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Abstract— In this paper, we apply the Non-Orthogonal Mul-
tiple Access (NOMA) technique to improve the massive channel
access of a wireless IoT network where solar-powered Unmanned
Aerial Vehicles (UAVs) relay data from IoT devices to remote
servers. Specifically, IoT devices contend for accessing the shared
wireless channel using an adaptive p-persistent slotted Aloha
protocol; and the solar-powered UAVs adopt Successive Inter-
ference Cancellation (SIC) to decode multiple received data
from IoT devices to improve access efficiency. To enable an
energy-sustainable capacity-optimal network, we study the joint
problem of dynamic multi-UAV altitude control and multi-cell
wireless channel access management of IoT devices as a stochastic
control problem with multiple energy constraints. We first for-
mulate this problem as a Constrained Markov Decision Process
(CMDP), and propose an online model-free Constrained Deep
Reinforcement Learning (CDRL) algorithm based on Lagrangian
primal-dual policy optimization to solve the CMDP. Extensive
simulations demonstrate that our proposed algorithm learns a
cooperative policy in which the altitude of UAVs and channel
access probability of IoT devices are dynamically controlled to
attain the maximal long-term network capacity while ensuring
energy sustainability of UAVs, outperforming baseline schemes.
The proposed CDRL agent can be trained on a small network,
yet the learned policy can efficiently manage networks with a
massive number of IoT devices and varying initial states, which
can amortize the cost of training the CDRL agent.

Index Terms— Constrained deep reinforcement learning, UAV
altitude control, solar-powered UAVs, energy sustainable IoT
networks, p-persistent slotted Aloha, non-orthogonal multiple
access.

I. INTRODUCTION

W
HILE internet connectivity plays an increasing role in

people’s everyday life in densely populated areas, some

rural areas and nature fields such as farms, deserts, oceans,
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and polar regions, typically lack expansive internet coverage.

This is because network providers tend to deploy telecom-

munication infrastructure in areas where providing wireless

service is economically profitable. Nevertheless, farmers, envi-

ronmental agencies, research organizations, defense agencies,

and utility companies among many others, have increasing

demands for internet connectivity in such under-served areas,

to support massive Internet of Things (IoT) based applications

ranging from tracking animal health, agricultural growth, and

marine life, to surveillance sensors for defense applications

and nuclear waste site management, just to name a few.

Provisioning wireless internet access for a massive number

of IoT devices in under-served areas at cost effective rates is

undoubtedly of great interest for governments, businesses, and

end customers.

With the explosive growth of IoT based applications, new

distributed channel access and coverage solutions should be

conceived. Distributed random access based wireless technolo-

gies such as Wi-Fi, Zigbee, and Aloha-based Long Range

Wide Access Networks (LoRaWAN), will inevitably play an

important role in provisioning massive IoT access in 5G

systems and beyond, due to their scalability and ease of imple-

mentation [1]–[4]. In fact, the recent decision by the Federal

Communications Commission (FCC) to open the 6GHz band

for unlicensed use [5], further promotes random access based

unlicensed wireless networks and renders them as an integral

part of the beyond 5G wireless network ecosystem. Non

Orthogonal Multiple Access (NOMA), which can improve the

access efficiency by exploiting Successive Interference Cancel-

lation (SIC) to enable non-orthogonal data transmissions, is yet

another promising solution to enable massive machine type

communication (mMTC) in 5G networks and beyond. Recent

works propose to apply power-domain NOMA in slotted-

Aloha systems to support mMTC of IoT devices [6]–[8].

On the other hand, Unmanned Aerial Vehicle (UAV)

based wireless relays have been recently proposed as a new

on-demand coverage solution to facilitate fast and flexible

deployment of communication infrastructure [9]–[17]. UAVs,

especially those in the form of quadcopter drones, can be

used as aerial base stations within a 5G network to provision

wireless internet connectivity to IoT devices in remote areas,

or enhance wireless system capacity, reliability, and energy

efficiency, in urban areas, by relaying data to network servers
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through satellite back-haul links [18], [19]. Furthermore,

UAVs equipped with wireless transceivers can dynamically

adjust their location in real-time to counter environmental

changes and improve system performance. UAVs, however,

are battery operated which constrains the operation time of

the network device. One promising direction to extend the

operation time of the network is to devise solar-powered

UAVs which can harvest solar energy from the sun [20],

[21]. In this case, the system controller is also tasked with

managing the energy evolution process of the UAV battery to

ensure energy efficiency or sustainability.

In this work, we consider solar-powered multi-UAV based

wireless IoT networks, where UAVs act as wireless Base

Stations (BS) for a massive number of IoT devices. IoT

devices contend for access to the shared wireless channel

using an adaptive p-persistent slotted Aloha MAC protocol

to send data to the UAVs, which relay the received data

to the internet backbone through wireless satellite back-haul

links. UAVs on the other hand, are equipped with solar cells

to replenish the on-board battery, and exploit power-domain

SIC to decode multiple users’ transmissions, thus improving

the transmission efficiency. To enable an energy-sustainable

and capacity-optimal massive IoT network, we study the joint

problem of dynamic multi-UAV altitude control and NOMA-

based multi-cell wireless channel access management of IoT

devices. The objective of the stochastic control problem is to

maximize the total network capacity of a massive number of

IoT devices which is characterized by random uplink channel

access, varying wireless channel conditions, and dynamic net-

work topology, while satisfying multiple constraints to ensure

energy sustainability of solar-powered UAVs. To the best of

our knowledge, our work is the first work to study energy

sustainability of a multi-UAV based wireless communication

system in support of a massive number of IoT devices with

NOMA and random channel access.

The main contributions of our work can be summarized as

follows. First, we formulate the joint problem of multi-UAV

altitude control and adaptive random channel access of massive

IoT devices to attain the maximum capacity under energy sus-

tainability constraints of UAVs over a prespecified operating

horizon as a Constrained Markov Decision Process (CMDP).

Second, to learn an optimal control policy for the wire-

less communication system, we design an online model-free

Constrained Deep Reinforcement Learning (CDRL) algorithm

based on Lagrangian primal-dual policy optimization to solve

the CMDP. It is shown that the proposed CDRL agent learns

a cooperative policy among UAVs which ensures their energy

sustainability over the operating horizon, while maximizing

the total network capacity under the probabilistic mutual inter-

ference of IoT devices. Third, to evaluate the effects of policy

optimization in our proposed CDRL framework, we compare

the learning performance with two other DRL agents which

adopt different policy optimization algorithms, namely, Trust

Region Policy Optimization (TRPO) [22], and Vanilla Policy

Gradient (VPG) [23]. It is shown that our proposed CDRL

agent which combines Lagrangian primal-dual optimization

techniques with Proximal Policy Optimization (PPO) [24]

outperforms other agents in terms of both the achieved rewards

and constraint satisfaction. In addition, we compare the perfor-

mance of the learned policy to three baseline policies learned

by a 1) Deep RL (DRL) agent which is energy-unaware, a 2)

DRL agent which adopts reward shaping to penalize energy

dissipation, and 3) a random management policy. Compared

with baseline policies, our extensive simulations demonstrate

that our proposed CDRL agent learns a feasible adaptive

policy which achieves a temporal average network capacity

that is 81% higher than that of a feasible DRL agent with

reward shaping, and only 6.7% lower than the upper bound

achieved by the energy-unaware DRL agent. Last but not

least, we demonstrate that the learned policy, which has been

efficiently trained on a small network size, can effectively

manage networks with a massive number of IoT devices and

varying initial network states.

The remainder of this paper is organized as follows. A lit-

erature survey of related research work and a background of

unconstrained and constrained MDPs is given in Section II.

The system model is described in Section III. The problem

formulation and the proposed CDRL algorithm is presented in

Section IV, followed by the simulation setup and performance

evaluation results in Section V. Finally our concluding remarks

and future work are given in Section VI.

II. BACKGROUND AND RELATED WORKS

A. UAV Based Wireless Networks

The deployment and resource allocation of UAV-based

wireless networks has been studied in many works. In [9],

a polynomial-time algorithm is proposed for successive UAV

placement such that the number of UAVs required to provide

wireless coverage for a group of ground terminals is mini-

mized and each ground terminal is within the communication

range of at least one UAV. The downlink coverage probability

for UAVs as a function of the altitude and antenna gain is

analyzed in [10]. Based on the circle packing theory, the 3D

locations of the UAVs are determined to maximize the total

coverage area while ensuring the covered areas of multiple

UAVs do not overlap. The work of [11] studies the problem

of multiple UAV deployment for on-demand coverage while

maintaining connectivity among UAVs. In [12], a distributed

coverage-maximizing algorithm for multi UAV deployment

subject to the constraint that UAVs maintain communication

is proposed for surveillance and monitoring applications.

3D trajectory design and resource allocation in UAV based

wireless networks have also been studied in [13]–[17]. In [13],

a mixed integer non-convex optimization problem is for-

mulated to maximize the minimum downlink throughput of

ground users by jointly optimizing multi-user communication

scheduling, association, UAVs’ 3D trajectory, and power con-

trol. An iterative algorithm based on block coordinate descent

and successive convex optimization techniques is proposed to

solve the formulated problem. Reference [14] extends on [13]

by considering heterogeneous UAVs so that each UAV can be

individually controlled. Machine learning based approaches

have also been recently considered for UAV 3D trajectory

design. In [15], the flight trajectory of the UAV and scheduling

of packets are jointly optimized to minimize the sum of
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Age-of-Information (sum-AoI) at the UAV. The problem is

modeled as a finite-horizon Markov Decision Process (MDP)

with finite state and action spaces, and a DRL algorithm is

proposed to obtain the optimal policy. Reference [16] devises

a machine learning based approach to predict users’ mobility

information, which is considered in the trajectory design of

multiple UAVs. A sense-and-send protocol is designed in [17]

to coordinate multiple UAVs, and a multi-UAV Q-learning

based algorithm is proposed for decentralized UAV trajectory

design. Scheduling based NOMA systems with a UAV-based

BS to serve terrestrial users are considered in [25], [26]. In a

recent work, the performance of NOMA transmissions in a

single-hop random access wireless network is investigated,

and an iterative algorithm is proposed to find the optimal

transmission probabilities of users to achieve the maximum

throughput [27]. Furthermore, the control, motion planning,

and aerodynamic power consumption of UAVs have been

studied in [28]–[30].

It is worth to mention that all aforementioned works con-

sider battery powered UAVs with limited energy storage capac-

ity, which constrains the operating horizon. Solar-powered

UAVs have great potential to extend the operation time by

harvesting solar energy from the sun [20], [21]. Reference

[31] studies the optimal trajectory of solar-powered UAVs

for maximizing the solar energy harvested. In their design,

a higher altitude is preferable to maximize harvested energy.

On the other hand, [32] studies the trade-off between solar

energy harvesting and communication system performance of

a single UAV based wireless network. It is shown that in order

to maximize the system throughput, the solar-powered UAV

climbs to a high altitude to harvest enough solar energy, and

then descends to a lower altitude to improve the communica-

tion performance.

The work of [32] considers downlink wireless resource

allocation in a centralized scheduling-based and interference-

free wireless network with a single UAV. Deploying one solar-

powered UAV may lead to a communication outage when

the UAV ascends to high altitudes to replenish its on-board

battery, and therefore, one UAV cannot satisfactorily serve

wireless users and ensure its energy sustainability. On the

other hand, scheduling-based networks usually suffer from the

curse of dimensionality and do not scale well to massive IoT

networks, as signaling overheads scale up with the network

size. This has led to a growing interest in wireless networks

with NOMA and distributed random access based Medium

Access Control (MAC) protocols, such as Aloha-type MAC

adopted in LoRaWAN networks [4]. It is very challenging

to analyze the performance of distributed multi-cell random

access networks with NOMA-enabled aerial base stations

due to the combinatorial space of possible transmissions and

interference that affect decoding events, and the time varying

network topology. Machine learning provides a data driven

approach for end-to-end system design, and can be therefore

used to holistically study these challenging wireless systems

and provide proper guidance for integration within 5G systems

and beyond. In this work, we study solar-powered multi-UAV

based massive IoT networks with random-access and NOMA,

and propose solutions to ensure long-term energy sustainabil-

ity of UAVs without causing wireless service interruption or

degradation. Specifically, we propose a new framework for

data-driven stochastic control under constraints, by combining

DRL policy optimization methods with Lagrangian primal-

dual optimization, and apply it to the problem of multi-UAV

altitude control and wireless random channel access manage-

ment. Our proposed solution demonstrates that by deploying

multiple UAVs, it is possible to learn a cooperative policy in

which multiple UAVs take turns to charge their battery and

provision uninterrupted wireless service to IoT devices.

B. Constrained Deep Reinforcement Learning

One of the primary challenges faced in reinforcement learn-

ing is the design of a proper reward function which can effi-

ciently guide the learning process. Many real world problems

are multi-objective problems in which conflicting objectives

should be optimized. A common approach to handling multi-

objective problems in RL is to combine the objectives using

a set of coefficients [33]. With this approach, there exist a

set of optimal solutions for each set of coefficients, known as

the Pareto optimal solutions [34]. In practice, finding the set

of coefficients which leads to the desired solutions is not a

trivial task. For many problems, it is more natural to specify

a single objective and a set of constraints. The CMDP frame-

work is the standard formulation for RL problems involving

constraints [35]. Optimal policies for CMDPs can be obtained

by solving an equivalent linear programming formulation

[35], or via multi time-scale dynamic-programming based

algorithms [36]–[40]. Such methods may not be applicable

to large scale problems or problems with continuous state-

action space. Leveraging recent advances in deep learning and

policy search methods [22], some works devise multi-time

scale algorithms for solving RL problems in presence of con-

straints [41]–[45]. Broadly speaking, these methods are either

based on Lagrangian relaxation [41]–[44] or constrained policy

optimization [45]. In Lagrangian relaxtion based method,

primal and dual variables are updated at different time-scales

using gradient ascent/descent. In these methods, constraint

satisfaction is guaranteed at convergence. On the other hand,

in [45] an algorithm is proposed where constraint satisfaction

is enforced in every step throughout training. Our proposed

algorithm is based on the PPO algorithm [24], and adopts

the Lagrangian relaxation based approach to handle multiple

constraints. However, we propose a new method to adapt

the Lagrangian penalty multipliers during training, and show

that our new approach improves the learning stability of the

algorithm. In addition, our work is the first to demonstrate

successful policy learning in environments with multiple con-

straints, and policy transferability among wireless networks of

different scales.

C. Background

In this subsection, unconstrained and constrained MDPs are

introduced. MDPs and CMDPs are are the classical formaliza-

tion of sequential decision making and define the interaction

between a learning agent and its environment in RL and

constrained RL, respectively.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:55:10 UTC from IEEE Xplore.  Restrictions apply. 



1104 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

1) Markov Decision Process: An infinite horizon MDP with

discounted-returns is defined as a tuple (S,A,P ,P0,R, ζ),
where S and A are finite sets of states and actions, respec-

tively, P : S × A × S → [0, 1] is the model’s state-action-

state transition probabilities, and P0 : S → [0, 1] is the initial

distribution over the states, R : S ×A → R, is the immediate

reward function which guides the agent through the learning

process, and ζ is a discount factor to bound the cumulative

rewards and trade-off how far or short sighted the agent is in

its decision making. Denote the transition probability from

state sn = i at time step n to state sn+1 = j if action

an = a is chosen by Pij(a) := P (sn+1 = j|sn = i, an = a).
The transition probability from state i to state j is therefore,

pij = P (sn+1 = j|sn = i) =
∑

a Pij(a)π(a|i), where

π(a|i) is a stochastic policy which maps states to actions. The

state-value function of state i under policy π is the long-term

expected discounted returns starting in state i and following

policy π thereafter,

Vπ(i) =

∞
∑

n=1

∑

j,a

ζn−1P π(sn = j, an = a|s0 = i)R(j, a),

∀i ∈ S (1)

Denote the initial distribution over the states by the vector β,

where β(i) = P (s0 = i), ∀i ∈ S. The solution of an MDP is a

Markov stationary policy π∗ that maximizes the inner product

〈Vπ, β〉,

max
π

∞
∑

n=1

∑

j,a

ζn−1P π(sn = j, an = a)R(j, a) (2)

There are several approaches to solve (2), including dynamic

programming based methods such as value iteration and pol-

icy iteration [46], in addition to linear programming based

methods [47]. When the model’s dynamics, i.e., transition

probabilities, are unknown, the Reinforcement Learning (RL)

framework can be adopted to find the optimal policies. It is

worth to mention that when the agent learns the optimal

state-value function and/or the policy as parameterized Deep

Neural Networks (DNNs), the agent is commonly referred

to as a Deep RL (DRL) agent. There exists a significant

body of works with state-of-the-art algorithms to solve the

RL problem, which vary by design from value-based methods

[48], to policy-based methods [22]–[24], and hybrid actor-

critic type algorithms [49]–[53].

2) Constrained Markov Decision Process: In constrained

MDPs (CMDPs), additional immediate cost functions Ck : S×
A → R are augmented, such that a CMDP is defined by the

tuple (S,A,P ,P0,R, C, ζ) [35]. The state-value function is

defined as in unconstrained MDPs (1). In addition, the infinite-

horizon discounted-cost of a state i under policy π is defined

as,

Ck
π(i) =

∑∞

n=1

∑

j,a
ζn−1P π(sn = j, an = a|so = i)

×Ck(j, a), ∀i ∈ S, ∀k. (3)

The solution of a CMDP is a markov stationary policy

π∗ which maximizes 〈Vπ, β〉 subject to the constraints

〈Ck
π, β〉 ≤ Ek, ∀k,

max
π

∞
∑

n=1

∑

j,a

ζn−1P π(sn = j, an = a)R(j, a) (4)

∞
∑

n=1

∑

j,a

ζn−1P π(sn = j, an = a)Ck(j, a) ≤ Ek, ∀k

(4a)

Solving for feasible and optimal policies in CMDPs is more

challenging compared to unconstrained MDPs, and requires

extra mathematical efforts. CMDPs can be solved by defin-

ing an appropriate occupation measure and constructing a

linear program over this measure, or alternatively by using

a Lagrangian relaxation technique in which the CMDP is

converted into an equivalent unconstrained problem,

max
π

min
η≥0

L(π, η)

= max
π

min
η≥0

〈Vπ, β〉 −
∑

k

ηk

(

〈Ck
π, β〉 − Ek

)

(5)

and invoking the minimax theorem,

max
π

min
η≥0

L(π, η) = min
η≥0

max
π

L(π, η) (6)

The right hand side of (6) can be solved on two-time

scales: on a faster time scale gradient-ascent is performed

on state-values to find the optimal policy for a given set of

Lagrangian variables, and on a slower time scale, gradient-

descent is performed on the dual variables [35]. Past works

explore this primal-dual optimization approach for CMDPs

with known model dynamics and tabular-based RL methods

with unknown model dynamics [36]–[40]. In the realm of

deep RL where policies and value functions are parameter-

ized neural networks, recent works which apply primal-dual

optimization for generic benchmark problems are emerging

[41]–[45]. None of these works, however, apply primal-dual

optimization techniques in the wireless networking domain.

Furthermore, practical wireless networking systems admit

multiple constraints, which can be conflicting. This incurs

extra difficulty for policy search and optimization, and may

cause learning instability. Our proposed approach tackles these

issues and demonstrates successful policy learning in wireless

environments with multiple constraints.

III. SYSTEM MODEL

Consider a multi-UAV based IoT network consisting of M
UAVs and N IoT devices, where the UAVs collect data from a

massive deployment of IoT devices, as shown in Figure 1(a).

Let M = {1, · · · , M} be the set of UAVs, and N =
{1, · · · , N} be the set of IoT devices. UAVs are connected via

wireless back-haul links to a central controller, which controls

the altitude of each UAV and manages the access parameters

of wireless IoT devices. IoT devices are independently and

uniformly distributed (i.u.d.) across a deployment area A.

Let the locations of IoT devices be {x̂i, ŷi}N
i=1. Each IoT

device is served by the closest UAV. Denote the subset of

IoT devices which are associated with UAV m by Nm ⊂ N ,
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Fig. 1. Multi-cell UAV based wireless IoT network.

|Nm| ≤ N ,
⋃M

m=1 Nm = N , Ni ∩ Nj = φ, ∀i 
= j ∈ M.

Time is slotted into fixed-length discrete time units indexed

by n. For instance, the n-th time slot is [tn, tn+1), where

tn+1 − tn = ∆t, ∀n. Each time slot n is further divided

into L communication sub-slots of length ∆t
L

each, as shown

in 1(b). Denote the l-th communication sub-slot in slot n by

tln, l = {0, · · · , L−1}. During these communication sub-slots,

IoT devices contend for channel access based on an adaptive p-

persistent slotted Aloha MAC protocol. In this protocol, an IoT

device waits until the beginning of a communication sub-slot

before attempting to access the channel with probability p,

which is adapted every time slot by the central controller

based on network dynamics1. IoT devices transmit uplink data

to their associated UAV with a fixed transmission power of

PTX watts, and are traffic-saturated, i.e., there is always a

data packet ready for transmission.

Denote the location of UAV m during time slot n by

rm(tn) = (xm, ym, zm
n ). In our system model, zm

n is dynam-

ically adjusted by the central controller, while the the planar

location of the UAVs, (xm, ym), ∀m ∈ M are determined

a priori by using Lloyd’s K-means clustering algorithm to

partition the distribution of IoT devices on the ground into

K = M Voronoi cells, such that the sum of squared

distances between any IoT device and its nearest UAV is

1Implementing time-synchronization among IoT devices is important to
enable NOMA decoders. Without time-synchronization, transmissions may
partially overlap which makes the design of NOMA decoders hard.

minimized [54]2. Let ui,m
n = {0, 1} indicate whether IoT

device i is associated with UAV m during time slot n. If UAV

m located at rm(tn) during the n-th time slot is the closest to

IoT device i, ui,m
n = 1, and ui,l

n = 0, ∀l 
= m. The power of

the signal transmitted by a wireless IoT device i to a UAV m
is subject to independent Rayleigh channel fading, hi,m(tn)3,

and a distance-dependent free-space path-loss d−α
i,m(tn), where

α is the path-loss exponent, and d−α
i,m(tn) is the propagation

distance between IoT device i and UAV m, di,m(tn) =
√

(xm − x̂i)2 + (ym − ŷi)2 + (zm
n )2. The received power at

UAV m from IoT device i in a communication sub-slot tln is,

P i,m
RX (tln)=

{

Îi(t
l
n)c0 hi,m(tn)PTXd−α

0 , di,m(tn) ≤d0,

Îi(t
l
n)c0 hi,m(tn)PTXd−α

i,m(tn), di,m(tn) ≥d0,

(7)

where c0 = λα

(4π)α is a constant which depends on the

wavelength of the transmitted signal, λ, and d0 is a reference

distance. Îi(t
l
n) is a Bernoulli random variable with parameter

p(tn) ∈ (0, 1] which indicates whether IoT device i transmits

during communication sub-slot tln, i.e., Îi(t
l
n) = 1 with

probability p(tn). UAV m first decodes the signal with the

highest signal power under the interference from all other IoT

devices involved in the NOMA transmissions. Without loss of

generality, IoT devices Im(tln) = {i|Îi(t
l
n) = 1} are sorted

in the descending order of their received signal strength at

UAV m, such that i = 1 is the IoT device with the highest

received signal to interference plus noise (SNIR) at UAV m,

and i = 2 is the IoT device with the second highest received

SNIR at UAV m4. The highest received SNIR at UAV m in

a communication sub-slot tln is therefore,

SNIR1,m(tln) =
P 1,m

RX (tln)

n0 +
∑

k∈Im(tl
n
)\1 P k,m

RX (tln)
, (8)

where n0 is the noise floor power. Similarly, the second highest

received SNIR at UAV m in a communication sub-slot tln is,

SNIR2,m(tln) =
P 2,m

RX (tln)

n0 +
∑

k∈Im(tl
n
)\{1,2} P k,m

RX (tln)
, (9)

UAV m can decode the signal with SNIR1,m(tln) if

1) user 1 is associated with UAV m during communication

sub-slot n, u1,m
n = 1, and,

2) SNIR1,m(tln) is larger than the SNIR threshold,

i.e., U(SNIR1,m(tln)) = SNIR1,m(tln),

2Lloyd’s K-means clustering algorithm is an iterative algorithm to determine
a set of K centroids given a large set of IoT device locations {x̂i, ŷi}N

i=1,
so as to minimize the within-cluster variance (sum of squared distances to

cluster centroid), min{(xm,ym)}
�M

m=1

�
i∈Nm

||(x̂i, ŷi)− (xm, ym)||2.
Given that the range of vertical flight is the dominant factor in our system
model, determining the planar locations of UAVs a priori reduces the number
of control variables without adversely impacting network performance, as will
be shown in Sec. V.

3The statistical channel state information, hi,m(tn), is assumed to be quasi-
static and is fixed during a time slot n.

4We consider the two highest received signals to trade-off NOMA gain and
SIC decoding complexity for uplink transmissions.
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where U(.) is a thresholding function to maintain a minimum

quality of service,

U(SNIRi,m(tln))=

{

0, SNIRi,m(tln) < SNIRTh,

SNIRi,m(tln), SNIRi,m(tln) ≥ SNIRTh.

(10)

In addition, UAV m can decode the signal with SNIR2,m(tln)
if

1) The signal with SNIR1,m(tln) is successfully decoded,

2) user 2 is associated with UAV m during communication

sub-slot n, u2,m
n = 1, and,

3) SNIR2,m(tln) is larger than the SNIR threshold,

i.e., U(SNIR2,m(tln)) = SNIR2,m(tln)

The sum rates of the received data at UAV m in communica-

tion sub-slot tln is,

Gm(tln) = W log2

(

1 + U(SNIR1,m(tln))u1,m
n

)

+W log2

(

1 + U(SNIR2,m(tln))u1,m
n u2,m

n e1,m
n

)

(11)

where W is the transmission bandwidth, and e1,m
n = 1 if

U(SNIR1,m(tln)) = SNIR1,m(tln) and 0 otherwise. The total

network capacity in any given system slot tn,

G(tn) =
L−1
∑

l=0

∑

m∈M

Gm(tln) (12)

On the other hand, UAVs are equipped with solar panels,

which harvest solar energy to replenish the on-board battery.

The attenuation of solar light passing through a cloud can be

modeled based on [32],

φ(dcloud) = e−βcdcloud

(13)

where βc ≥ 0 denotes the absorption coefficient of the cloud,

and dcloud is the distance that the solar light travels through

the cloud. Following [32] and the references therein, the solar

energy harvested by UAV m during time slot n can be modeled

as,

Em
H (tn) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ψS̃G̃∆t,
zm

n + zm
n+1

2
≥ zhigh

ψS̃G̃φ(zhigh − zm
n + zm

n+1

2
)∆t,

zlow ≤ zm
n + zm

n+1

2
< zhigh

ψS̃G̃φ(zhigh − zlow)∆t,

zm
n + zM

n+1

2
< zlow

(14)

where ψ is a constant representing the energy harvesting

efficiency, S̃ is the area of solar panels, and G̃ denotes the

average solar radiation intensity on earth. zhigh and zlow are

the altitudes of upper and lower boundaries of the cloud.

During time-slot n, UAV m can cruise upwards or downwards

from rm(tn) to rm(tn+1). The energy consumed by UAV m
during time slot n [32] is,

Em
C (tn) =

(

W 2/(
√

2ρA)

40.25Vz

+ Wvz + Pstatic + Pantenna

)

∆t,

vz =
zm

n+1 − zm
n

∆t
(15)

where, Vz =
√

W
2ρA

, W is the weight of the UAV, ρ is air

density, and A is the total area of UAV rotor disks. Pstatic is

the power consumed for maintaining the operation of UAV,

and Pantenna is the power consumed by the receiving antenna.

It is worth to mention that cruising upwards consumes more

power than cruising downward and hovering.

Denote the battery energy storage of UAV m at the begin-

ning of slot n by Bm(tn). The battery energy in the next slot

is given by,

Bm(tn+1)

= min{[Bm(tn) + EH(tn) − Em
C (tn) + B(tn)]+ , Bmax},

(16)

where B(tn), ∀n, are independent zero-mean gaussian random

variables with variance σ2
B which characterizes the random-

ness in the battery evolution process, and [ ]
+

denotes the

positive part.

IV. PROBLEM FORMULATION AND PROPOSED

CDRL ALGORITHM

In order to maximize the total network capacity under

stochastic mutual interference of IoT devices while ensuring

energy sustainability of UAVs over the operating horizon H ,

the central controller decides on the altitude of each UAV

m, ∀m ∈ M, at the beginning of each slot n, zm
n , as well

as the channel access probability p(tn) of IoT devices con-

sidering the potential access gain provisioned by NOMA. The

channel access probability will be broadcast to IoT devices

through beacons at the beginning of each time slot, so that

IoT devices adapt their random channel access parameter and

maintain slotted-time synchronization.

The problem of maximizing the total network capacity while

ensuring energy sustainability of each UAV is a constrained

stochastic optimization problem over the operating horizon

due to random channel access, the stochastic channel model,

dynamic network topology, and the stochastic energy evolution

in the batteries of UAVs. Moreover, this problem is mathe-

matically intractable because of the combinatorial space of

possible transmissions and channel interference events induced

by the random access protocol, and hence offline solutions

cannot be devised. To solve this problem and find an energy-

sustainable capacity-optimal control policy, we formulate it

as a CMDP and design an online Constrained Deep Rein-

forcement Learning (CDRL) algorithm by combining state-of-

the-art DRL policy optimization algorithms with Lagrangian

primal-dual techniques.
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A. CMDP Formulation

To enable continuous control of UAVs altitudes and channel

access probability, we consider parametrized DNN based poli-

cies with parameters θ, and parametrized state-value function

with parameters Θ henceforth. We formulate the joint problem

of UAVs altitude control and random channel access of IoT

devices as a discrete-time CMDP with continuous state and

action spaces as follows,

1) ∀sn ∈ S,

sn =
⋃

M

{

zm
n , · · · , zm

n−hk
, Bm(tn), · · · , Bm(tn−hk

),

P
(

SNIR1,m(tln) ≥ SNIRTh

)

,

P
(

SNIR2,m(tln) ≥ SNIRTh

)

,

E
[

SNIR1,m(tln)|SNIR1,m(tln) ≥ SNIRTh

]

,

E
[

SNIR2,m(tln)|SNIR2,m(tln) ≥ SNIRTh

]

,

Var
[

SNIR1,m(tln)|SNIR1,m(tln) ≥ SNIRTh

]

,

Var
[

SNIR2,m(tln)|SNIR2,m(tln) ≥ SNIRTh

]

}

,

i.e., the state space encompasses ∀m, the current altitude

of UAV m along with hk historical altitudes, current

battery energy of UAV m along with hk historical

battery energies, probability the highest and second

highest received SNIRs from associated users at UAV

m is greater than or equal to SNIRTh, the mean of

the highest and second highest received SNIRs from

associated users at UAV m given that they are greater

than or equal to the SNIR threshold, and the variance

of the highest and second highest received SNIRs from

associated users at UAV m given that they are greater

than or equal to the SNIR threshold. Here, the mean

and variance are calculated over the L communication

sub-slots.

2) ∀an ∈ A, an =
⋃

M{∆zm
n }∪{p(tn+1)}, where ∆zm

n =
zm

n+1−zm
n , i.e., the action space encompasses the altitude

displacement of each UAV between any two consecutive

time slots, and the random channel access probability in

the next system slot.

3) R(sn, an) = G(tn)
H

, i.e., the immediate reward at the end

of each time slot n is the total network capacity during

slot n, normalized by the operating horizon H .

4) Cm(sn, an) = Bm(tn)−Bm(tn+1)
Bmax

, ∀m, i.e., the immedi-

ate cost at the end of each slot n is the change in the

battery energy between any two consecutive time slots,

which is caused by the displacement of each UAV m,

normalized by the maximum battery energy.

5) Em = −Bmin/Bmax, ∀m, i.e., the upper bound on the

long-term expected cost is the normalized negative of

the minimum desired battery energy increase at the end

of the planning horizon over the initial battery energy.

Based on this formulation, the objective is to find a

Markov policy πθπ
which maximizes the long-term expected

discounted total network capacity, while ensuring energy

sustainability of each UAV m over an operating horizon,

max
θπ

E
β
πθ

[

∞
∑

n=0

ζn
G(tn)

]

E
β
πθ

[

H
∑

n=0

Bm(tn) − Bm(tn+1)
]

≤ −Bmin, ∀m (17)

Problem (17) exhibits trade-offs between total system

capacity and energy sustainability of UAVs. For instance,

a UAV hovering at a higher altitude above the cloud cover

can harvest more solar energy to replenish its on-board

battery storage, as given by (14). However, at higher altitudes,

the received signal power at a UAV from IoT devices

will be smaller due to the log-distance path loss model,

and consequently, the system capacity will be smaller. The

converse is true, that is, when a UAV hovers at lower altitudes,

network capacity is improved, yet solar energy harvesting is

heavily attenuated. In addition, based on the network topology

at any time slot n, spatial gain and NOMA overload vary.

An optimal stochastic control policy for altitude control of

UAVs and channel access management of IoT devices should

be therefore learned online. In the following subsection,

we propose an online CDRL algorithm to solve (17).

B. Proposed CDRL Algorithm

To solve (17) in absence of the state-action-state transition

probabilities of the Markov model, we adopt the RL frame-

work in which an autonomous agent learns an optimal policy

by repeated interactions with the wireless environment [46].

The wireless environment provides the agent with rewards and

costs signals, which the agents exploit to further improve its

policy. Our proposed algorithm is based on the state-of-the-

art Proximal Policy Optimization (PPO) algorithm [24], and

leverages the technique of primal-dual optimization [42]. The

architecture of our proposed algorithm is shown in Figure 2.

In the proposed CDRL algorithm, parameterized DNN of

the policy πθ(a|s) is learned by maximizing the PPO-clip

objective function, which is a specially designed clipped

surrogate advantage objective that ensures constructive policy

updates,

Oclip(θ) = Ên

[

min
( πθ(an|sn)

πθold
(an|sn)

Ân, clip(
πθ(an|sn)

πθold
(an|sn)

,

1 + ε, 1 − ε)Ân

)]

, (18)

where θ are the policy neural network parameters, ε is a clip

fraction, and Ân is the generalized advantage estimator (GAE)

[55]5,

Ân =

∞
∑

l=0

(ζξ)l
(

R̂n+l + ζVΘ(sn+l+1) − VΘ(sn+l)
)

. (19)

Clipping in (18) acts as a regularizer which controls how much

the new policy can go away from the old one while still

5The advantage function is defined as the difference between the state-
action value function and the value function, A(sn, an) = Q(sn, an) −
V (sn). GAE makes a compromise between bias and variance in estimating
the advantage.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:55:10 UTC from IEEE Xplore.  Restrictions apply. 



1108 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

Fig. 2. Proposed constrained deep reinforcement learning architecture.
Constrained policy optimization is performed on three time scales. On the
fastest time scale, the state-value function is updated by minimizing (22),
then the policy is updated by maximizing (18) on the intermediate time-scale,
and finally, the Lagrangian multipliers are updated on the slowest time-scale
by minimizing (21).

improving the training objective. In order to further ensure

reasonable policy updates, we adopt a simple early stopping

method in which gradient optimization on (18) is terminated

when the mean KL-divergence between the new and old

policy reaches a predefined threshold KLTh. In (19), R̂n =
R̂n(sn, an, η) is a Lagrangian penalized reward signal [41],

R̂(sn, an, η) = R(sn, an) −
∑

m

ηmCm(sn, an). (20)

In our proposed algorithm, the Lagrangian penalty multipliers

are updated adaptively according to policy feasibility by

performing gradient descent on the original constraints. Given

that η are initially set to 0, i.e., the agent is initially indifferent

to the cost constraints, we propose to learn the Lagrangian

penalty multipliers by minimizing the following loss function

with respect to η in order to ensure learning stability and

convergence to a local saddle point,

OP (η) =
1

Bmax

∑

m

ηmclip
(

− Bmin − E
β
πθ

[

H
∑

n=0

Bm(tn)

−Bm(tn+1)
]

,−∞, 0
)

(21)

If a constraint m is violated, then ∂OP

∂ηm

< 0, and so ηm will be

increased to enforce the constraint. Due to clipping, ηm will

not be updated if the constraint m is satisfied. By ensuring

that η are monotonously increased starting from η0 = 0 during

training, the agent avoids oscillations between the feasible and

infeasible policy spaces when optimizing the policy parameters

(18), which improves learning stability.

Finally, the state-value function is learned by minimizing

the mean squared error loss against the policy’s discounted

rewards-to-go,

OV(Θ) = Ên

[(

VΘ(sn) −
∞
∑

l=0

ζlR̂n+l(sn+l, an+l)
)2]

. (22)

The optimization in our proposed algorithm is performed over

three time-scales, on the fastest time scale, the state-value

function is updated by minimizing (22), then the policy is

updated by maximizing (18) on the intermediate time-scale,

and finally, the Lagrangian multipliers are updated on the

slowest time-scale by minimizing (21). Optimization time-

scales are controlled by choosing the maximum learning

rate of the stochastic gradient optimizer used, e.g., adaptive

moment estimation (ADAM) [56], as well as the number of

gradient steps performed at the end of each training epoch. The

full algorithmic procedure for training the CDRL agent is

outlined in Algorithm 1.

Algorithm 1 Constrained PPO-Clip

Input: Initial policy network parameters θ, initial value

network parameters Θ, initial Lagrange

multipliers η = 0
for epoch = 0, 1, · · · do

for n = 0, 1, · · · , H do
Observe initial state sn

Sample action an ∼ πθ(an|sn)
Take action an

Receive reward R(sn, an), M costs Cm(sn, an),
and new state sn+1

Compute penalized reward R̂(sn, an, η) using (20)

Store transition (sn, an, R̂(sn, an, η), sn+1) in

policy training buffer

Store Ck,∀k(sn, an) in Lagrange multiplier training

buffer
end

Compute rewards to go

Compute advantage estimate Ân using GAE (19) and

current value network

for k = 0, 1, · · · do
Update policy parameters θk via stochastic

gradient ascent with ADAM on the PPO-Clip

objective (18)

Compute KL-divergence between new policy and

old policy

Break if KL-divergence hits KLTh

end

for k = 0, 1, · · · do
Fit the value network via stochastic gradient

descent with ADAM on (22)
end

Update Lagrangian multipliers via stochastic gradient

descent with ADAM on (21)
end
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To parameterize the space of continuous control policies,

a parameterized stochastic Gaussian policy is adopted [46],

πθ(an|sn) =
1

σ(sn, θσ)
√

2π
exp

(

− (an − µ(sn, θµ))2

2σ(sn, θσ)2

)

.

(23)

where θµ are the DNN parameters for the mean of the policy,

and θσ are the DNN parameters for the variance of the policy.

The choice of a gaussian policy is commonly adopted in

DRL because the gradient of the policy as well as the log

probabilities necessary for KL-divergence computation can be

derived in a closed form [46]. At the beginning of training,

the variance of the policy network encourages exploration.

As training progresses, the variance of the policy is reduced

due to maximizing (18) and in doing so, the policy shifts

slowly towards the deterministic policy given by µ(sn, θµ).
CDRL Implementation and Training: A fully connected

multi-layer perceptron network with three hidden layers for

both the policy and value networks are used. Each hidden

layer has 128 neurons. Tanh activation units are used in

all neurons. The range of output neurons responsible for

the altitude displacement of each UAV is linearly scaled to

[∆zmin, ∆zmax] so as to limit the maximum cruising velocity

of the UAVs. The range of the output neuron controlling the

random channel access probability is linearly scaled to [0, 2
N

].
The weights of the policy network are heuristically initialized

to generate a feasible policy. The variance of the Gaussian

policy is state-independent, σ(sn, θσ) = θσ, with initial value

θ0

σ = e−0.5.

Training of the proposed CDRL agent has been performed

over 1000 epochs, where each epoch corresponds to 32
episodes, and each episode corresponds to trajectories of

length H = 360 time steps, amounting for about 11.5 million

training samples. At the end of each episode, the trajectory

is cut-off and the wireless system is reinitialized. Episodes

in each epoch are rolled-out in parallel by 32 Message

Passing Interface (MPI) ranks, to sample 32 trajectories and

reduce gradient estimation variance. After each MPI rank

completes its episodic roll-out, Lagrangian primal-dual policy

optimization is performed as outlined in Algorithm 1 based

on the average gradients of the MPI ranks, such that the

DNN parameters θ, Θ, and the Lagrange multipliers η, remain

synchronized among the 32 MPI ranks during training. At the

end of training, the trained policy network corresponding to

the mean of the learned Gaussian policy, µ(sn, θµ), is used to

test its performance through the simulated environment.

V. PERFORMANCE EVALUATION

We have developed a simulator in Python for the solar-

powered multi-UAV based Wireless IoT network with NOMA

described in section III, and implemented the proposed CDRL

algorithm based on OpenAI’s implementation of PPO [57].

We trained the proposed CDRL agent in a multi-cell wireless

IoT network of M = 2 solar-powered UAVs and N =
200 IoT devices. At testing, N is varied to demonstrate the

efficacy of the trained CDRL in managing massive number

of IoT devices. IoT devices were deployed independently

TABLE I

SIMULATION PARAMETERS

Fig. 3. Solar energy output of solar panels versus UAV altitude. Solar energy
decays exponentially through the cloud cover between 1300m and 700m.

and uniformly within a grid of [0, 0] × [1500, 500]m. The

two UAVs were initially deployed at (250, 250, 750)m and

(750, 250, 1250)m with 50% initial battery energy, i.e., 111
Wh. Notice that the x and y coordinates of the two UAVs,

i.e., (250, 250)m and (750, 250)m, are minimizers of the

sum of squared planar distances between IoT devices and

the closest UAV, as determined by Lloyd’s K-means clus-

tering algorithm for the uniform random deployment of IoT

devices on the ground. The impacts of different planar UAV

deployments on network performance will also be investigated.

UAVs were allowed to cruise vertically between 500m and

1500m. The main simulation parameters for the experiments

are outlined in Table I. UAV related parameters are based on

the work of [32].

The output energy of solar panels mounted on the UAV as

a function of altitude according to (14) is shown in Figure 3.

The highest solar energy is achieved when the UAV is above

the cloud cover at zhigh = 1300m. Notice how solar energy

decays exponentially through the clouds which extend down

to zlow = 700m. When the UAV is below 700m, the output

energy of its solar panels is zero. UAVs cruising above 1300m

harvest the most solar energy, while UAVs cruising below

700m harvest the least energy. Hovering at low altitudes

reduces distance-dependant path-loss and improves the wire-

less channel capacity, however, it is not energy sustainable.
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Fig. 4. Training results of the proposed CDRL agent. As training pro-
gresses, the proposed CDRL agent becomes more experienced; collects higher
expected total rewards, and better satisfies the energy constraints. Proposed
CDRL agent outperforms other agents and possesses an improved learning
stability thanks to clipping in (18) and (21).

The learning curves of the trained CDRL agent, (PPO-

Proposed), are shown in Figure 4. To evaluate the effects

of policy optimization in our proposed CDRL framework,

we have compared the learning performance with two other

DRL agents which adopt different policy optimization algo-

rithms, namely, (TRPO) [22] and (VPG) [23]. In these algo-

rithms, the Lagrangian penalty multipliers are adapted during

training as in Algorithm 1 by minimizing (21) with respect

to η. In addition, we demonstrate the effects of clipping in

(21) on learning stability by training a CDRL agent (PPO-

NoClip), which adopts PPO for policy optimization, yet it

adapts the Lagrange penalty multipliers by minimizing an

unclipped version of (21) with respect to η. It can be seen

from Figure 4(a) that the CDRL agent becomes more expe-

rienced as training progresses and collects higher expected

total rewards. In addition, the proposed CDRL agent becomes

more experienced in satisfying energy constraints as can

be seen from Figures 4(b)-(c), and learns a policy whose

expected costs fall below the normalized energy constraint

upper bound −Bmin/Bmax = −0.1. The proposed CDRL

agent outperforms both CDRL (TRPO) and CDRL (VPG)

in terms of the achieved total rewards during training. Com-

pared with CDRL (TRPO) and CDRL (VPG), the proposed

CDRL agent also exhibits a relatively more stable constraint

satisfaction during training. This finding is consistent with

previous works which demonstrates the superiority of PPO as a

policy optimization algorithm on a variety of benchmark tasks

[24]. On the other hand, the convergence of the Lagrangian

multipliers to non-negative values during the training of the

proposed CDRL algorithm is shown in Figure 4(d). It can be

observed that the two cost constraints are penalized differently,

which is primarily due to the different initial conditions and

different terminal states. The Lagrangian multiplier of the

energy constraint corresponding to UAV 1 is larger than that

of UAV 2, therefore it is expected that UAV 1 will end up

its flight with more harvested energy in its battery. Notice

that in the case of (PPO-NoClip), where the Lagrange penalty

multipliers are adapted during training by minimizing an

unclipped version of (21), the Lagrange multipliers fluctuate

which leads to oscillations between the feasible and infeasible

policy spaces as can be seen from Figure 4(b). On the other

hand, agents in which the Lagrangian penalty multipliers

are adapted by minimizing the clipped objective (21), have

monotonously increasing Lagrange multipliers which converge

early during training. Clipping in (21) results in a better

learning stability and constraint satisfaction compared with

(PPO-NoClip), as can be seen from Figures 4(a)-(c).

The learned policy by our proposed CDRL algorithm is

shown in Figure 5. It can be seen from Figures 5(a) and 5(b)

that the CDRL agent learns a policy in which the two UAVs

take turns in cruising upwards to recharge their on-board

batteries, and in serving IoT devices deployed on the ground.

UAV 2 first climbs up to recharge its battery, while UAV

1 descends down to improve communication performance

for IoT devices on the ground. Since IoT devices are asso-

ciated with the closest UAV, in this case, all IoT devices

are associated with UAV 1. When UAV 2’s battery is fully

charged, it descends down gradually to switch roles with UAV

1: UAV 2 becomes the BS with which all IoT devices are

associated, while UAV 1 climbs up to recharge its battery.

Such a policy ensures that the battery energy of the two

UAVs is not drained throughout the operating horizon as can
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Fig. 5. Learned policy by the CDRL agent during the operating horizon of
the two UAVs. A cooperative policy among UAVs is learned in which the two
UAVs take turns to recharge the battery and provision uninterrupted wireless
service to IoT devices.

be seen from Figure 5(c). Note that the terminal energy in

UAV’s 1 battery is higher than that of UAV 2, which is

expected based on the observation that the Lagrange multiplier

corresponding to UAV’s 1 energy constraint is larger than

that of UAV 2. In Figure 5(d), the random channel access

Fig. 6. NOMA performance based on the learned CDRL policy during the
operating horizon of the two UAVs. NOMA’s gain is higher in steady states
when all IoT devices are associated with the same UAV, compared to transient
states when the two UAVs exchange roles and are both serving IoT devices.

probability based on the learned CDRL policy is shown. It can

be observed that when either of the two UAVs is fully serving

all the 200 IoT devices, the wireless networking system is

overloaded with p > 1/N , thanks to spatial gain and NOMA.

Note that p = 1/N is the optimal transmission probability

in single-cell p-persistent slotted Aloha systems, which is

oblivious to NOMA and the heterogeneous channel conditions

of IoT devices. The channel access probability is dynamically

adapted when the two UAVs cruise upward and downward

to exchange roles in the wireless system. At times when both

UAVs have associated users, the channel access probability can

be seen to spike higher to maintain NOMA overload, as can

be observed from Figures 6(a)-(b). It can be seen from these

two figures that NOMA’s gain is higher in steady states when

all IoT devices are associated with the same UAV, compared

to transient states when the two UAVs exchange roles and are

both serving IoT devices. This is because it is less likely that

the second highest received SINR to a UAV is from within the

same cell at times when both UAVs provision wireless service.

By deploying multiple UAVs, it is therefore possible to learn

a cooperative policy in which UAVs take turns to charge their

battery and provision uninterrupted wireless service.

To evaluate the efficacy of the learned policy, we have

compared its performance with three baseline policies

which are learned by 1) an unconstrained PPO agent which

is energy-unaware (RL Energy-Unaware), i.e., the agent

attempts to maximize the wireless network capacity with

indifference to battery energy dissipation of the UAVs, 2) an
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TABLE II

PERFORMANCE COMPARISON WITH BASELINE ALGORITHMS

Fig. 7. Performance comparison of the proposed CDRL algorithm with
baseline policies. The proposed CDRL agent learns an adaptive feasible policy
which achieves a temporal average network capacity that is 81% higher than
that of a feasible DRL agent with reward shaping (RLWS (η1 = η2 = 10)),
and only 6.7% lower than the upper bound achieved by the RL Energy-
Unaware agent.

unconstrained PPO agent that penalizes energy dissipation due

to flight via fixed reward shaping (RLWS), where the training

reward signal is R̂(sn, an, η) = R(sn, an) − η1C1(sn, an) −
η2C2(sn, an), and η1 = 10, η2 = 10 or η1 = 0, η2 = 10,

and 3) a random management policy. The achieved mean

total network capacity with 95% confidence interval versus

flight time based on these policies is shown in Figure 7. The

statistical results are based on 32 roll-outs of the learned

policy in the simulated wireless IoT environment with

NOMA. Compared with baseline policies, it can be seen that

the proposed CDRL agent learns an adaptive policy which

achieves a temporal average network capacity that is 81%
higher compared to the feasible energy sustainable policy

learned by the conservative RLWS agent with η1 = η2 = 10.

Compared to the policy learned by the (RL Energy-Unaware)

agent which provides an upper bound on the achievable

wireless network capacity, only 6.7% of the system capacity

is sacrificed in order to maintain energy sustainability of

UAVs. In Table II, we provide statistics which characterize the

flight-time of the learned policies to explain their behaviour.

Specifically, the minimum flying altitude minn zm(tn),
geometric mean of the altitude during flight Gm[zm(tn)] =
(
∏H

n=1 zm(tn)
)

1
H , and the maximum flying altitude

maxn zm(tn), for m = {1, 2}, are given. These statistics help

explain the trade-off between energy sustainability and the

achievable wireless network capacity. Notice that the policy

learned by the RLWS agent with η1 = η2 = 10 is the most

conservative. In this policy, both UAVs climb upwards and

hover above the cloud cover to maintain high battery energy

throughout the flight. This can be inferred by looking at the

temporal geometric mean of the UAV altitude and normalized

battery energy during the flight. Such a policy however, results

in a poor wireless network capacity with an average of 1.48W
bit per second (bps) due to large scale fading. The behavior

of this policy can be justified by noting that the choice

of high penalty multipliers make energy dissipation the

dominant part in the reward signal. Thus, to maximize the

total rewards, the agent will attempt to minimize energy

dissipation, which can be achieved by hovering above the

cloud cover. On the other hand, the (RL Energy-Unaware)

agent learns a policy which is indifferent to battery energy.

In this policy, both UAVs descend and hover close to the

minimum allowable altitude in order to maximize the achieved

system capacity. Notice how the temporal geometric mean

of the normalized battery energy attained by this policy is 0.

This is because the geometric mean is proportional to the

multiplication of the normalized battery energy at each time

step, and so if at any time step the normalized battery energy

is 0, so will be the geometric mean. The RLWS agent with

η1 = 0, η2 = 10 behaves as expected, UAV 1 is indifferent

to its energy dissipation, hovering close to the minimum

allowable altitude to maximize wireless network capacity,

where as UAV 2 hovers above the cloud cover to maintain high

battery energy throughout the flight, thus minimizing energy

dissipation. These experiments demonstrate that choosing

the set of Lagrange penalty multipliers to obtain the desired

results can be a tedious task. In contrast, the proposed CDRL

agent automatically adapts the Lagrange penalty multipliers

to maximize the rewards and satisfy the constraints. The

policy learned by the proposed CDRL agent indeed strikes

a balance; it ensures energy sustainability while slightly

sacrificing the network capacity performance.

Policy Generalizability: To demonstrate the generalizability

and robustness of the learned CDRL policy, we test its perfor-

mance on networks with different initial states and massive

number of IoT devices. The ability to transfer pre-trained

models on small scale networks to larger scale networks is

desirable because it is very promising for scalable network

management, can amortize the cost of training the RL agent,

and addresses sampling complexity issues which arise in larger

systems. Recall that the CDRL policy has been trained given

that 200 IoT devices are uniformly deployed on ground,
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Fig. 8. Learned policy generalizability with varying initial states and network
scale. The proposed CDRL agent has been train on a network deployment of
N = 200 IoT devices, yet the learned policy can efficiently manage networks
with with different initial states and massive number of IoT devices.

and that the two UAVs are initially present at altitudes of

250m and 750m. In Figure 8(a), we demonstrate the learned

policy performance given different initial altitudes of UAVs.

Specifically, we consider two extreme cases: both UAVs are

initially deployed at the altitude of 500m (case A), or at 1500m

(case B). For those two cases, Figure 8(a) shows that the

two UAVs tend to fully de-synchronize their vertical flight

trajectories, such that when one of them is charging its battery

at 1500m, the other is provisioning wireless service at 500m.

The temporal average system capacity for cases A and B

are 2.649W bps and 2.619W bps, respectively. Notice that

case B achieves a slightly lower temporal average network

capacity because both UAVs are initially farther away from

IoT devices. In the legend, the temporal geometric mean of the

battery energy of each UAV is reported to demonstrate energy

sustainability of UAVs throughout the operating horizon.

In Figure 8(b), we test how the learned CDRL policy

scales with varying number of IoT devices. As can be

seen from Figure 8(b), the channel access probability is

scaled appropriately given the number of IoT devices vary

in {100, 200, 600, 1000}, maintaining comparable temporal

average network capacity around 2.67W bps. In addition,

the temporal geometric mean of the battery energy of each

UAV is also reported in the legend to demonstrate energy

sustainability of UAVs. In Figure 8(c), we plot a boxplot of

the achieved system capacity for massive deployments of IoT

devices up to 10000 users. It can be seen that the learned

policy network maintains high performance which is not com-

promised by increasing the number of IoT devices. Last but

not least, in Figure 8(d), we test the performance of the learned

policy given different horizontal deployment of the two UAVs.

We consider three cases: (A) the two UAVs are deployed at

(250, 250)m and (750, 250)m, as determined by the K-means

clustering algorithm, (B) the two UAVs are deployed farthest

from each other at (0, 0)m and (1000, 500)m, and (C) the

two UAVs are randomly deployed on the xy-plane. It can be

observed from Figure 8(d) that the mean network capacity is

highest when the K-means algorithm is employed to determine

the xy-planar deployment of the two UAVs. In addition, it is

shown that randomly deploying the two UAVs in the xy-plane,

case (C), achieves a mean network capacity which is slightly

(≈ 2%) lower than that in case (A), whereas the extreme case

of deploying the two UAVs on the diagonal, case (B), achieves

the lowest network capacity (≈ 10% lower compared to that

of case (A)). These results support our argument that the range

of vertical flight is the dominant factor in our system model,

and hence determining the planar locations of UAVs a priori

reduces the number of control variables without adversely

impacting network performance. In all cases, the learned

policy still ensures energy sustainability of the two UAVs

as indicated by the temporal geometric mean of the battery

energy of each UAV, which is reported in the legend.

VI. CONCLUSION

In this paper, we study the joint problem of dynamic multi-

UAV altitude control and random channel access management

of a multi-cell UAV-based wireless network with NOMA,

in support of a massive number of IoT devices. To enable

an energy-sustainable capacity-optimal IoT network, we have

formulated this constrained stochastic control problem as a

constrained markov decision process, and proposed an online

model-free constrained deep reinforcement learning algorithm
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to learn an optimal control policy for wireless network man-

agement. Our extensive simulations have demonstrated that the

proposed algorithm outperforms baseline solutions, and learns

a cooperative policy in which the altitude of UAVs and channel

access probability of IoT devices are dynamically adapted to

maximize the long-term total network capacity while ensuring

energy sustainability of UAVs. In our future work, we will

build a testbed in order to investigate data-driven control of

wireless networks based on real hardware and real data.
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