels of total traffic arrival rates, 150/sec,

300/sec, and 450/sec, respectively, and use them to construct

different network environments that reflect the various extent

of the busyness.

a) Optimal ρ∗ for M/M/1 queue: In Fig. 6, for an M/M/1

queue, WiFi scenarios with total background traffic arrival rate
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equaling 150/sec and 5, 10, and 15 background nodes have

light traffic loads, with Pc < 2%. As a result, the networks

stay stable with strict convex AoI versus λ curves. The optimal

ρ∗ ≈ 0.48, which is slightly lower than the theoretical value of

0.53.

For an M/M/1 queue, WiFi scenarios with total background

traffic arrival rate equaling 300/sec and 5, 10, and 15 back-

ground nodes have moderate traffic loads, with Pc < 7%.

The overall WiFi traffic is relatively steady with strict convex

AoI versus λ curves. All these three scenarios reach minimal

average AoI at λ = 90.909. The optimal ρ∗ ≈ 0.33, which is

much lower than the theoretical value of 0.53. However, the

average AoI obtained following the suggested theoretical value

of 0.53 is very close to the minimal average AoI we obtained

via simulation.

For an M/M/1 queue, WiFi scenarios with total background

traffic arrival rate equaling 450/sec and 5 background nodes

have relatively high Pc ≈ 17%. The minimal AoI is achieved

when ρ∗ ≈ 0.45. The other two scenarios with 10, and 15

background nodes have heavy traffic loads. The networks are

in poor condition with high Pc ≈ 24%. The AoI versus λ
curves exhibit severe fluctuations. The AoI stays at a relatively

low level with ρ∗ ranging from 26.3% to 41.3%.

Overall, for the M/M/1 queue, the actual ρ∗ may be slightly

lower than the theoretical 0.53, but the corresponding AoIs are

very close. We suggest taking ρ∗ = 0.48 when Pc < 20% and

ρ∗ = 0.413 when Pc > 20%.

b) Optimal ρ∗ for M/D/1 queue: The DEV’s AoI versus

λ obtained via simulation are shown in Fig. 7. For an M/D/1

queue, WiFi scenarios with total traffic arrival rates equaling

150/sec and 5, 10, and 15 background nodes have light traffic

loads, with Pc < 2%. The networks stay stable with strict

convex AoI versus λ curves. The optimal ρ∗ varies in these

three scenarios. ρ∗ = 0.466, 0.532, 0.625 for n = 5, 10, 15,

respectively. However, the AoIs’ difference is minor.

For an M/D/1 queue, WiFi scenarios with total traffic arrival

rates equaling 300/sec and 5, 10, and 15 background nodes

have moderate traffic loads, with Pc < 7%. The networks still

stay at a stable level with strict convex AoI versus λ curves.

The optimal ρ∗ ≈ 0.4 for all three scenarios is lower than the

theoretical value of 0.625.

For an M/D/1 queue, WiFi scenarios with total traffic arrival

rates equaling 450/sec and 5 background nodes have relatively

high Pc ≈ 17%. The other two scenarios with 10 and 15

background nodes have heavy traffic loads. The networks are

in poor condition with high Pc. The AoI versus λ curves

exhibit severe fluctuations. The AoI stays relatively low with

ρ∗ ≈ 18%.

In conclusion, it is rational to adjust the offered load to be

0.625 for a network with low traffic and lower the offered load

to 0.4 in a moderately congested network.

c) Optimal ρ∗ for D/M/1 queue: Finally, we investigate

the ideal offered load in the D/M/1 queue. The results in Fig. 8

show that, with total traffic arrival rates equaling 150/sec and

5, 10, and 15 background nodes, the labeled users perform very

(a) Total backround traffic λ = 150

(b) Total backround traffic λ = 300

(c) Total backround traffic λ = 450

Fig. 7: Labeled DEV’s AoI vs. λ in M/D/1 queue

similarly with optimal ρ∗ = 0.48, which perfectly matches the

theoretical value.

The WiFi networks with total traffic arrival rates equaling

300/sec and 5, 10, and 15 background nodes have moderate

traffic loads. The networks still stay at a stable level with strict

convex AoI versus λ curves. The optimal ρ∗ ≈ 0.33, which is

slightly lower than the theoretical value.

The scenarios with 450/sec and 5, 10, and 15 background

nodes have heavy traffic loads. The networks are in poor

condition with high Pc. Like in other queue models, the AoI

versus λ curves exhibit severe fluctuations. In this situation, it

is challenging to determine the optimal ρ∗. We suggest taking

ρ between 0.25 to 0.5.

C. Deep Learning Training Process

In our WiFi setting, we set the maximum number of back-

ground nodes to be 15. Thus, to capture all the possible

network scenarios, our input vector size is 16 of the form
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(a) Total backround traffic λ = 150

(b) Total backround traffic λ = 300

(c) Total backround traffic λ = 450

Fig. 8: Labeled DEV’s AoI vs. λ in D/M/1 queue

(R1, R2, · · · , Ri · · · , R15, RA). The DL’s output contains Psuc

and Pc.

We make great efforts conducting 2390 simulations, extract-

ing the packets received rates at the AP’s side, and measuring

the actual Psuc and Pc for each experiment. We test the WiFi

network with N ∈ [5, 15] in our simulation. All the users’

traffic varies case by case. These instances’ inputs size is

different. To keep the input vector’s size constant, we zero-pad

the corresponding input value for those scenarios containing

less than 15 background users.

The deep learning neural network we use is a fully connected

multilayer perceptron (ML). We train the neural network by

tuning the hyperparameters to get a small enough loss. Over

hundreds of attempts, we successfully narrow down the loss

with the parameters listed in Table II.

In Fig. 9, we show the training progress with the MAE vs.

training epochs, demonstrating that our trained deep learning

can predict the Psuc and Pc precisely with MAE as small as

6×10−3. Moreover, the loss drops sharply in the initial phase of

the training. We believe the performance of our deep learning

TABLE I: IEEE 802.11b CONFIGURATIONS

Bit rate for DATA frame 11 Mbps

Bit rate for RTS/CTS/ACK frame 1 Mbps

Bit rate for PLCP & Preamble 1 Mbps

Slot time 20µs

DIFS 50µs

SIFS 10µs

PHY header 192 bits

MAC header 224 bits

IP header 160 bits

DATA frame
8000 bits + PHY header
+ MAC header

RTS 160 bits + PHY header

CTS, ACK 112 bits + PHY header

Initial contention window size 31

Maximum backoff stages 5

Maximum retransmission limit 7

TABLE II: DEEP LEARNING PARAMETERS

# Input 16

# output 2

# Hidden layers 11

# Neurons per hidden layer 512

# Epochs 1500

Dataset size 2390

Train, test size 2151, 239

Optimizing algorithm Stochastic gradient descent

Learning rate 0.0006

Momentum 0.5

Loss function Mean absolute error (MAE)

Activation function Rectified Linear Unit (ReLU)

model can be further improved as the data set scales.

V. RELATED WORK

The concept of Age of Information (AoI) was recently pro-

posed in a seminal work [1], which was inspired by research on

vehicle safety messaging over a CSMA network that was started

in [16] and [17]. The work indicates the requirement for timely

updating is not equivalent to maximizing queue utilization or

minimizing the delay. While delivering updates as quickly as

feasible can maximize utilization, a monitor will instead receive

updates that were delayed due to the communication system

backlog. In this situation, lowering the update rate may enhance

the timeliness of status information at the receiver. However,

slowing down the update rate will also result in a monitor’s

status information being excessively outdated due to a lack of

updates.

Age in elementary queues is a popular research orientation.

Paper [2] examines the AoI of the multi-source shared-queue

system and applies an analysis technique called stochastic

hybrid systems (SHS) [18] to reduce the evaluation complexity.

AoI in single-server queues with various service disciplines is

demonstrated in [19]. AoI analysis in IoT systems with multiple

sources has been investigated in [5] under different preemptive

queueing disciplines.

Many studies also focus on the AoI optimization in random

access networks. For example, [7] devises age-dependent ran-

dom access (ADRA) that fairly manages the channel access to

everyone. ADRA is claimed to be a distributed protocol but
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Fig. 9: The MAE vs. Training epochs.

seems centralized to some extent and impotent to meet various

users’ demands. The AoI performance of a decentralized system

specifically under the context of slotted ALOHA is analyzed in

[8], [20]. Reference [9], [21]–[25] examine packet management

strategies that discard outdated packets and enhance AoI in a

variety of operational regimes.

VI. CONCLUSION

This paper proposes a solution for a single user with limited

computational power to quickly adjust its updating rate for

an optimal average AoI under a heterogeneous WiFi network.

In particular, we develop a concise yet efficient framework

and train a deep learning model to facilitate the AoI mini-

mization process. The simulation results demonstrate that our

deep learning model has outstanding prediction performance,

and our framework is efficient and accurate in complex WiFi

environments.
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