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Abstract—Ensuring data freshness is important for Industrial
Internet of Things (IIoT). In this article, we consider a typical
IIoT application where multiple sensors monitor some time-
varying physical processes and report measurements to a central
base station through an unreliable wireless channel. In order to
save energy, each sensor may switch to sleep mode for a while
after successfully transmitting a packet. Since only awake sen-
sors are able to transmit data, we propose a novel function of
Age of Information with penalty (or AoI-penalty) to capture the
eagerness of the active sensors to provide fresh information. We
formulate a new AoI-penalty minimization problem for schedul-
ing the sensors’ transmissions. We theoretically derive a necessary
condition for the system’s AoI-penalty to converge to a finite
value, and further obtain a lower bound of the AoI-penalty.
Moreover, we develop a max-weight-based scheduling policy and
theoretically prove that it is the optimal policy when the network
is symmetric and the channel is error-free. Simulation results
demonstrate that the proposed policy achieves AoI performance
near to the lower bound and that with such sleep–wake sensors,
the achieved AoI performance is close to that with nonsleeping
sensors but at a much lower energy cost.

Index Terms—Age of Information (AoI), energy, lower bound,
optimization, penalty, scheduling, sleep–wake sensors.

I. INTRODUCTION

I
NDUSTRIAL Internet of Things (IIoT) refers to networks

of sensors, controllers, actuators, and other devices to

monitor and control industrial processes [1], [2]. As an emerg-

ing technology, IIoT has found a number of applications in

smart factories, environmental monitoring, transportation, and

so on [3]. IIoT systems usually run in real time where the

freshness of data is of great importance [4], [5].

Consider a typical IIoT consisting of a number of sen-

sors that monitor the dynamic physical process and report the
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status updates of the process to a base station (BS) for further

data analysis, visualization, control, and/or decision making.

The data freshness can be expressed by Age of Information

(AoI), a performance metric that characterizes the time interval

from the generation of the latest received information to the

current time [6]–[11]. Enhancing the information freshness

about the physical process encounters the challenging problem

of minimizing the value of AoI. Due to mutual interference

on the wireless channels, the sensors should not simultane-

ously transmit data to the BS, resulting in the problem of

sensor scheduling for improving AoI performance. In conven-

tional AoI minimization problems, sensors are often assumed

to always remain active and thus can transmit data when-

ever scheduled [12], [13]. However, this may be unaffordable

for commonly battery-powered sensors with limited energy in

IIoT [14]. Sometimes it is unnecessary to sample the physical

processes all the time when the process status changes slowly.

Motivated by duty-cycling sensors that operate in sleep and

active alternatively [15], [16], we introduce sleep modes for

sensors to save energy.

This article considers a typical IIoT single-hop application

scenario which has been described in the last paragraph. The

sensors are programmed to work in a cyclic sleep–wake pat-

tern. For each cycle, the sensor keeps in the sleep mode for

a fixed sleep time first, and after that, it keeps active until it

sends the updates successfully, then, it switches to the sleep

mode again and a new cycle begins. The higher the emergency

of the sensor, the shorter the sleep time is set. Moreover, the

sensors in the sleep mode are allowed not to collect or send

updates, so they are eager to provide fresh updates after they

switch to the active mode, which naturally leads to that the

AoI growth rate of active sensors should be higher than that of

the sleeping ones. It also makes sense from the perspective of

energy saving: the sensors want to send the data early so that

they can switch to the sleep mode early to save energy. Hence,

we propose a novel AoI-penalty function to capture the eager-

ness of information from active sensors. Specifically, the new

AoI-penalty function grows at different rates, thus offering the

system the property of overtaking which means that the AoI-

penalty presently with a lower value has a chance to overtake

that with a higher value afterward so that the corresponding

sensor can have the opportunity to be scheduled.

On this basis, we investigate the sleep–wake sensor schedul-

ing problem and formulate it as an AoI-penalty optimization

problem. We propose a max-weight-based scheduling policy

to solve the problem. At the beginning of every slot, the policy
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schedules an active sensor with the highest value of MWi(k)

(21) to send its updates. It is a lightweight policy because the

time complexity is O(M) for every decision (M is the number

of sensors in the network). Simulation results demonstrate that

the AoI-penalty performance of the proposed policy is close

to the theoretical lower bound, and that with the sleep–wake

sensors, the AoI performance is close to that with nonsleep

sensors but at a much lower energy cost. Besides, the results

demonstrate that the AoI of the important sensors is lowered

down. Our main contributions are summarized as follows.

1) We introduce a novel AoI-penalty function for sleep–

wake sensors and formulate an AoI-penalty-minimal

scheduling problem.

2) We analyze the convergence of the attainable AoI-

penalty and develop a lower bound of it.

3) We prove that the max-weight scheduling policy is

optimal if the network is symmetric and the channel is

error-free, and that it will run in a Round Robin pattern

when the network and the channel are symmetric.

4) We carry out simulations to evaluate the performance of

the proposed policy.

The remainder of this article is organized as follows.

Section II reviews more related work. Section III provides

the system model, introduces the AoI-penalty function, and

formulates the optimization problem. The convergence condi-

tion and lower bound of the problem solution are analyzed

in Section IV. Section V introduces the max-weight pol-

icy and discusses its properties. Section VI demonstrates

the simulation results, and finally Section VII concludes this

article.

II. RELATED WORK

Recently, as a metric of data freshness, AoI has attracted

increasing attention for the growing demand of real-time data

in communication networks. There are many variants of AoI

research. For example, the AoI with priority has been studied.

In [17], the updates from the sensors will send to the queue

and the arrivals of the updates obey the Poisson distribution.

They model the age process using a stochastic hybrid system

for AoI. But they do not consider the energy consumption and

the scheduling problem. Similar to [17], there are many studies

that optimize AoI with the consideration of queuing theory.

For example, to evaluate AoI for single-server queues [6] and

queuing system with packet deadlines [18].

Sensor scheduling for minimizing AoI is an impor-

tant research issue that has been studied in many works

[12], [19]–[26]. Such a problem is often coupled with sam-

pling for which the commonly considered sampling methods

are arbitrary sampling, periodic sampling, and per time slot

sampling [19]. For these, [19] develops a near-optimal sched-

uler that decides samples’ transmissions to minimize AoI. In

particular, with the per time slot sampling, sensors can collect

status at the beginning of every slot [12], [20]–[22]. In [12],

for the sensors under per time slot sampling, several schedul-

ing methods, including optimal stationary randomized policy,

max-weight policy, drift-plus-penalty policy, and Whittle’s

index policy, are derived and compared, and the results show

that the max-weight and drift-plus-penalty policies outper-

form the others. In [20], an SQRT-Weight policy is proposed

to schedule sensors to transmit their samples in networks

with multiple sensors and multiorthogonal channels. For min-

imizing a nonlinear form of AoI, a weighted directed graph

approach is adopted in [21] to decide sensor scheduling. There

have been a few works considering other sampling methods

[23], [24]. For example, in [23], considering that packets from

different streams randomly arrive, both an optimal stationary

randomized policy and a max-weight policy are developed to

schedule the packets in three types of queues: 1) first-in–first-

out queues; 2) single packets queues; and 3) no queues. In

order to minimize the age of correlated information in which

the information of application will not update until the latest

status from the certain set of devices is received, a deep-

reinforcement-learning-based approach is developed in [24]

to schedule devices. However, the sensors in the above stud-

ies keep active all the time, which causes a waste of energy

because many sensors in the active mode cannot be scheduled

due to channel conflict. Thereby, we introduce the sleep mode

for the sensor to save energy and study the sleep–wake sensor

scheduling problem to minimize AoI.

In IIoT, devices, such as battery-powered sensors and

energy-harvesting nodes, are energy constrained. Thus, how to

achieve AoI minimization while saving energy is a challenging

issue. In [27] where the sensors are assumed able to harvest

energy with either random battery recharge or incremental

recharge, the optimal status update policy to minimize AoI is

obtained based on theories of renewal processes. In [28], four-

power control schemes, including online scheduling, offline

power control, save-and-transmit, and fixed power transmis-

sion, are considered to minimize both AoI and distortion.

In [29], under transmission power constraints, the problem

of multisensor scheduling is formulated and converted to a

single-sensor-constrained Markov decision process, and then

the scheduling policy is obtained by linear programming.

Aside from power control, sleep modes can be allowed

for sensors in order to save their energy [30], [31]. In [30],

when waking up from the sleep mode, a sensor first per-

forms channel sensing and if it finds the channel busy, it

goes back to sleep; otherwise, it transmits packets for sta-

tus updating. To minimize AoI under the energy constraint,

proper sleep time parameters are obtained. However, such a

sleep model deprives the sensors of the opportunity to trans-

mit their updates when finding a busy channel (because they

will switch to the sleep mode afterward). Moreover, in some

cases, it is hard for the sensors to sense whether the channel

is busy or not. The channel sensing needs extra energy con-

sumption. Therefore, in this article, it is the BS that schedules

the sensors to send data, and the problem is formulated into a

sleep–wake sensor scheduling model. The work in [31] studies

the problem of minimizing the AoI of sleep–wake sensors in

wireless sensor-actuator networks and develops a greedy-based

scheduling policy. However, only the AoI of sensors in the

active mode is accounted for. Moreover, compared with [31],

we propose a novel AoI-penalty function to characterize the

desire for fresh data from sleep–wake sensors in their active

mode, while taking into account the sensors’ AoI in both active
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TABLE I
DEFINITION OF KEY NOTATIONS

and sleep modes. The AoI-penalty takes energy consumption

into account, which helps the system reduce energy consump-

tion, and it helps the BS offer the important sensors more

chances to send data.

III. SYSTEM MODEL

Consider that M sensors monitor some physical processes

and send measurements of the processes’ states through an

unreliable wireless channel to a BS. Ideally, all the sensors can

send real-time measurements to the BS such that the processes’

information at the BS is kept fresh all the time. However, prac-

tically there are some constraints on such an ideal model. First,

simultaneous transmissions may collide with each other due

to co-channel interference. In this article, we assume that at

most one sensor can be scheduled at a time to transmit mea-

surement data to the BS. Second, the wireless channel is lossy

even though only one sensor transmits data. In addition, for

energy-constrained sensors typical in IIoT, they are allowed to

sleep to save energy. Specifically, once a data packet of sensor

i is successfully received by the BS, the sensor is assumed to

switch to sleep mode for a fixed period of sleep time Ti. The

sleep time can be set in accordance with the physical processes

and the importance of sensors, e.g., the sleep time of the sensor

is set smaller when the physical process changes faster and the

corresponding sensor’s data is more important. Compared with

the duty cycling sensors, the sleep–wake sensors in this arti-

cle have more chances to provide fresh information. Because

the sleep–wake sensors will sleep for a period of time only

after the fresh data has been received by the BS. When the

sensors are in sleep mode, the BS has the fresh data from

the sensors, and it avoids the energy consumption that the

sensors remain active when it cannot be scheduled due to

channel conflict. However, the duty cycling sensors may still

sleep when the data from them is stale because they cycle into

sleep mode. The main notations used throughout this article

are summarized in Table I.

Let the time be slotted with slot index k ∈ {1, 2, . . . , K}. For

convenience, we set the length of each slot to 1 and assume

that Ti is an integer for any i. We assume that the transmission

delay for each sensor at any time is no more than one slot. At

the beginning of each slot, the BS makes scheduling decisions,

and at the end of each slot, the corresponding sensors which

are scheduled will get deliveries of feedback to inform them

whether their data is successfully received by the BS or not.

Let ui(k) ∈ {0, 1} denote the choice of the BS at time k such

that ui(k) = 1 means sensor i is selected to transmit measure-

ment data of its monitored process taken at the beginning of

slot k, and ui(k) = 0 means otherwise. As aforementioned, at

most one sensor can be scheduled to transmit data, i.e., ∀k

M
∑

i=1

ui(k) ≤ 1. (1)

We assume that a data transmission from sensor i will be

successfully received by the BS with probability pi ∈ (0, 1]

due to the lossy wireless channel. The channel is assumed to

be stable and pi does not change over time. Let di(k) = 1

denote that the BS successfully receives (by the end of slot k)

the data from sensor i sent at that slot and di(k) = 0 denotes

otherwise. Therefore

E[di(k)] = piE[ui(k)]. (2)

Denote by Ui(k) the generation time of the freshest data

the BS receives from sensor i by the end of slot k. Since the

transmission delay is no more than 1, we have

Ui(k) =
{

Ui(k − 1), if di(k) = 0

k, if di(k) = 1.
(3)

A. Age of Information With Penalty

From the perspective of the BS, by conventional definition,

the AoI associated with sensor i at the beginning of slot k is

k−Ui(k−1). Obviously, the AoI grows at a fixed rate (i.e., 1)

when the BS does not receive fresher data from that sensor.

AoI also can indicate the desire for fresh information. As a

sleeping sensor is allowed not to transmit data, once it wakes

up, it is eager to send its fresh data to the BS. If the sen-

sor stays in active mode for a longer time, it not only means

the sensor’s information at the BS stales but more energy of

the sensor is wasted for being active. Thus, it is reasonable

that active sensors that have been in the active mode for a

long time are more eager to provide fresh information than

those who have just woken up. Therefore, we propose an AoI-

penalty function to represent the property mentioned above,

which makes the sensors that stay in the active mode for a

long time easier to be scheduled [7], [32], [33]. Specifically,

we set the growth rate of the AoI of sensor i as 1 and wi > 1

when it is in sleep mode and active mode, respectively. For our

system model, sensors are more eager to transmit information

when they switch to the active mode. Because they can pro-

vide fresh data when they are active and they can switch to

the sleep mode early to save energy if they send the data out

early. The more urgent the sensor is (smaller Ti), the more

eager it is to send data in the active mode, because smaller
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Fig. 1. Example of AoI-penalty.

Ti means the corresponding physical process is more impor-

tant and changes faster. As a consequence, wi and Ti should

be negatively correlated and wi should be greater than 1 but

not too large. In addition, sensors with the same value of Ti

have the same value of wi. An example of the setting of wi

is provided in (25). In addition, the AoI-penalty function as

introduced above brings new properties that traditional AoI

does not have.

1) As shown in Fig. 1, consider that the BS schedules the

sensor with the highest value of AoI at each time. With

different growth rates, the AoI of sensor a is allowed

to overtake that of sensor b, thus granting a the chance

to be scheduled afterward. This overtaking property pre-

vents the BS from scheduling the sensors that just wake

up after a long sleep time rather than the sensors with

short sleep time which have stayed in the active mode

for a long time.

2) According to our definition, the sleep time can reflect the

importance of sensors. The setting of AoI-penalty may

offer the sensors with shorter sleep time (more important

sensors) more chances to send their information due to

the higher value of wi.

3) The sensors in the active mode may be in sampling,

transmitting data, or waiting, which consumes more

energy than being in sleeping mode. In this sense,

the proposed AoI-penalty function reflects the energy

consumption of sleep–wake sensors. Optimizing AoI-

penalty will also optimize energy consumption.

Upon successfully receiving the data from sensor i, the BS

resets wi as 1 for the time period from the data reception time

to the end of the corresponding slot.

B. Optimization Problem

Let ji(k) indicate the number of slots that the sensor i has

stayed in the active mode since it waked up from the last sleep

mode, at the beginning of slot k. In particular, let ji(k) = −1

if sensor i is in the sleep mode during slot k, then we have

ji(k) =
{

k − Qi(k − 1), if k ≥ Qi(k − 1)

−1, otherwise
(4)

where Qi(k) = Ui(k) + Ti + 1.

Let � be the set of all feasible scheduling policies. Denote

by π ∈ � an arbitrary admissible policy. At the beginning of

slot k, policy π be either keeping idle or selecting a sensor

in the active mode to transmit update. Let �i(k) represent the

AoI-penalty of sensor i at the beginning of slot k

�i(k + 1) =

⎧

⎨

⎩

1, if di(k) = 1

�i(k) + 1, if di(k) = 0 and ji(k) = −1

�i(k) + wi, if di(k) = 0 and ji(k) ≥ 0.

(5)

We adopt the expected sum of AoI-penalty to characterize

the freshness of the information of the entire network when

the BS employs policy π

�π = 1

KM
E

[

K
∑

k=1

M
∑

i=1

�i(k)

∣

∣

∣

��(1), �U(0)

]

(6)

where ��(1) = [�1(1) �2(1) · · · �M(1)]T and �U(0) =
[U1(0) U2(0) · · · UM(0)]T are the vectors which indicate

the initial state of the network. We assume that �i(1) = 1

and Ui(0) = 0 ∀i, and omit ��(1) and �U(0) henceforth.

Then, we can build an AoI-penalty optimization-scheduling

problem

min
π∈�

lim
K→+∞

1

KM
E

[

K
∑

k=1

M
∑

i=1

�i(k)

]

(7a)

s.t.

⎧

⎨

⎩

ui(k)ji(k) ≥ 0 ∀k ∀i

ui(k) = {0, 1} ∀k ∀i
∑M

i=1 ui(k) ≤ 1 ∀k.

(7b)

Let �∗ denote the optimal expected sum of AoI-penalty.

There are three constraints in (7): the first constraint ensures

that the selected sensor is in the active mode, the second one

means a scheduling choice, while the last one ensures that at

most one sensor is scheduled in a slot.

IV. PROBLEM ANALYSIS

A. Convergence Condition

First, we analyze the convergence of �π when K → ∞ so

that we can narrow the search range of the scheduling policies.

A convergence analysis shows the condition the scheduling

policy π needs to meet if this policy makes �π converge to

a finite value.

Theorem 1 (Necessary Condition for Convergence): If a

scheduling policy π makes �π converge to a finite value as

K → +∞, it should satisfy the following condition: ∀t′ ∈
[1,+∞) and ∀i ∈ {1, 2, . . . , M}

Pr

( ∞
∑

k=t′
ui(k) ≥ 1

)

= 1. (8)

Proof: The proof is shown in Appendix A.

Theorem 1 reveals that the system will not appear as fol-

lows: with a positive probability, starting from a certain time
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Algorithm 1: Obtaining the Lower Bound

Input: input parameters M, Ti, pi, w, ζ

1 if Ti ≡ 0 then

2 M[Ii] ← 1
pi

, ∀i

3 if the second part of (14b) is not satisfied then

4 LB ← w0
(

∑M
i=1

√
1/pi

)2

2M
+ 2−w0

2
5 else

6 LB ←∑M
i=1 f (M[Ii])/M

7 end

8

9 else

10 λ ← 0;

11 M[Ii] ← max

{

Ti + 1
pi

,

√

(wi−1)(Ti+T2
i )

wi

}

, ∀i

12 if the second part of (14b) is not satisfied then

13 u ← min{w1, w2, . . . , wM}/(2M), l ← 0

14 repeat

15 λ ← (l + u)/2

16 M[Ii] ← max

{

Ti + 1
pi

,

√

(wi−1)(Ti+T2
i )

wi−2Mλ

}

, ∀i

17 if
∑M

i=1 M[Ii] ≥
(

∑M
i=1

√

1
pi

)2
then

18 u ← λ

19 else

20 l ← λ

21 end

22 until u − l ≤ ζ ;

23 end

24 LB ←∑M
i=1 f (M[Ii])/M

25 end

26 return LB

slot, at least one sensor keeps idle all the time. According to

Theorem 1, the scheduling policies should satisfy the neces-

sary condition. Beyond that, Theorem 1 helps us prove some

theorems in the following part.

B. Lower Bound of the Performance

Assume that there is an admissible policy π that meets all

the constraints in (7b) and ensures each sensor will be sched-

uled during a finite time interval (Theorem 1). Denote by �

the sample space of the network and by ω ∈ � the sample path

associated with policy π for the time horizon of K slots. For

this sample path, let Di(K) =∑K
k=1 di(k) be the total updates

received by the BS during the K slots, and Ii[m] be the interde-

livery time associated with the deliveries of the updates come

from sensor i, i.e., Ii[m] is the number of slots between the

(m−1)th and mth updates delivered by sensor i. Let Ri be the

number of remaining slots after the last delivery of update by

sensor i. Then, we can denote time horizon K as follows:

K =
Di(k)
∑

m=1

Ii[m] + Ri ∀i ∈ {1, 2, . . . , M} (9)

where Ii[m] ≥ Ti +1, because sensor i is able to be scheduled

only when it is in the active mode. We use the operator M[x] to

represent the mean of a set of values x. With such a definition,

let the mean of Ii[m] and I2
i [m] be

M[Ii] = lim
K→+∞

1

Di(K)

Di(K)
∑

m=1

Ii[m] (10)

M[I2
i ] = lim

K→+∞
1

Di(K)

Di(K)
∑

m=1

I2
i [m]. (11)

Below we obtain a lower bound of the optimal solution.

Lemma 1: The optimal AoI-penalty of (7) meets the

following:

�∗ ≥ 1

M

M
∑

i=1

f (M[Ii]) (12)

where

f (M[Ii]) = wiM[Ii]

2
+ (wi − 1)(Ti + T2

i )

2M[Ii]

+ 2Ti − 2wiTi + 2 − wi

2
. (13)

Proof: The proof is supplied in Appendix B.

Lemma 2: A lower bound LB of the optimization

problem (7) can be obtained by solving

LB = min
M[Ii]

1

M

M
∑

i=1

f (M[Ii]) (14a)

s.t.

⎧

⎨

⎩

M[Ii] ≥ Ti + 1
pi

∀i

∑M
i=1 M[Ii] ≥

(

∑M
i=1

√

1
pi

)2

.
(14b)

Proof: The proof is offered in Appendix C.

Theorem 2 (Lower Bound): LB can be obtained by solving

problem (14) with Algorithm 1. The w0 in Algorithm 1 is the

value of w when the sleep time T is 0.

Proof: The proof is provided in Appendix D.

Notice that ζ in Algorithm 1 is the parameter which influ-

ences the accuracy of the solution, and the value of it should

be small. Theoretically, we have obtained the lower bound of

the optimization problem in (7), which can help us analyze

the performance of scheduling policies.

V. MAX-WEIGHT POLICY

It is difficult to obtain the optimal low-complexity solution

to (7) because of its real-time scheduling decisions, random-

ness, infinite states, infinite time horizon, and the property

of nonconvex (ui(k) ∈ {0, 1} makes the feasible set noncon-

vex). In [12], [13], [29], and [31], the optimal low-complexity

solutions are also difficult to obtain for similar problems.

Max-weight policy and drift-plus-penalty policy have better

performance in [12]. Therefore, in this section, we adopt the

lightweight scheduling policy: max-weight policy. It mini-

mizes the drift of a Lyapunov function of the system state

during every slot and it meets the condition in Theorem 1.

Compared with [12] and [13], this article takes into account
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the sleep mode and nonlinear AoI, which makes it challenging

to analyze the system’s performance.

In this section, we introduce the proposed policy (or the MW

policy for short) based on the concept of max-weight which

has been used to deal with AoI scheduling problem in [12]

and [13]. Using concepts from Lyapunov optimization [34],

the MW policy can be obtained by minimizing the drift of a

Lyapunov function of the system state during every slot. The

state of the system during every slot is

Sk = {�i(k), ji(k)}M
i=1. (15)

For every slot, define the quadratic Lyapunov function as

L(Sk) = 1

2

M
∑

i=1

�2
i (k) (16)

which indicates the AoI-penalty of the system during slot k.

Obviously, we can calculate L(Sk) by the system state during

slot k. We define Lyapunov drift which describes the expected

change in function L(Sk) from one slot to the next slot

G(Sk) = E
[

L(Sk+1) − L(Sk) |Sk

]

. (17)

Consequently, if we want to lower down the value of system

AoI-penalty in (6), we need to keep L(Sk) small by reducing

G(Sk) for every slot. Substituting (16) into (17), we can get

G(Sk) = 1

2

M
∑

i=1

E[(�2
i (k + 1) − �2

i (k) |Sk]. (18)

Sensor i can be scheduled at the beginning of slot k only

when it is in the active mode, i.e., ji(k) ≥ 0 or �i(k) ≥ Ti +1.

Therefore, we just discuss the case where sensors are active

E

[

�2
i (k + 1) |Sk

]

= (�i(k) + wi)
2(1 − piE[ui(k) |Sk])

+ piE[ui(k) |Sk]. (19)

Manipulating (19) yields that

E[�2
i (k + 1) − �2

i (k) |Sk]

= −piE[ui(k) |Sk][(�i(k) + wi)
2 − 1] + wi(2�i(k) + wi).

(20)

In order to reduce G(Sk) during every slot, we need to deter-

mine the value of {ui(k)}M
i=1 at the beginning of every slot. We

should consider (18) and (20) to determine the value of ui(k).

Notice that only the first term of (20) can be affected by the

choice of ui(k) of active sensors. So, we extract the first term

of (20), remove ui(k) and minus sign

MWi(k) = pi[(�i(k) + wi)
2 − 1]. (21)

Remark 1: In order to minimize (18), the MW policy

selects the active sensor with the highest MWi(k) to trans-

mit the update at the beginning of each slot k. In addition, the

policy is set to select the one with the smallest serial number

to break the tie if two or more sensors have the same value

of MWi(k).

An example of the detailed operations of the MW policy is

illustrated in Fig. 2. Assume that there are two sensors in the

network. The parameters are T1 = 3, T2 = 4, p1 > p2, and

Fig. 2. Example of the operation of the MW policy.

w1 > w2. At the beginning, the two sensors are in sleep mode,

and the BS cannot schedule any of them to send data. Then,

sensor 1 and sensor 2 switch to active mode successively. The

BS schedules sensor 1 to send data because the value of MW1

is higher. When sensor 1 sends the data successfully, it will

receive an acknowledgment from the BS, and then sensor 1

switches into the sleep mode (the BS knows sensor 1 will sleep

for three slots). After that, the BS begins to schedule sensor

2 because it is still active. Assume that the transmission fails

all the time and sensor 1 switches into the active mode again

(the BS knows sensor 1 will be active at that time). Moreover,

we assume that the value of MW1 overtakes MW2. Then, the

BS stops scheduling sensor 2 and begins to schedule sensor 1.

The later operation process can be seen in Fig. 2.

A. Performance Analysis

From (21), we can find that if one sensor is idle from a

certain slot, there is at least one sensor’s transmission fails all

the time. However, pi is greater than 0 for all i. The probability

of such an event will not be a positive number. Therefore, we

can obtain Remark 2.

Remark 2: The MW policy meets the necessary condition

in Theorem 1.

Assume that the network is symmetric (all the sensors adopt

the same sleep times Ti ≡ T so that wi ≡ w) and the channel is

symmetric (pi ≡ p). At the beginning of slot k, MW schedules

sensor i because the value of �i(k) + w is the highest among

the active sensors. Assume this transmission fails and we can

get �i(k+1) = �i(k)+w. The growth rates of AoI-penalty of

other sensors are not greater than sensor i. According to (21)

and pi ≡ p, we have the following remark.

Remark 3: When the network and the channel are sym-

metric, once a sensor is scheduled, MW does not switch

scheduling decisions until the sensor transmits the update

successfully.

The following theorem reveals a special working pattern for

MW when the network and the channel are symmetric.

Theorem 3 (Round Robin Pattern): When the network is

symmetric, the necessary and sufficient condition of the MW

policy generates the Round Robin pattern (the sensors transmit
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data in the order 1, 2, . . . , M, 1, 2, . . . , M, 1, 2, . . .) is that the

channel is symmetric.

Proof: The proof is provided in Appendix E.

In fact, when the network and channel are symmetric, MW

schedules one active sensor with the highest value of �i(k) to

transmit the update to the BS at the beginning of each slot k,

which is the greedy policy in [13].

Remark 4: The MW policy will degenerate into the Greedy

policy if the network and the channel are symmetric.

According to Theorem 3, we can get the following corollary.

Corollary 1: MW generates a Round Robin pattern when

the network is symmetric and the channel is error-

free (pi ≡ 1).

Then, we can get some properties of MW when the network

is symmetric and the channel is error-free.

Corollary 2: For a symmetric network and an error-free

channel, as K → ∞, the expected sum of AoI-penalty under

MW becomes

�MW =
{

T
2

+ 1, if M < T + 1

f (M), if M ≥ T + 1
(22)

where f (·) has been defined in (13).

Proof: According to Corollary 1, each sensor is in cycle

mode after slot T + M. If M < T + 1 and k ≥ T + M + 1,

the change rule of the value of AoI-penalty for all the sensors

during one transmission cycle is {1, 2, . . . , T +1}. In addition,

if M ≥ T + 1, the change rule of the value of AoI-penalty for

all the sensors during one transmission cycle is {1, 2, . . . , T +
1, T + 1 + w, . . . , T + 1 + (M − T − 1)w}. According to the

renewal processes, we can get (22) by the strong law of large

numbers [35].

Next, we prove that MW is optimal when the network is

symmetric and the channel is error-free.

Theorem 4 (Optimality of Max-Weight Policy): If the

network is symmetric and the channel is error-free, as

K → ∞, the MW policy attains the minimum expected

sum of AoI-penalty in (6) among all the admissible policies

and it is the solution to the optimization problem in (7).

Furthermore, the corresponding optimal AoI-penalty is

�∗ =
{

T
2

+ 1, if M < T + 1

f (M), if M ≥ T + 1.
(23)

Proof: The proof is provided in Appendix F.

In addition, according to the operation process in Section V,

we can get Remark 5.

Remark 5: The MW policy needs to calculate the value of

{MWi(k)}M
i=1 for every decision, so the time complexity of it

is O(M).

B. Discussion

Based on the proposed MW policy, the scheduling decisions

are made by the BS in a centralized manner at every slot. In

order to make the decisions, the BS needs to know the current

{�i}M
i=1 and the working modes of the sensors. Fortunately, for

each sensor i, by the definition of AoI in (5), �i(k) is known

by the BS, so is the working mode of sensor i. Therefore,

during each slot, the BS can make the scheduling decision by

himself, given the parameters {Ti}M
i=1 and {pi}M

i=1. Specifically,

(a)

(b)

Fig. 3. Performance comparisons of different policies. (a) Comparison under
different numbers of sensors M. (b) Comparison under different weight α.

the initial state of each sensor is assumed to be �i(1) = 1

and Ui(0) = 0. Given the BS the parameters {Ti}M
i=1, it can

calculate {wi}M
i=1 by the definition of the penalty function such

as in (25). Each sensor will sleep for a fixed time Ti after

successfully sending a data packet to the BS, and then keeps

active until it is scheduled by the BS and successfully sends

its current packet. Therefore, the BS also knows the working

modes of the sensors during every slot.

In this article, we assume that the number of sensors in

the system is a constant. However, our method can be easily

extended to the cases with sensors join/leave the networks.

Take that a new sensor joins the network for example. Upon

finishing the necessary association processes with the BS, the

sensor sends its sleep time, say Ti, to the BS. The BS evaluates

the channel quality in terms of pi. Then, the BS can make

scheduling decisions based on our proposed method with the

new sensor accounted.

VI. SIMULATION RESULTS

In this section, we compare the performance of the proposed

policy with three other scheduling policies: 1) greedy policy;

2) optimal stationary randomized policy (OSR); and 3) drift-

plus-penalty policy (DPP). Different from [12], Stationary
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(a) (b) (c)

Fig. 4. Probability distribution of active time of the sensors with different emergency during one successful transmission. (a) Sleep time T = 1. (b) Sleep
time T = 4. (c) Sleep time T = 38.

Randomized policy in this article schedules a sensor i with a

fixed probability βi ∈ (0, 1] if the sensor is in active mode.

According to the renewal process, we can derive a closed-form

expression for (6) under Stationary Randomized Policy. Then,

we can obtain the Optimal Stationary Randomized Policy OSR

by using nonlinear optimization techniques. Given space lim-

itations, we do not show how to solve the problem, but we

will adopt OSR in simulations. The DPP policy adds a penalty

term to the MW policy, and in our simulations, the penalty is

set as

1

2

M
∑

i=1

ln

(

Tmax

Ti

)

E[(�i(k + 1) |Sk] (24)

in the sense that sensors with short sleep time may gain more

chances to be scheduled.

We evaluate the performance of these policies in terms of

the expected sum of AoI-penalty as given in (6). Then, we

use simulations to study the characteristics of our AoI-penalty

function from the perspective of active time and the AoI of

each sensor. Finally, we compare the performance in AoI and

energy consumption between the sleep–wake sensors in this

article and the nonsleeping sensors, such as in [12], [13],

and [29]. The setting of wi in the simulation is

wi =
{

α

(

1 + 1−e−Tmax/Ti

1+e−Tmax/Ti

)

, if Ti �= 0

2α, if Ti = 0
(25)

where Tmax = max{T1, T2, . . . , TM}. The weight α ≥ 1 repre-

sents how much the sensor is eager to send data in its active

mode compared to the sleep mode. The above shows that

wi and Ti are negatively correlated and 1 ≤ α < wi < 2α

(Ti �= 0). The default parameter settings are M = 20, K = 105,

α = 1, and pi = i/M, wi is set as in (25). The sleep time Ti

is randomly generated within [1, 2M].

Fig. 3(a) shows the results of an average of 2000 simulations

with fixed K = 105 and α = 1, which shows simulation results

with different M ∈ {3, 6, . . . , 30}. Fig. 3(b) shows the results

of an average of 2000 simulations with fixed M = 20 and

K = 105, which shows simulation results with different α ∈
{1.1, 1.2, 1.3, . . . , 2.0}. From Fig. 3(a) and (b), we can find the

MW policy and DPP policy have better AoI performance in

our simulations than OSR policy and Greedy policy. The result

of the MW policy and DPP policy is close to the lower bound.

Fig. 5. Average active time with different emergency and different α during
one successful transmission.

The performance of DPP and MW is similar because they only

differ in the penalty term. Notice that the reason why OSR

policy performs worst is that it wastes a lot of opportunities

to schedule sensors.

Next, we do some simulations on the performance of the

sensors of high and low emergency, respectively, where the

differences in sensors’ emergency are achieved by setting dif-

ferent sleep time periods. Fig. 4 demonstrates the distribution

of the active time of three sensors of different emergency under

the MW policy, where p ≡ 0.5, K = 105, and M = 20. Fig. 5

demonstrates the average active time of the sensors in Fig. 4.

Fig. 4(a) and the left part in Fig. 5 represent the sensor with the

highest emergency (T = 1), where we can see that the larger

α is, the shorter the average active time of the sensor is. Most

of the active time is between 20 and 50 slots. Fig. 4(b) and the

middle part in Fig. 5 reflect the performance of the sensor with

the second highest emergency (T = 4), and its performance

is similar to that of the sensor with the highest emergency. In

contrast, as shown in Fig. 4(c) and the right part in Fig. 5, the

average active time of the sensor with the lowest emergency

(T = 38) indicates that the larger α is, the larger the average

active time of the sensor is. This is because the AoI-penalty

function and the MW policy offer the important sensors more

chances to send data but at the cost that the scheduling oppor-

tunities of unimportant sensors are sacrificed. The larger the

value of α is, the more obvious the above property is.

In order to figure out whether our AoI-penalty function

helps important sensors offer fresh information, we do further
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Fig. 6. Under different AoI model, the conventional AoI performance of
each sensor.

Fig. 7. Performance comparison of AoI and energy consumption between
sleep–wake and nonsleeping sensors.

simulations. Fig. 6 shows the conventional AoI performance

of each sensors, where K = 105, M = 10, and α = 3 and

the MW policy is adopted. In order to make AoI comparable,

the AoI in Fig. 6 is conventional while our model operates

in the AoI-penalty function. The conventional AoI grows at

a fixed rate of 1 when no fresh information is provided [12].

The conventional AoI of the three sensors with shorter sleep

time (T = 1, 2, 3) is lower in our AoI-penalty function, which

demonstrates our AoI-penalty function sacrifices the AoI of the

sensors with larger sleep time to provide smaller AoI for the

sensors with smaller sleep time. Therefore, our AoI-penalty

can provide fresh information for the important sensors (the

sensors with smaller sleep time).

Then, in order to figure out whether sleep mode can help

sensors strike a balance between fresh samples and energy

conservation, we simulate two groups of sensors and compare

the performance of AoI and energy consumption. The sen-

sors in the first group are equipped with sleep mode while

the sensors in the second group do not have sleep time and

are nonsleeping. In order to make AoI comparable, the AoI in

Fig. 7 is conventional while our model operates in sleep–wake

and AoI-penalty function. Same to [36], we set the power con-

sumption in sleeping, active, and transmitting data modes as

15 µW, 13.5 mW, and 24.75 mW, respectively. Fig. 7 shows

the results of an average of 2000 simulations with α = 1

and K = 105 under the MW policy. As shown, the AoI

performance of the sensors equipped with sleep mode is quite

close to the nonsleeping sensors while the sleep–wake sensors

can save a lot of energy.

VII. CONCLUSION

In this article, the sensors can work in the sleep–wake mode

to save energy and enhance lifetime. We design an AoI-penalty

function to express the need for fresh information of active

sensors and establish an AoI-penalty optimization-scheduling

problem. Then, we introduce a max-weight-based scheduling

policy and prove that it is the optimal policy when the network

is symmetric and the channel is error-free. In addition, the MW

policy will operate in a Round Robin pattern when the network

and the channel are symmetric. In the simulation results, the

AoI-penalty performance of the MW policy is close to the

lower bound. It is also found that the penalty function lowers

down the AoI of the important sensors. In addition, the simu-

lation result shows that sleep–wake sensors in this article can

save a lot of energy and provide a good AoI performance. In

our future work, we will optimize AoI with a joint analysis of

dynamic sleep time and scheduling policies when the sensors

are equipped with limited energy.

APPENDIX A

PROOF OF THEOREM 1

Under a scheduling policy π , let β > 0 be the probability

of the following event: ∃i′, k′ ∈ N
+, sensor i′ is no longer

scheduled after slot k′. When the event occurs as K → +∞,

we assume the value of �π still can converge to a finite value.

Then, we adopt reduction to absurdity.

Without loss of generality, we can assume the last time the

BS receives the update from sensor i′ is the end of slot k′ −1.

Then, we can get Ui′(k) = Ui′(k
′ − 1) = k′ − 1 when k ≥ k′.

According to (6), we can get

�π ≥ β

K

K
∑

k=1

M
∑

i=1

�i(k)

= β

K

⎛

⎜

⎜

⎝

K
∑

k=1

M
∑

i=1
i �=i′

�i(k) +
k′−1
∑

k=1

�i′(k) +
K
∑

k=k′
�i′(k)

⎞

⎟

⎟

⎠

. (26)

Extracting the last term of the above equation and applying

the formula of the sum of arithmetic progression, we have

β

K

K
∑

k=k′
�i′(k)

= β[T2
i′ + Ti′ ]

2K
+ β[ji′(K) + 1][2Ti′ + 2 + wi′ ji′(K)]

2K
.

(27)

The second term of (27) is infinite as K → ∞ because the

order of K on the molecule is higher. In addition, the first

two terms of (26) are nonnegative and hence �π → ∞ as

K → ∞, which conflicts with the hypothesis.

APPENDIX B

PROOF OF LEMMA 1

Within each Ii[m] interval, the initial value of �i(k) is 1, the

value of �i(k) grows 1 every slot when sensor i is in the sleep

mode and grows wi every slot when sensor i is in the active

mode. According to the limit we have mentioned, the value
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of Ri is finite even when K → +∞. Therefore, the sum of

�i(k) during the remaining time is finite and its influence on

the value of (6) can be ignored when K → +∞. Then, the

time-average AoI-penalty of sensor i when K → +∞ can be

written as

lim
K→+∞

1

K

K
∑

k=1

�i(k)

= lim
K→+∞

Di(K)
∑

m=1

T2
i + Ti

2K

+ lim
K→+∞

Di(K)
∑

m=1

(Ii[m] − Ti)(2Ti + 2 + wi(Ii[m] − Ti − 1))

2K

= lim
K→+∞

1

K

Di(K)
∑

m=1

(

wi

2
I2
i [m] + 2Ti − 2wiTi + 2 − wi

2
Ii[m]

)

+ lim
K→+∞

1

K

Di(K)
∑

m=1

(wi − 1)(Ti + T2
i )

2
. (28)

Combining (9) and (10) yields

lim
K→+∞

K

Di(K)
= M[Ii] + lim

K→+∞
Ri

Di(K)
. (29)

According to Theorem 1, the policy π we adopt makes

Di(K) → +∞ when K → +∞. Substituting (29) into (28)

and applying the limit of Ri yield that

lim
K→+∞

1

K

K
∑

k=1

�i(k)

= lim
K→+∞

Di(K)

K

1

Di(K)

Di(K)
∑

m=1

wi

2
I2
i [m]

+ lim
K→+∞

Di(K)

K

1

Di(K)

Di(K)
∑

m=1

2Ti − 2wiTi + 2 − wi

2
Ii[m]

+ lim
K→+∞

Di(K)

K

1

Di(K)

Di(K)
∑

m=1

(wi − 1)(Ti + T2
i )

2

= wiM[I2
i ]

2M[Ii]
+ 2Ti − 2wiTi + 2 − wi

2
+ (wi − 1)(Ti + T2

i )

2M[Ii]

≥ wiM[Ii]

2
+ (wi − 1)(Ti + T2

i )

2M[Ii]
+ 2Ti − 2wiTi + 2 − wi

2

� f (M[Ii]) (30)

where the above inequality applies Jensen’s inequality. Taking

the derivative of f (M[Ii]) with respect to M[Ii], we can see

that f (M[Ii]) is monotonically increasing when

M[Ii] ≥
√

T2
i + Ti − T2

i /wi − Ti/wi. (31)

As mentioned above: Ii[m] ≥ Ti + 1, therefore

M[Ii] ≥ Ti + 1 >

√

T2
i + Ti − T2

i /wi − Ti/wi (32)

which leads to that f (M[Ii]) ≥ f (Ti + 1) > 0.

Since limK→+∞(1/K)
∑K

k=1 �i(k) is positive for all the

admissible policies and all the sample path, by Fatou’s

lemma, we can obtain limK→+∞ E[(1/K)
∑K

k=1 �i(k)] ≥
E[ limK→+∞(1/K)

∑K
k=1 �i(k)].

As a consequence, from (7a), we can get �∗ ≥
(1/M)

∑M
i=1 E[f (M[Ii])]. Then, by removing the expectation

operation due to the strong law of large numbers, inequal-

ity (12) is acquired.

APPENDIX C

PROOF OF LEMMA 2

Assume that the policy π schedules sensor i once it switches

to the active mode and does not schedule other active sensors

unless the sensor i that is being scheduled has successfully

transmitted its update to the BS. Then, the number of times

sensor i is scheduled during a successful transmission interval

is a geometric random variable. The behavior above leads to

the lower bound of M[Ii]

M[Ii] ≥ Ti + 1

pi

. (33)

Let ϒi(K) represent the number of times the sensor i is

scheduled up to and including slot K. Because the BS allows

at most one sensor to be scheduled per slot, we can get

M
∑

i=1

ϒi(K) =
K
∑

k=1

M
∑

i=1

ui(k) ≤ K. (34)

With the strong law of large numbers, we know

lim
K→+∞

Di(K)

ϒi(K)
= pi. (35)

Combining (29), (34), and (35)

M
∑

i=1

M[Ii] = lim
k→+∞

M
∑

i=1

K

Di(K)

≥ lim
k→+∞

(

M
∑

i=1

ϒi(K)

)(

M
∑

i=1

1

Di(K)

)

(a)
≥ lim

k→+∞

(

M
∑

i=1

√

ϒi(K)

Di(K)

)2

=
(

M
∑

i=1

√

1

pi

)2

(36)

where (a) adopts the Cauchy–Schwarz inequality. Combining

the constrains with Lemmas 1 and 2 can be proved.

APPENDIX D

PROOF OF THEOREM 2

Consider an arbitrary i ∈ {1, . . . , M}. For the case: Ti ≡ 0,

the second term in f (M[Ii]) is equal to zero and we can get

1

M

M
∑

i=1

f (M[Ii]) =
M
∑

i=1

wiM[Ii]

2M
+

M
∑

i=1

2 − wi

2M
. (37)

The problem can be solved through linear programming.

First, let M[Ii] = 1/pi ∀i. If the second part of (14b) can

be satisfied, we substitute M[Ii] = 1/pi into (14a) and get
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the value of LB. However, if (14b) cannot be satisfied, we

substitute the equation below into (14a) and get the value of LB

M
∑

i=1

M[Ii] =
(

M
∑

i=1

√

1

pi

)2

. (38)

This process is realized from lines 1–7 in Algorithm 1.

For other cases, we can analyze the KKT conditions to

get LB. Let {γi}M
i=1 be the KKT multipliers associated with

the relaxation of the first part of (14b) and λ be the KKT

multipliers associated with the relaxation of the second part

of (14b). Then, for λ ≥ 0 and γi ≥ 0, we can define

L(M[Ii], λ, γi) = 1

M

M
∑

i=1

f (M[Ii])

+
M
∑

i=1

γi(Ti + 1

pi

− M[Ii])

+ λ

⎡

⎣

(

M
∑

i=1

√

1

pi

)2

−
M
∑

i=1

M[Ii]

⎤

⎦ (39)

otherwise, we can define L(M[Ii], λ, γi) = +∞. So, we can

obtain the KKT conditions.

1) The Stationarity is ∇
M[Ii]

L(M[Ii], λ, γi) = 0.

2) The first Complementary Slackness is γi(Ti + (1/pi) −
M[Ii]) = 0.

3) The second Complementary Slackness is

λ[(
∑M

i=1

√
(1/pi))

2 −∑M
i=1 M[Ii]] = 0.

4) The Primal Feasibilities are M[Ii] ≥ Ti + (1/pi) and
∑M

i=1 M[Ii] ≥ (
∑M

i=1

√
(1/pi))

2.

5) The Dual Feasibilities are γi ≥ 0 ∀i and λ ≥ 0.

In order to get stationarity, ∇
M[Ii]

L(M[Ii], λ, γi) = 0, we

need to calculate the partial derivative of L(M[Ii], λ, γi) with

respect to M[Ii]

M[Ii] =
√

(wi − 1)(Ti + T2
i )

wi − 2Mγi − 2Mλ
. (40)

According to (40) and the KKT conditions, first, we assume

that λ = 0, so the solution is

M[Ii] = max

⎧

⎨

⎩

Ti + 1

pi

,

√

(wi − 1)(Ti + T2
i )

wi

⎫

⎬

⎭

(41)

if the solution cannot meet the constraint of the second part

of (14b), we can get λ �= 0. If λ �= 0, the solution is

M[Ii] = max

⎧

⎨

⎩

Ti + 1

pi

,

√

(wi − 1)(Ti + T2
i )

wi − 2Mλ

⎫

⎬

⎭

(42)

where the solution should meet constraint 3) of KKT condi-

tions. In this case, we need to find the solution of λ. Lines

8–24 in Algorithm 1 adopt the bisection method to get the

solution of λ. Algorithm 1 can get the value of LB by finding

the optimal {M[Ii]}M
i=1.

APPENDIX E

PROOF OF THEOREM 3

First, we prove the necessary condition. Reorder the sensor

index {i} in descending order of pi. At the beginning, all the

sensors are in sleep mode. Then, during slot T + 1, all the

sensors switch to the active mode and the MW policy selects

the active sensor with the highest value of MWi(T + 1) to

transmit update. Manipulating (21), we have

MWi(k) = pi�
2
i (k) + 2piw�i(k) + pi(w

2 − 1). (43)

From Fig. 8, during slot T + 1, we can know sensor 1 is

scheduled because the value of p1 is highest among all the

active sensors. Let ni,j represent the number of scheduling

required for the jth successful transmission of sensor i. During

slot T +1+n1,1, the BS begins to schedule sensor 2. However,

from slot 2T +1+n1,1 to 2T +1+n1,1 +nx,1 +· · ·+nM,1 −1,

sensor 1 is in the active mode again, which is shown in Fig. 8.

Notice that x is the sensor that is being scheduled during slot

2T + 1 + n1,1. Although sensor x may have been scheduled

several times before slot 2T + 1 + n1,1, it has no effect on

the following derivation. From slot 2T + 1 + n1,1 to 2T + 1 +
n1,1 + nx,1 + · · · + nM,1 − 1, if sensor M has not finished its

transmission task, we should keep MW1(k) < MWM(k) during

the time interval so that the scheduling order is (1, 2, . . . , M).

As a consequence, for z ∈ {0, 1, 2, . . . , nx,1 + · · · + nM,1 − 1},
we obtain the following inequality:

p1

[

(T + 1 + zw)2 − 1
]

< pM

[

(

T + 1 + (T + n1,1 + z)w
)2 − 1

]

.

(44)

Later, sensor 1 will be scheduled again. However, from slot

3T +1+n1,1 +nx,1 +· · ·+nM,1 +n1,2 to 3T +1+n1,1 +nx,1 +
· · ·+nM,1+n1,2 +ny,2+· · ·+nM,2 −1, sensor 1 is in the active

mode again, which is shown in Fig. 8. The meaning of sensor

y is like sensor x. Therefore, similar to the derivation in the

previous paragraph, for z ∈ {0, 1, 2, . . . , ny,2 +· · ·+nM,2 −1},
we obtain the following inequality:

p1[(T + 1 + zw)2 − 1] < pM

[

(

T + 1 + (n1,2 + z)w
)2 − 1

]

.

(45)

Then, the system goes into a cycle and the scheduling order

is (1, 2, . . . , M, 1, 2, . . .).

From (44), (45), n1,1 ≥ 1, and n1,2 ≥ 1, we can get

p1

pM

<
[T + 1 + (v + 1)w)]2 − 1

[T + 1 + vw)]2 − 1
(46)

where v ≥ 0. We can deduce that the right-hand side of the

inequality (46) decreases as v increases. We have

p1

pM

< lim
v→+∞

[T + 1 + (v + 1)w)]2 − 1

[T + 1 + vw)]2 − 1
. (47)

Combining with p1 ≥ pM , we can get

p1

pM

= 1. (48)

Moreover, p1 and pM are the highest and lowest value

among all the pi, respectively. As a consequence, we can get

pi ≡ p. Notice that we have ignored the situation that BS is
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Fig. 8. Evolution of AoI-penalty under the MW policy, where the network is symmetric.

idle, because it is obvious that the scheduling order still is

(1, 2, . . . , M, 1, 2, . . .) in such a situation.

Then, we can prove the sufficient condition. Lower AoI-

penalty will lead to lower value of (43) when pi ≡
p. According to Remark 3, the scheduling order is

(1, 2, . . . , M, 1, 2, . . .) when the network and channel are

symmetric.

APPENDIX F

PROOF OF THEOREM 4

Denote by Ii(·) the indicator function in the sense that

Ii(s) = 1 if i /∈ s and Ii(s) = 0 otherwise. Let ŝk be the sensor

that is scheduled during slot k and transmits the update suc-

cessfully, and let ĉk be the set of sensors that is in the sleep

mode during slot k. Let �I(·) = [I1(·) I2(·) · · · IM(·)]T and let
��(k)��I(·) be the entrywise product of vectors ��(k) and �I(·).
Then, ��(k) evolves as

��(k + 1) = ��(k) � �I(ŝk) + (w − 1)�I(ŝk ∪ ĉk) + �1 (49)

where �1 is the unity column vector with length M.

Then, we can get that ��(k + 1) can be expressed as a

function of ��(1), {ŝj}k
j=1, and {ĉj}k

j=1

��(k + 1) = ��(1) � �I

⎛

⎝

k
⋃

j=1

ŝj

⎞

⎠+
k
∑

a=1

(w − 1)�I

⎛

⎝

k
⋃

j=a

ŝj ∪ ĉa

⎞

⎠

+
k
∑

a=2

�I

⎛

⎝

k
⋃

j=a

ŝj

⎞

⎠+ �1. (50)

We prove (50) by induction. Substituting k = 1 into (50)

and we can get (49). Then, assume that (50) holds for k. For

step k + 1, substituting ��(k) of the form (50) into (49) yields

that

��(k + 1) = ��(k) � �I(ŝk) + (w − 1)�I(ŝk ∪ ĉk) + �1

=

⎡

⎣ ��(1) � �I

⎛

⎝

k−1
⋃

j=1

ŝj

⎞

⎠+
k−1
∑

a=1

(w − 1)�I

⎛

⎝

k−1
⋃

j=a

ŝj ∪ ĉa

⎞

⎠

+
k−1
∑

a=2

�I

⎛

⎝

k−1
⋃

j=a

ŝj

⎞

⎠+ �1

⎤

⎦� �I(ŝk)

+ (w − 1)�I(ŝk ∪ ĉk) + �1

= ��(1) � �I

⎛

⎝

k
⋃

j=1

ŝj

⎞

⎠+
k
∑

a=1

(w − 1)�I

⎛

⎝

k
⋃

j=a

ŝj ∪ ĉa

⎞

⎠

+
k
∑

a=2

�I

⎛

⎝

k
⋃

j=a

ŝj

⎞

⎠+ �1 (51)

which is identical to the expression in (50). By induction, we

know that (50) holds for all k ≥ 1.

Then, we can get

M
∑

i=1

�i(k)

=
M
∑

i=1

⎡

⎣�i(1)Ii

⎛

⎝

k−1
⋃

j=1

ŝj

⎞

⎠+
k−1
∑

a=1

(w − 1)Ii

⎛

⎝

k−1
⋃

j=a

ŝj ∪ ĉa

⎞

⎠

+
k−1
∑

a=2

Ii

⎛

⎝

k−1
⋃

j=a

ŝj

⎞

⎠+ 1

⎤

⎦
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=
M
∑

i=1

�i(1)Ii

⎛

⎝

k−1
⋃

j=1

ŝj

⎞

⎠+
M
∑

i=1

k−1
∑

a=1

(w − 1)Ii

⎛

⎝

k−1
⋃

j=a

ŝj ∪ ĉa

⎞

⎠

+
M
∑

i=1

k−1
∑

a=2

Ii

⎛

⎝

k−1
⋃

j=a

ŝj

⎞

⎠+ M. (52)

All the admissible policies cannot schedule any sensors

when k ≤ T because they are in sleep mode during that time.

Therefore, the value of (52) is same for all the admissible

policies when k ≤ T + 1. Below we prove the theorem by

considering two complementary cases, i.e., M < T + 1 and

M ≥ T + 1.

1) For the case M < T + 1, when k ≥ T + M + 1, we

can know the change rule of the value of AoI-penalty

for all the sensors during one transmission cycle is

{1, 2, . . . , T + 1}, which is the optimal change rule for

all sensors. From Corollary 2, we can get

�∗ = �MW = T

2
+ 1. (53)

2) For the another case M ≥ T + 1, according to the proof

of Theorem 3, there always exists one sensor that is

scheduled at the beginning of each slot when T +1 ≤ k,

and the order is (1, 2, . . . , M, 1, 2, . . .). Therefore, the

MW policy maximizes the number of deliveries and for

every π ∈ � and we have

∣

∣

∣

∣

k
⋃

j=1

ŝMW
j

∣

∣

∣

∣

≥
∣

∣

∣

∣

k
⋃

j=1

ŝπ
j

∣

∣

∣

∣

(54)

where |s| means the number of elements of set s and

MW represents the MW policy. In addition, we can get

∣

∣

∣

∣

k
⋃

j=a

ŝMW
j

∣

∣

∣

∣

≥
∣

∣

∣

∣

k
⋃

j=a

ŝπ
j

∣

∣

∣

∣

, a ∈ {1, 2, . . . , k}. (55)

Also, the MW policy maximizes the number of sensors

that are in sleep mode. If the intersection of
⋃k

j=a ŝMW
j

and ĉa is a empty set, the MW policy maximizes

the number of elements of the union of them. If the

intersection of
⋃k

j=a ŝMW
j and ĉa is not an empty set,

the number of elements is M, which is the maximum

admissible value. So we can know
∣

∣

∣

∣

k
⋃

j=a

ŝMW
j ∪ ĉMW

a

∣

∣

∣

∣

≥
∣

∣

∣

∣

k
⋃

j=a

ŝπ
j ∪ ĉπ

a

∣

∣

∣

∣

, a ∈ {1, 2, . . . , k}. (56)

Equation (54) shows the MW policy minimizes the first term

in RHS of (52). The last term in RHS of (52) is constant. The

second term in RHS of (52) can be written as

M
∑

i=1

k−1
∑

a=1

(w − 1)Ii

⎛

⎝

k−1
⋃

j=a

ŝj ∪ ĉa

⎞

⎠

=
k−1
∑

a=1

(w − 1)

⎡

⎣M −
∣

∣

∣

∣

k−1
⋃

j=a

ŝj ∪ ĉa

∣

∣

∣

∣

⎤

⎦ (57)

and the third term in RHS of (52) can be written as

M
∑

i=1

k−1
∑

a=2

Ii

⎛

⎝

k−1
⋃

j=a

ŝj

⎞

⎠ =
k−1
∑

a=2

⎡

⎣M −
∣

∣

∣

∣

k−1
⋃

j=a

ŝj

∣

∣

∣

∣

⎤

⎦. (58)

According to (55)–(58), the MW policy minimizes (52) in

every slot k in this case. From Corollary 2, we can get �∗ =
�MW = f (M) which completes the proof.
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