
Deep Reinforcement Learning for Scheduling in
Multi-Hop Wireless Networks

Invited Paper

Shuai Zhang, Bo Yin and Yu Cheng
Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616

szhang104@hawk.iit.edu, byin@hawk.iit.edu, cheng@iit.edu

Abstract—The efficient scheduling of transmission links in
a wireless network with a certain optimization objective and
subject to the interference and network flow constraints plays a
central role in wireless networking research. As an alternative to
traditional mathematical analysis, data-driven learning methods
have shown promise in solving difficult problems by extracting
knowledge from experiences and inspired applications of machine
learning in wireless networking. In this paper, we focus on
tackling the fundamental scheduling issue in multi-hop wireless
networks with machine learning, facing the great challenges
of the involvement of non-differentiable operations and the
consideration of variable network topologies. To address these
issues, we propose a reinforcement learning-based method to
solve a class of network flow problems under the protocol inter-
ference model. Learning from experience, the proposed approach
develops a strategy to sequentially select optimum subsets of links
to transmit simultaneously to maximize the system throughput
without causing interference. The model structure is designed
in a way that incorporates network topological information to
allow a flexible number of network nodes, and allows non-
differentiable decision operation to pass informative gradient
information. Experiments with synthetic and real-world deploy-
ment data demonstrate that the proposed algorithm achieves
close-to-optimum performance at a significantly reduced time
cost.

I. INTRODUCTION

With the advent of high-capacity and low-latency next-
generation communication networks, the need to efficiently
use all available resources is more desired than ever. In
existing wireless networks, a network optimization task is
typically dealt with by a designated entity which solves a
mathematical programming problem. Due to the interference
among co-channel transmissions in a wireless context, which
is reducible to the independence number problem, wireless
network optimization is NP-hard in general [1], [2].

The recent success of machine learning in perceptual do-
mains, e.g., computer vision or natural language processing,
has marked a major paradigm shift in the development of
algorithm design. In recent years, there have been attempts
to harness the power of machine learning (ML) in networking
problems such that smart decisions can be made by learning
from a large number of past experiences [3]. While there are
already some ML studies in physical layer [4], [5], network
layer [6], [7], and the upper layers [8], [9], the application of
ML in link scheduling (link layer) is quite limited. The existing
scheduling studies based on machine learning are constrained
to single-hop networking scenarios [10]. In this paper, we are

to address, with a machine learning approach, the scheduling
issue and network flow issue over a generic multi-hop wireless
network in a joint manner.

In this work, we consider the canonical multi-commodity
flow (MCF) problem in multi-hop wireless networks, where
multiple flow demands between different source-destination
node pairs exist. The central issue in multi-hop wireless
networks is that different links in proximity, if using the same
spectrum, interfere with each other when they transmit at the
same time. Thus, the basic idea of scheduling is that the
simultaneously active transmission links need to be far from
each other; if network links are represented as nodes in a
conflict graph, each set of active links form an independent
set on the conflict graph. These different independent sets take
turns to transmit in a time-sharing manner to satisfy the traffic
demands. The MCF optimization over a multi-hop wireless
network involves joint solution of routing and scheduling [1],
[2].

The wireless MCF optimization with independent set based
scheduling can be generically formulated as a linear pro-
gramming (LP) problem for either single-radio single-channel
multi-hop wireless networks [1] or more complex multi-radio
multi-channel multi-hop wireless networks [2], [11]. However,
the fundamental challenge is there are exponentially many
possible independent sets, thus the wireless MCF optimization
problem is still NP-hard in general. Existing approaches for
addressing the scheduling mostly develop certain approxi-
mation algorithms that utilize graph theory or combinatorics
[12], or heuristic algorithms based local search [13]. With
the former, the drawback is that performance is sacrificed
for theoretical performance guarantee in the worst or average
case; the latter suffers from a high dependence on hand-
crafted algorithmic parameters, which may be derived from
an application setting different from the one it is used.

In this paper, we propose an innovative reinforcement
learning (RL) based algorithm to solve the MCF optimization
problem, with independent set based scheduling, in multi-hop
wireless networks. Instead of applying the RL as a black-box
end-to-end solver, our approach combines the power of neural
networks with a proven algorithmic framework delayed col-
umn generation (DCG) [2], [14]. These studies show that the
independent sets for scheduling can be searched and updated
iteratively to keep improving the solution quality until the
optimum is reached. This iterated structure of DCG inspires

us that the solution procedure can indeed be formulated as a
sequential Markov decision process (MDP), and thus enabling
the development of RL based methods. Specifically, given
the problem input, we treat it as an initial system state, to
which the algorithm responds with its action. The action is
exactly the selection of a set of communication links that can
be activated simultaneously under the interference constraints,
i.e., the selection of an independent set. Outcomes of the action
will be evaluated with a reward, and the system state will
also get updated according to the action and the current state.
With an iterative operation which involves adjustment of action
policies and some other interactions with the environment,
the RL agent gives a collection of independent sets that are
expected to be used in optimum scheduling.

We would like to emphasize that adopting RL to address
the scheduling problem in MCF optimization is far more
challenging than a straightforward application of standard
RL implementation modules, with two fundamental reasons.
First, the possible independent sets are exponentially many
and unknown a priori, which thus leads to an exponentially
large and discrete action space. However, existing RL methods
perform best when there is a small, fixed number of discrete
candidates to choose from or the space action is continuous,
which is not applicable for our case. Second, it is desirable
that the control policy learned by the RL agent can be applied
robustly over diverse problem instances with a variable number
of network elements and different network topologies. This
prevents the straightforward use of top-of-the-shelf learning
modules, because they typically assume the input and output
variables have fixed dimensions.

As a response, we enhance the reinforcement learning
framework with two significant new features that can facilitate
our purpose. One is an order-invariant encoding module to de-
scribe the environment state, which can not only encode those
independent sets already searched, but also represent network
topology information in an order independent manner. Such an
encoder equips our methods with the extendability, that is, the
trained machine can be applied to different network topologies
without retraining but can still maintain good performance.
The other is the design of an action-searching mechanism
to infer a proper action by incorporating non-differentiable
operations into the decision process. In particular, a surrogate
function that locally approximates the non-differentiable part
while providing meaningful gradient information is used to
guide the optimizer.

We evaluate our approach by using both synthetic examples
and wireless networks from real world deployment. The per-
formance data is collected by running a trained RL model to
schedule the wireless link activation, and different network
settings are used for testing the generalization ability. We
find that the proposed method achieves an average of 26% of
reduction in needed number of iteration to reach a performance
level within 10% of the reference algorithm [2]. Moreover,
such advantages are observed in problem instances that are
differently generated from the ones used in training, suggesting
a strong generalization ability to situations unseen before.

The main contributions of this paper are three-fold:
• First, we propose a reinforcement-learning approach that

improves on the existing algorithmic framework. We
combine the power of RL and a proven column generation
framework to solve a complex network optimization
problem, offering new insights for algorithm design and
network improvement.

• Second, we design specific methods to tackle the varying
network size and non-differentiable processing steps for
solution generation, which are commonly encountered in
networking scenarios but cannot be easily handled with
the direct application of neural networks.

• Third, we test the performance numerically in terms of
time-saving and solution quality across various network
topologies and sizes to demonstrate the effectiveness
of the proposed method. It is shown to achieve a fast
convergence time and a high solution quality compared
with other heuristic methods.

The remainder of the paper is structured as follows. The
system model is presented in section II. In section III the
formal description of the problem is given, followed by our
algorithm design details. The numerical experiments’ methods
and results are documented in section IV. We review related
work to the problem we study and relevant new contributions
in this field in section V, and a brief discussion on our findings
is summarized in section VI.

II. SYSTEM MODEL

We consider a single-radio single-channel (SRSC) wireless
network1 represented by a directed graph G(N , E), where N
and E denote the sets of nodes and links, respectively. A
communication link exists from node u to node v if node v is
within the communication range of node u, which is denoted
by the tuple (u, v). Each link has a physical transmission
capacity c(u, v), specifying the peak data rate this link is able
to support.

We adopt the protocol interference model [15] to character-
ize the interference relationship in the wireless network. Under
this model, the receiver of a specific link can successfully
decode the transmitting signal if it falls outside the interference
range of the transmitters of other activated links. In other
words, links that interfere with each cannot be activated
simultaneously. Besides, a node can serve at most one active
link at a given moment. The conflict relations among all the
links can be represented by a conflict graph [1]. Each node
on the conflict graph represents a link on G, and two nodes
are adjacent if and only if these two links cannot transmit
simultaneously. In this way, links can be scheduled to transmit
only if they form an independent set (IS) on the conflict graph.

Regarding the MCF problem, there is a set K of node pairs
where a source node needs to transmit to a destination node,
by using multiple hops of wireless links. Each element in

1Note that a generic multi-radio multi-channel (MRMC) wireless network
can be mapped as a virtual SRSC with the multidimensional tuple modeling
technique developed in [11].

commodity flow demands K is identified by its source and
destination node id, denoted by bk and dk, respectively. We
consider an MCF problem with concerns of both throughput
and fairness. More precisely, the objective of the studied
problem is to maximize the minimum commodity flow in the
network. In a wireless setting, due to link interference, this
network flow problem involves not only routing decisions but
also scheduling decisions in which ISs are activated in a time-
multiplexing manner.

Formally, let fk(u, v) denote the amount of traffic flow
associated with commodity k = 0, 1, · · · , |K| − 1 on the link
(u, v). Besides, let M be the set of all ISs and αm denotes
the fraction of time allocated to IS m. For commodity k, the
achievable throughput rk is the net flow out of the source
node, i.e.,

Rk =
∑
v∈N+

bk

fk(bk, v) =
∑
v∈N−

bk

fk(v, bk), (1)

where N−v and N+
v denote the set of links going in and out

of v, respectively.
We define pm(u, v) as the effective capacity in an IS m.

pm(u, v) equals to c(u, v) if link (u, v) is activated in m and
0 otherwise. The optimization problem can be formulated as
follows.

Maximize
{fk(u,v)},{am},z

z (2)

s.t. z ≤ Rk, ∀k (2a)
K∑
k=1

fk(u, v) ≤
∑
m∈M

αmpm(u, v), ∀(u, v) ∈ E (2b)∑
u∈N−

v

fk(u, v) =
∑
u∈N+

v

fk(v, u), ∀v 6= bk, dk (2c)

∑
m∈M

αm = 1 (2d)

fk(u, v) ≥ 0, ∀(u, v) ∈ E , k (2e)
αm ≥ 0, ∀m ∈M (2f)

In this formulation, z is the minimum of the achieved
commodity flow when the problem is solved, guaranteed by
the Constraint (2a) and that the problem is a maximization.
Constraints (2b) indicate that for any link, the total amount of
network flow should not exceed its capacity over a unit time,
Constraints (2c) are the flow conservation constraints: for any
commodity flow k, and each node v that is not a source or
destination node in any demand, the amount of flow entering
should equal to that of the flow exiting the node. Constraint
(2d) requires that the time fraction assigned to all ISs must
sum to unity.

Problem (2) is an LP problem because both the objective
and constraints are linear functions of the optimization vari-
ables. However, the size of M is exponentially large and
cannot be easily enumerated; even to obtain one set of non-
interfering links is equivalent to finding a graph coloring of

rt

st

at: new IS

LP solver

Environment

IS generation

state
 encoding

RL Agent

at

Fig. 1: High-level overview

edges. Therefore solving the problem requires solving a series
of integer programming instances followed by an LP with an
exponential number of variables. To the best of our knowledge,
the most efficient approximation with guaranteed bound anal-
ysis is the delayed column generation (DCG) method [14] [2].
The DCG method is based on the observation that, although
the size of M is exponentially large, only a small portion
of ISs will be used, i.e., have positive scheduling time, in
the optimal solution. Therefore, instead of enumerating all the
ISs, the DCG method aims to figure out a set of ISs with
a reasonable size in which all these critical ISs are included.
With such a IS set, the MCF problem can be readily addressed
via an LP solver.

The DCG algorithm starts with an initial set of ISs that
makes the problem feasible and iteratively adds new ISs into
that set. At each iteration, an LP problem is firstly solved.
This problem, called restricted master problem (RMP), has
the same structure of problem (2) except that a subset of
M is considered. The dual information is then leveraged
to generate new ISs that have the potential to improve the
objective value of the RMP. Using the dual as the link weight,
the DCG algorithm selects the maximum weighted link sets
that do not interfere with each other as a new set to be added
into the current solution. The process of choosing such a
link set is termed as solving the sub-problem, and it is an
equivalent to solving a maximum weighted independent set
(MWIS) problem [2] which is computationally challenging.
According to the theoretical results in [14], the solution to the
original problem can always be improved in this way until
the optimal one is obtained. Additionally, it is proven in [2]
that a solution with guaranteed performance bound can be
obtained if each sub-problem is solved approximately. Hence,
the algorithm stops either when the solution can no longer be
improved or upon a predefined maximum iteration number has
been reached.

III. PROPOSED SOLUTIONS

In this section we present our proposed solution with a
reinforcement learning approach. First we reformulate this
problem in the framework of reinforcement learning, and the
proposed neural network modules are presented. A high-level
overview is shown in fig. 1.

A. Scheduling links as a sequential decision-making

We are inspired by the DCG algorithmic process because
each iteration of the algorithm can be seen as a trial-and-
error process, in the sense that the solver generates a new
column, i.e., an IS of the conflict graph, and receives feedback
information from the environment as part of the input for
making the next decision. This is akin to the reinforcement
learning process, with the important difference that the action
is generated not from a fixed rule but must be learned from
empirical data.

We adopt the terms used in reinforcement learning literature,
and frame the problem as a Markov sequential decision
process. We define the agent to be the network controller that
aims to schedule links through experiencing the environment.
At a time step indexed with t, the agent observes the current
system state st ∈ S , and selects an action at ∈ At, and
receives a scalar reward rt ∈ R. The decision by the agent
derives from a policy π, which maps a state to a probability
distribution over the actions available at that time. The system
state transitions from st to st+1 after the action selection
by following a distribution st+1 ∼ p(s|st, at), which can
potentially be unknown to the agent.

The goal of the agent is to maximize the expected cu-
mulative reward J , which is defined as the sum of rewards
over a time period with maximum length T . Since for each
policy π, there exists a corresponding cumulative reward
value, this is often written in a functional expression J(π) =
Eπ[

∑T−1
t=0 γtrt], with the future discounting factor 0 ≤ γ ≤ 1.

The expectation is both over the state transitions and action
selection. In the context of the link scheduling problem, the
above components are defined as follows.

a) State: The state of the system can be determined
by the problem input, the current (partial) solution, and the
proportion of the link capacity that has been used by the
current solution. With the former two, the solver’s state is
completely specified, but we found that adding the latter
helps performance improvement. The state transitions when
the agent indicates a new link set to be added, and the
master problem is solved again to obtain the new solution.
Specifically, the state vector contains information regarding:
whether a link is part of a traffic demand, the link capacity,
the link source and destination node’s coordinates, the current
set of ISs, how much capacity is left given the current solution,
and the flow amount for each commodity.

b) Action: The action at for time step t is the subset of
network links that should be added into the master problem. It
is a discrete |E|-dimensional vector, and each element is either
0 or 1.

c) Reward: The reward signal for one step is set to the
difference of the network utility in this and previous time step.
In this setting, we let it be the difference of achieved flow
rt = z(t+1) − z(t). This is to make the agent prefer solving
the problem with fewer iterations in order to obtain a fast
solution process since, with the discounting factor, the future
solution improvement is counted less.

B. Solution overview

Even though the problem can be reformulated as a Markov
decision process with ease, there are significant technical chal-
lenges that have not received ample attention in the literature.
We highlight a few of them as follows and introduces our
solution to address them.

First, a proper representation of a variable sized set is
needed. Most present solutions of neural networks assume that
information under processing has a fixed dimension, especially
problems whose solutions are not affected by the variability
in the network topology [16], [17]. But in this problem, there
may be an unspecified number of links or nodes, and there
can be an undetermined number of intermediate ISs, each of
which containing an unknown amount of links. To overcome
this, we designed our model architecture such that it could
adapt to variable problem size and represent quantities with
unknown dimensions.

Second, the action space is too large to allow directly
learning a policy as the probability distribution p(at|st). Recall
that At represents the set of all conflict-free network links, and
is an independent set on the conflict graph. There can be an
exponential number of such link subsets, and it changes across
different problem instances. In comparison, the agent in most
reported works only has to select an action out of a few known
actions. As a response, we develop a differentiable searching
procedure to address this.

Third, more efficient learning is a must. Direct application
of reinforcement learning can be sample inefficient and achiev-
ing good performance requires a huge amount of interactions
with the problem environment. This can become problematic
where the environment evaluation is not cheap. For example,
suppose each time the agent selects the action, an external
routine is called to evaluate the quality of that selection
and this time cost could add up to make the training of
a reinforcement agent prohibitively expensive. We design a
proper encoding scheme and use curriculum training procedure
to make the learning process more efficient.

C. Encoding the link sets

Since the environment state must contain the current partial
solution consisting of all the ISs found so far, they must be
properly encoded in order to be processed by other parts of
the neural network. This is important as the input may present
different number of nodes and links, and as a result, the
possible number of ISs and the number of links in each IS
can vary greatly.

Generic neural networks cannot process such set data, where
the order does not matter. To require the neural network to deal
with input with varying sizes is to enforce some form of order
invariance, because the output should be a function of each
element’s attributes only and not dependent on their order of
input to the learning agent.

It is suggested that as long as the model architecture has the
form of sum decomposition, its output has order invariance.

Theorem 1 ([18]). A function f(X) operating on a set X
having elements from a countable universe, is a valid set
function, invariant to the permutation of the instances in X , iff
it can be decomposed in the form ρ

∑
x∈X ϕ(x), for suitable

transformations ϕ and ρ.

By this reasoning, we adopt an attention mechanism [19] to
encode the link vectors in the set that follows the constraints
given above. Suppose link i in a given IS M is represented
as a vector li. It is a concatenation of link capacity, link node
positions, and indicator of flow demand, which marks the link
if it is part of a flow demand, as well as how much capacity
this link still has given the current solution. The IS is encoded
as

fLL2(x, y) , InnerProduct(MLP1(x),MLP1(y)) (3)

l̂i = MLP2(
∑
j∈M

fLL2(li, lj)∑
j∈M fLL2(li, lj)

· li) (4)

LS(M) = MLP3(
∑
i∈M

l̂i), (5)

where fLL2 is the pair-wise function that captures the link
interactions in the solution process. MLP stands for Multi-
layer perceptron, consisting of several cascading neural net-
work linear layers, each followed by a non-linear activation
function. These results are transformed as weights that add up
the link vectors to form the intermediate link specific vectors
l̂i.

They are then added and then passed through an MLP layer
for the link set level representation.

D. Producing link-level searching clues

In each iteration, a new IS is discovered, encoded as
previously stated, and added to the set of known ISs. The agent
has exact knowledge of these encoded ISs and uses them to
generate a per-link vector, to be used in searching for a new
IS.

We again make use of the attention mechanism. We denote
the encoded, known ISs as a matrix M of shape |Mt| × hM ,
where hM is the dimension determined by MLP3 in eq. (3).
Let L be the set of link vectors. First, each link vector
individually performs attention with the current set of ISs:

fLL3(Q,K, V) , softmax(
QKT

√
n

)V (6)

LLS = f(L,MLP4(M),M). (7)

Next, each row of the matrix LLS is put into a order-
invariant structure to obtain one vector that represents the
current problem context hcontext. The per-link result lout,i,
where i is the link index, is produced by a pairwise operation
with this context:

hcontext = MLP5(

|E|∑
i=0

LLS [i]) (8)

lout,i = MLP6(li, hcontext). (9)

The last layer of MLP6 gives a scalar for each link. The
purpose of this step is to generate a per-link signal that
incorporates the current situation and each link vector’s own
attributes. The results act as a “clue” for searching for an IS
to give a proper action.

E. Differentiable searching

The agent’s policy produces a vector for all links in the
network which must be eventually transformed into a link set.
We call this a “searching” process because of the similarity of
the task’s goal: from a continuous vector, the output needs to
be a certain subset of a known set of elements. For simplicity,
we aim to select greedily a subset with the maximum sum
of weights produced previously, as long as the links do not
interfere with each other. But this process is not by itself
made up of differentiable neural network operations, so back-
propagation cannot be directly applied for training.

This is due to the discrete nature of this process. Assuming
the input of the search is a continuous variable p and the output
z is a discrete variable from a finite set. It can be noticed
that the input p’s change may not cause a change in z at all.
Otherwise, at certain values of p, z change discontinuously.
This means the gradient is either 0 or does not exist, causing
gradient flow to be useless.

To overcome this drawback, we use an interpolation method
[20] which uses a surrogate differentiable function whose
gradient information can be used to guide the optimizer for
parameter update.

In our case, z is the |E|-dimensional 0-1 vector that forms
an IS on the conflict graph, and p is the continuous searching
clue lout. As z performs the search for independent set, the
relation

z(p) = φz∈Z [−zT p] (10)

holds. We consider an continuous approximation that incorpo-
rates the final training loss function ξ:

zλ(p) , φz∈Z [−zT p+ λξ(z)] (11)

ξλ(p) , ξ(zλ(p))−
1

λ
[−zT p− zTλ p], (12)

where ξ is the global loss function and λ is a scalar hyper-
parameter set experimentally at 20. The gradient we would like
to obtain was ∇pξ, and is now replaced by the approximate,
but more smooth version ∇pξλ(p).

Differentiating with respect to p gives the correct update
formula:

∇pξλ(p) = −
1

λ
[−z(p) + zλ(p)] (13)

zλ(p) = φ[p+ λξ′(p)] (14)

As a result, the approximate gradient calculated at p is given
by

∇pξ ≈
1

λ
(φ(p)− φ(p+ λ · ∇zξ(φ(p))). (15)

The training process itself is a standard policy gradient
technique, with the samples sorted according to the difficulty.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
scheme through different kinds of numerical experiments.
Specifically, these experiments examine the performance from
these aspects:

• Speed. We would like to see if the RL method can help
accelerate the solution of the problems, both in terms of
the number of iterations and the absolute time.

• Optimality. We test if the RL-based method results in
solutions with a higher quality compared with other
heuristic methods.

• Generalization. When the agent sees a problem instance
of a different size from the ones of a size it has seen
in training, we test if the benefits of speed and quality
still persist. We also test the cases where the problem
instances are generated with a different distribution than
the data used in training.

The problem instances under consideration can be classified
into these categories: random, grid, office. In each of the
scenario, after the nodes are placed, their channel information
is treated as only containing a path loss component, signifying
that only the scalar link quality information is available.
The link capacity is calculated by Shannon channel capacity
formula and it is determined by the physical distance between
the source and destination node.

• Random instances are generated by setting a cell area of
1000 m by 1000 m square and randomly placing nodes
with a minimum distance of 0.5 m. The interference range
and communication range are 50 m and 30 m respectively.
The nodes transmit with a transmission power 1 mW. The
topology obtained this way can be classified as a random
geometric graph and is widely studied in networking
analysis.

• The grid instances represent a situation where the nodes
are placed on a regular, rectangular grid. This scenario is
typically used in wireless sensor placement.

• The office instances are obtained by using the layouts in
an existing study [21]. The instances are augmented by
randomly perturbing the node position within the room.

For random and grid cases, we vary the number of nodes to
test the performance under different network sizes. We denote
instances with at most 15 nodes as small, 50-node instances
as medium and 200-node instances as large.

We compare the performance of the proposed method
with the following heuristics commonly used in problems of
this nature. They follow the framework of iterative column
generation, and differ in the way link patterns are chosen.
We have chosen this way because the MWIS and Greedy are
the most commonly used approaches due to their simplicity;
we have not listed other RL methods in network scheduling
because they mostly have vastly different network settings (e.g.
static wireline networks) to give a meaningful comparison.

• Random. This method selects random links and attempts
to pick as many links as possible without causing interfer-

ence. This amounts to obtaining an unweighted, maximal
independent set.

• Greedy. Each link uses the dual variable value provided
by the master LP problem as its weight, and builds up a
conflict-free set of links with maximal sum weight.

• Maximum weighted independent set (MWIS). Each link
also uses the dual variable value provided by the envi-
ronment, but uses an integer programming solver instead
for the true maximum weighted independent set as the
next link pattern. The objective value obtained with this
method is considered as close to optimum and used as a
benchmark for quality comparison.

• Maximum residual capacity (MRC). The links with maxi-
mum sum of residual capacity with no conflict are chosen
as the next link pattern.

The simulation environment is written in Python program-
ming language, as well as a mixed-integer linear programming
solver Gurobi [22] to calculate the state transitions. For neural
network and deep reinforcement learning, we use the software
frameworks PyTorch [23] and RLLib [24].

A. An example of a typical solution process

As a concrete example, we demonstrate a specific solu-
tion process selected from medium and large-sized instances,
respectively. In the plots, the horizontal axis is the iteration
number and the vertical axis represents the problem specific
objective value. As these algorithms explore more link sets,
the objective value increases monotonically. The performance
of MWIS is treated as a standard baseline, and is seen to be
more effective than the other heuristics. We can observe that
the proposed method (termed “RL”) achieves faster increase
in the objective value, often choosing to have larger objective
value gains in a few iterations instead of greedily choosing
whatever that can improve at each iteration.

0 20 40 60 80 100
Iterations

10

20

30

40

50

Ob
je

ct
iv

e
Va

lu
e

MWIS
RL
Random
Greedy
MRC

(a) A medium instances

0 20 40 60 80 100
Iterations

20

40

60

80

Ob
je

ct
iv

e
Va

lu
e

MWIS
RL
Random
Greedy
MRC

(b) A large instance

Fig. 2: Example solution processes for a medium and large
instance from random dataset.

B. Time cost

From the examples, it is shown that an RL agent can help
identify high quality link sets to help the solution process
achieve a close-to-optimum objective value. But a question
remains whether the overall time cost can be lowered as a
result of RL performance. The specific execution time is not
an easy figure to measure, because there are many factors

affecting whether a fair comparison can be made. For instance,
neural networks enjoy highly parallel hardware or software im-
plementations, whose execution time may scale easily with ad-
ditional computing devices, whereas conventional algorithms
rely on the traditional CPU-bound computation that cannot be
easily parallelized.

In this subsection, we consider a comparison of the time it
takes to solve a problem instance. We do not count training
time for RL method, because it is a large but ultimately one-
time cost for a deployed model. We define the time cost of RL
method as the sum of all action generation and environment
transition time, and avoid batching which is not available
for traditional algorithms. Similarly, the computation time for
other methods is treated as the sum of decision generation
time and environment transition time.

RL Random Greedy MWIS MRC

random-small 0.60 1.14 0.52 0.58 0.55
random-medium 3.19 4.94 3.41 3.37 3.43
random-large 21.55 - 33.51 28.26 32.10
grid-small 0.66 1.58 0.69 0.73 0.95
grid-medium 2.84 4.33 3.85 3.45 3.84
grid-large 20.72 41.59 38.61 33.80 39.08
office 1.59 1.84 2.13 1.74 1.79

TABLE I: Comparison of the average computation time on
different types of problem instances. Units are in seconds, and
the values are the lower the better. Entries marked with ‘-’
correspond to the situation where a method does not gather
sufficient number of cases that reach the target performance
within a reasonable time budget.

0% 10% 20% 30% 40%
0

10

20

30

40

50

60

Fig. 3: Histogram of the time savings in random-large datasets.
Plotted for the testing data points. The horizontal axis is the
time savings percentage number, and the vertical axis is the
number of samples

In Table I, we list the run time to reach within 10% of
objective value obtained by MWIS algorithm, for different
types of problem instances on differently sized networks. We
found that even at handicapped position without batching to
lower the amortized time cost, on average the RL agent is still
time efficient. In Figure 3, the time saving for the random-large

samples is plotted in a histogram. We can see that the majority
of the time saving is between 15% and 37%, suggesting a
significant performance improvement. This is largely due to
the similar per iteration action generation time compared with
other methods, and also that the number of iterations needed is
lower. This effect is more easily observed in larger instances
where the proportion of time cost is spent on generating a
good link subset.

C. Convergence performance
Since eventually given long enough time, most algorithms

can converge to a value close to the optimum, we examine how
fast the algorithms reach a target level of performance in terms
of iterations. Similarly, we treat the objective value obtained by
the traditional algorithm (MWIS) as a goal value, and count
the number of iterations it takes to reach that level for all
algorithms. In Table II, we show the number of iterations for
each type of algorithm on different types of problem instances
of different sizes. We can observe from the performance of RL
agent that the number of iterations is significantly reduced in
larger instances, up to 18%. The lower variance of the results
also suggests that RL policy achieves a consistent advantage.

D. Solution optimality
In this experiment, we focus on the large instances to

see if, given the same number of iterations, the RL policy
reaches a better problem objective value. This is to compare
the quality of solution under the same iteration budget. This
is different from the experiment in section IV-C, since here
the performance improvement within the first few iterations
matter more than others. We give a summary of performance
comparison for large instances in Table III. When each is given
a maximum number of iterations, we see that the RL agent in
most scenarios obtains a better objective value. The advantage
of the RL policy is clear from the start. While other algorithms
suffer from uninformative exploration, the RL agent is able
to come up with performative link sets, which contributes to
faster value improvement.

E. Generalization to different data
As the performance of reinforcement learning performance

heavily relies on the data it has seen during training, we
naturally would like to see how a model trained on one type
of problem instance can be applied to another type with a
different set of data generation parameters.

a) Number of Nodes in the Network: We train the agent
on instances of smaller sizes and then apply larger instances on
testing. The problem size may have an impact on the problem
because there are more combinatorial relationships that need
modeling. We can observe in Figure 4a that even trained on
medium instances, the large instances’ performance is still
competitive. The performance gap between the differently
trained agent exists, but on the whole the performance loss
is within 16%. This shows the power of the neural network to
learn a good selection criterion that does not simply captures
the patterns that are dependent on irrelevant factors like the
number of nodes in the graph.

RL Random Greedy MWIS MRC

random-small 9.48 ± 10.42 22.77 ± 11.09 16.74 ± 12.31 9.51 ± 7.35 20.15 ± 10.12
random-medium 22.85 ± 14.15 39.85 ± 11.52 42.98 ± 13.84 35.09 ± 16.74 41.59 ± 13.08
random-large 71.55 ± 18.25 - 94.51 ± 26.12 87.50 ± 20.04 96.10 ± 15.39
grid-small 10.75 ± 8.23 19.32 ± 13.60 18.40 ± 16.64 14.33 ± 9.98 17.44 ± 22.39
grid-medium 24.65 ± 13.87 44.62 ± 12.60 42.67 ± 20.11 29.82 ± 17.81 43.49 ± 17.37
grid-large 68.72 ± 16.86 84.37 ± 22.13 88.61 ± 23.46 73.80 ± 22.10 85.35 ± 16.05
office 28.20 ± 12.41 48.82 ± 16.35 48.95 ± 18.37 33.17 ± 16.99 47.47 ± 17.44

TABLE II: Comparison of the number of iterations

random-large grid-large office

RL 69.0 ± 25.2 80.1 ± 25.4 62.4 ± 24.7
Random 54.5 ± 18.4 75.1 ± 17.2 60.0 ± 23.6
Greedy 62.7 ± 19.5 69.7 ± 26.7 58.6 ± 25.0
MWIS 68.4 ± 20.7 80.9 ± 18.3 61.1 ± 21.1
MRC 56.2 ± 23.8 73.7 ± 24.2 59.2 ± 21.3

TABLE III: Objective values achieved by running the algo-
rithm for a fixed number 60 iterations.

50 100 150 200
Number of Nodes

60

80

100

120

Ob
je

ct
iv

e
Va

lu
e

MWIS
RL

(a) Generalization across the num-
ber of nodes. Trained on random
instances.

0.6 0.8 1.0 1.2 1.4
Power (mW)

40

60

80

100

120

Ob
je

ct
iv

e
Va

lu
e

MWIS
RL

(b) Generalization across instance
transmission power. Trained on
medium size instances with 1.0
mW node power.

Fig. 4: Generalization performance. We train the model on one
data point and use the model on data with different parameters
and observe the difference in performance.

b) Data generation parameters: Another aspect that may
significantly change the data distribution is the generation
parameters used. In this experiment, we choose to compare the
performance under different transmission power. It is chosen
because this parameter directly affects the link quality in
the network, therefore causing the interference relationship
between the links to vary greatly. In a sense, this parameter has
even more impact on the topology formation than the number
of nodes. We train the agent on one set of instances with
1.0 mW transmission power and use it on the instances with
different power budgets, and compare their performance with
the traditional algorithm. In Figure 4b, we observe that the
performance is almost on the same level. This suggests that
the model’s strategy does not change significantly with the
data’s specific parameter choice and is robust.

V. RELATED WORK

Since link scheduling is one of the most fundamental
problems in networking research, numerous works are present
to provide theoretical and implementational ideas.

a) Data-driven solutions to network problems: Aspects
of network design problems can be cast as optimum control
problems, and there have been attempts to apply machine
learning methods as a way to discover heuristic algorithms
from data. The work in [10] studies the wireless scheduling
in a device-to-device (D2D) network and develops a neural
network architecture that can judiciously activate a subset
of links to yield near-optimal network sum-rate at one shot.
[25] typifies the supervised approach to optimize the flow
scheduling in wireless ad-hoc networks. Another approach as
exemplified in the use of actor-critic style models is reported
in [7], where the neural model optimizes the data flow path
in a data center network. Similar ideas appear in a series of
recent online network control problems [7], [26], [27].

More recently, there is a line of research work which at-
tempts to apply sequence modeling to graphs, with the goal of
learning useful problem solutions from learned models. Pointer
network [28], a model based on attention multi-head atten-
tion mechanism, solves variable-sized combinatorial problems
by using the attention scores as selection criteria, and this
approach is shown to achieve reasonable performance level
with classic problems including Traveling Salesman Problem
and Delaunay triangulation. This idea is further expanded to
solve a vehicle routing problem [29]. Using the problem graph
instance as an input to a transformer, the output is determined
by the embedded node vectors. On the outer level, the model
is further trained by a policy gradient reinforcement learning
algorithm REINFORCE.

Another line seeks a proper representation of the graphical
structure in the neural network context. It is shown that
by using a structure-aware model structure2vec [30],
[31], the neural networks can learn to build up approximate
solutions by iteratively adding new nodes to an existing partial
solution, with the necessary problem-specific helper functions.
van Hoof, and Welling 2019a), and the (standard) beam search
ver- sion of RL (Nazari et al. 2018). With our beam search
scheme, MDAM outperforms not only the sampling version
of AM (Kool, van Hoof, and Welling 2019a), but also the
improvement heuristic NeuRewriter (Chen and Tian 2019)
on CVRP. For the comparison with traditional non-learning
based methods, it is worth noting that MDAM outperforms
sophisticated general purpose solvers OR Tools 4 and Gurobi
(with time limits) on large instances (OP and PCTSP with
100 nodes), and shows relatively good scalability. For some
problems such as OP with 50 nodes, MDAM outperforms
highly specialized heuristic solvers. For SPCTSP, optimization

based methods (e.g. Gurobi, OR Tools and improvement
heuristics) require some fo

b) Conventional wireless network optimization: Wireless
network optimization had been a key research area in the
recent two decades. The basic methodology is to compute
the resource allocation aspects such as channel assignment,
base station association, scheduling and power control using
various mathematical programming algorithms [32]. Due to
the complex inference relationship, wireless network optimiza-
tion is NP-hard in general, and the major thread of efforts in
the community is the development of various approximation
algorithms [1], [33]. The studies had also been extended
from single-radio single-channel context to complex multi-
radio multi-channel context [21], [34], [35]. A particular
issue inspiring the machine learning study in [25] and this
paper is that a new optimization problem instance is always
solved either from scratch or with a trivial re-optimization
approach [36]; machine learning aims to exploit the historical
computation effort to benefit new optimization instances.

VI. CONCLUSIONS

In this paper, a deep reinforcement learning based method
to the link scheduling problem is presented. The model learns
a strategy for choosing link sets iteratively for the overall
network flow. To enable flexibility to process variable number
of network links and nodes, and allow constrained output,
we develop an attention-based neural network module and
an augmented module for differentiation. In the numerical
experiments, we observe promising performance suggesting
that it is able to learn to select link patterns and the benefit is
consistent and robust across different configurations.

ACKNOWLEDGMENT

This work was supported in part by the NSF under grants
CNS-1816908 and CNS-2008092.

REFERENCES

[1] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of
Interference on Multi-Hop Wireless Network Performance,” Wireless
Networks, vol. 11, no. 4, pp. 471–487, Jul. 1, 2005.

[2] Y. Cheng, X. Cao, X. S. Shen, D. M. Shila, and H. Li, “A systematic
study of the delayed column generation method for optimizing
wireless networks,” in Proceedings of the 15th ACM international
symposium on Mobile ad hoc networking and computing (ACM
MobiHoc’14), 2014, pp. 23–32.

[3] Y. Cheng, B. Yin, and S. Zhang, “Deep learning for wireless network-
ing: The next frontier,” IEEE Wireless Communications, to appear.

[4] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical
layer communications,” IEEE Wireless Communications, vol. 26,
no. 2, pp. 93–99, 2019.

[5] H. Huang et al., “Deep learning for physical-layer 5g wireless
techniques: Opportunities, challenges and solutions,” IEEE Wireless
Communications, vol. 27, no. 1, pp. 214–222, 2019.

[6] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in Proc. of IEEE INFOCOM, 2018, pp. 1871–1879.

[7] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimiza-
tion,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, 2018, pp. 191–205.

[8] S. Emara, B. Li, and Y. Chen, “Eagle: Refining congestion control by
learning from the experts,” in Proc. IEEE INFOCOM, 2020, pp. 676–
685.

[9] H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edge-assisted qoe
optimization of http live streaming with reinforcement learning,” in
Proc. of IEEE INFOCOM, 2020, pp. 706–715.

[10] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless
scheduling,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1248–1261, 2019.

[11] H. Li, Y. Cheng, C. Zhou, and P. Wan, “Multi-dimensional conflict
graph based computing for optimal capacity in mr-mc wireless
networks,” in Proceedings of IEEE 30th International Conference on
Distributed Computing Systems, 2010, pp. 774–783.

[12] Y. Cheng, H. Li, D. M. Shila, and X. Cao, “A Systematic Study of
Maximal Scheduling Algorithms in Multiradio Multichannel Wireless
Networks,” IEEE/ACM Transactions on Networking, vol. 23, no. 4,
pp. 1342–1355, Aug. 2015, ISSN: 1063-6692, 1558-2566.

[13] A. Melchiori and A. Sgalambro, “A matheuristic approach for the
Quickest Multicommodity k-Splittable Flow Problem,” Computers &
Operations Research, vol. 92, pp. 111–129, Apr. 1, 2018.

[14] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Athena Scientific, 1997.

[15] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, Mar.
2000.

[16] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “Reles: A neural
adaptive multipath scheduler based on deep reinforcement learning,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations, IEEE, 2019, pp. 1648–1656.

[17] S. Chinchali et al., “Cellular network traffic scheduling with deep
reinforcement learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, 2018.

[18] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdi-
nov, and A. J. Smola, “Deep Sets,” in Proceedings of Advances in
neural information processing systems, 2017, pp. 3391–3401.

[19] A. Vaswani et al., “Attention Is All You Need,” Jun. 12, 2017. arXiv:
1706.03762 [cs]. [Online]. Available: http: / /arxiv.org/abs/1706.
03762.

[20] M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolinek,
“Differentiation of Blackbox Combinatorial Solvers,” presented at the
International Conference on Learning Representations, Sep. 25, 2019.

[21] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-
hop wireless mesh networks,” in Proceedings of the 10th Annual
International Conference on Mobile Computing and Networking,
2004, pp. 114–128.

[22] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2020.
[Online]. Available: http://www.gurobi.com.

[23] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[24] E. Liang et al., “RLlib: Abstractions for distributed reinforcement
learning,” in Proceedings of the 35th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
vol. 80, PMLR, 2018, pp. 3053–3062.

[25] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning
meets wireless network optimization: Identify critical links,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 1,
pp. 167–180, 2020.

[26] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proceedings of the
15th ACM Workshop on Hot Topics in Networks, 2016, pp. 50–56.

[27] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling
data-driven quality of experience optimization using group-based
exploration-exploitation,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), 2017, pp. 393–406.

[28] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks,” in
Proceedings of Advances in neural information processing systems,
2015, pp. 2692–2700.

[29] W. Kool, H. van Hoof, and M. Welling, “Attention, Learn to Solve
Routing Problems!” In Proceedings of International Conference on
Learning Representations (ICLR), Feb. 7, 2019.

[30] H. Dai, B. Dai, and L. Song, “Discriminative Embeddings of Latent
Variable Models for Structured Data,” in Proceedings of the 33rd
International Conference on International Conference on Machine
Learning - Volume 48, 2016, pp. 2702–2711.

[31] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proceedings of

Advances in Neural Information Processing Systems, 2017, pp. 6348–
6358.

[32] Z. Han and K. R. Liu, Resource allocation for wireless networks:
basics, techniques, and applications. Cambridge university press,
2008.

[33] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends R©
in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[34] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan, in
Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, 2005, pp. 133–
144.

[35] L. Liu, Y. Cheng, X. Cao, S. Zhou, Z. Niu, and P. Wang, “Joint
optimization of scheduling and power control in wireless networks:
Multi-dimensional modeling and decomposition,” IEEE Transactions
on Mobile Computing, vol. 18, no. 7, pp. 1585–1600, 2018.

[36] D. P. Bertsekas, Network optimization: continuous and discrete mod-
els. Athena Scientific Belmont, 1998.

