
9662 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Optimal Sleep Scheduling for Energy-Efficient AoI
Optimization in Industrial Internet of Things

Xianghui Cao , Senior Member, IEEE, Jia Wang , Student Member, IEEE, Yu Cheng , Senior Member, IEEE,
and Jiong Jin , Member, IEEE

Abstract—Keeping sensor data fresh is desired for Industrial
Internet of Things (IIoT), especially, in real-time monitoring
applications. However, this may require sensors always in active
mode and, thus, incur low energy efficiency. In this article, we
consider that a wireless sensor monitors a dynamical system and
reports real-time measurements to a processing center through
an unreliable wireless channel. We study the problem of opti-
mizing the sensor data freshness in terms of Age of Information
(AoI) while saving energy by scheduling the sensor to sleep when
needed. The problem is formulated as a Markov decision pro-
cess that takes both AoI and energy consumption into account, to
which we theoretically prove that the optimal scheduling policy
forms a cyclic sleep–wake pattern. The optimal sleep period is
also analyzed. Simulation results demonstrate that the proposed
scheduling policy outperforms other existing policies.

Index Terms—Age of Information (AoI), energy, Markov
decision process (MDP), optimization, sleep scheduling.

I. INTRODUCTION

IN INDUSTRIAL Internet of Things (IIoT) applications
such as real-time monitoring and control, the freshness of

sensor data is of great importance [1], [2]. For example, in
remote monitoring applications, it has been shown that the
fresher data the remote estimator can receive, the smaller the
state estimation error the estimator could achieve [3]. Another
example is the federated learning applications in IIoT, where
the freshness of training data becomes particularly important
when data cannot remain structurally similar across time [4].

Although delay is one of the most commonly used met-
rics of packet-wise transmission performance in networks, it
does not accurately reflect the data freshness [5], [6]. Recently,

Manuscript received 29 September 2022; revised 15 December 2022;
accepted 1 January 2023. Date of publication 6 January 2023; date of
current version 23 May 2023. This work was supported in part by the
National Natural Science Foundation of China under Grant 92067111; in
part by the Defense Industrial Technology Development Program under Grant
JCKY2020206B068; in part by the Natural Science Foundation of Jiangsu
Province under Grant BK20202006; and in part by the Zhongying Young
Scholars Project. The work of Yu Cheng was supported in part by NSF
under Grant CNS-1816908 and Grant CNS-2008092. (Corresponding author:
Xianghui Cao.)

Xianghui Cao and Jia Wang are with the School of Automation,
Southeast University, Nanjing 210096, China (e-mail: xhcao@seu.edu.cn;
jwang97@seu.edu.cn).

Yu Cheng is with the Department of Electrical and Computer Engineering,
Illinois Institute of Technology, Chicago, IL 60616 USA (e-mail: cheng@
iit.edu).

Jiong Jin is with the School of Science, Computing and Engineering
Technologies, Swinburne University of Technology, Melbourne, VIC 3122,
Australia (e-mail: jiongjin@swin.edu.au).

Digital Object Identifier 10.1109/JIOT.2023.3234582

the notion of Age of Information (AoI) has been proposed,
which tracks the time elapsed since the generation of the lat-
est received data from the perspective of the receiver, as a new
metric of data freshness [3], [4], [5], [6], [7], [8], [9]. In the lit-
erature, a number of studies have been devoted to minimizing
AoI for fresh data gathering over wireless networks [7], [8],
e.g., the Max-Weight policy [7], Whittle’s Index policy [7],
and SQRT-Weight policy [8]. However, many existing studies
assume that the sensors are always in active mode and ready
for data transmission once scheduled [7], [8].

Intuitively, the wireless sensor may try to seize every oppor-
tunity to transmit data in order to minimize the AoI. However,
such an always-on working mode may cause significant energy
waste for the sensor during its idle time, and, hence, may be
even unaffordable for a resource-constrained sensor [10]. In
IIoT, energy efficiency is an important issue, and improving the
energy efficiency of wireless devices and prolonging their life-
time becomes increasingly important as wireless technologies
are expected to gain more penetration in future IIoT [11], [12].

In this article, we consider a class of real-time monitoring
applications of IIoT with the aim at enhancing the sensor data
freshness as characterized by AoI while reducing the energy
consumption of the sensor. Motivated by the working mode
of duty-cycling sensors [13], we allow the sensor to sleep in
order to save energy. Many wireless technologies have specific
mechanisms similar to the sleeping mode. For example, tradi-
tional IEEE 802.11 specifies the power-saving mode, and the
recently released IEEE 802.11ax standard further introduces
the target wake time agreement to save energy [14]. Other
wireless technologies, such as WirelessHART and ZigBee,
also employ low-power modes to save energy.

Our basic idea is to save the sensor’s energy by switching it
off when needed without sacrificing much AoI. By doing so,
we are able to achieve a balance between information freshness
about the dynamic process at the remote processing center and
the sensor’s energy consumption. Specifically, the sensor saves
energy when sleeping without sending any data and improves
AoI only when it is in active mode. Taking both switching
energy and the energy for being active of the sensor into
account, we formulate an optimization problem of the sensor’s
sleep scheduling with the objective being a combination of a
generic AoI function and the total energy consumption. Based
on a Markov decision process (MDP), we theoretically prove
that the optimal solution yields a cyclic working pattern, i.e.,
in each cycle, the sensor first sleeps for a fixed period and then
wakes up and keeps active until successfully sending a data

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0003-2777-8894
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-0306-2691

CAO et al.: OPTIMAL SLEEP SCHEDULING FOR ENERGY-EFFICIENT AoI OPTIMIZATION 9663

packet to the processing center. We compare our scheduling
policy with other existing policies, and the results demonstrate
that our policy outperforms the other in terms of AoI–energy
tradeoff. The main contributions are summarized as follows.

1) We formulate an optimal sensor sleep scheduling
problem that trades off between AoI and sensor’s energy
consumption. In the literature, although there are some
studies on AoI minimization in IIoT recently [6], [7],
very few of them shed light on the energy-efficiency
issue of AoI optimization by using sensor sleep mode.

2) We theoretically prove that the optimal sleep scheduling
policy leads to a cycling pattern.

3) We propose an algorithm to find the optimal sleep
period. Moreover, for cases that the AoI function is lin-
ear, we derive an explicit expression of the optimal sleep
period.

The remainder of this article is organized as follows.
Section II summarizes some related work. Section III intro-
duces the system model and formulates the optimization
problem. Section IV derives the optimal sleep scheduling
policy and proposes ways to find the optimal sleep period.
Section V presents the simulation results, while Section VI
concludes this article.

Notations: ⊕ denotes the XOR operator. E(·) denotes the
mathematical expectation. Let tr(·) represent the trace of a
matrix. Pr(·) denotes the probability of an event. Let N be
the set of nonnegative integers. Denote by 1event the indicator
function, which equals to 1 if event is true and 0 if otherwise.

II. RELATED WORK

Recently, AoI has attracted more and more attention in
applications where data freshness matters. For example, the
problems of when to sample the data and in what order to
process the data in order to optimize AoI are studied in [15]
and [16]. In time-slotted systems, transmission scheduling for
minimizing AoI is studied in [7] and [17].

Due to the limited energy of wireless sensors in many
IIoT systems, it is of great importance to save energy when
minimizing AoI. For example, under the constraint that the
average energy consumption of the sensor cannot exceed a
given value, a policy that can reduce AoI is proposed to choose
proper sensors to send their updates [18]. In [19], the problem
of data sending scheduling in order to minimize AoI and
energy is studied. Another thread of research toward energy-
efficient AoI minimization is to consider rechargeable sensors
[20], [21]. In [20], the source node needs the energy to sample
and send data, while the destination node, with power supply,
can transfer wireless energy to charge the source node. Then,
a joint sampling, charging, and updating policy is proposed to
minimize AoI. As for the case where energy arrives randomly,
in order to reduce AoI, Zhou et al. [21] proposed optimal
offline policies and efficient online policies to schedule the
transmitter whether to send the update when it arrives.

In the literature, a few works have been devoted to energy-
efficient AoI minimization with sensors that are allowed to
sleep to save energy [22], [23]. In [22], the sensors will sleep
if they find the channel is busy. And with the constraint of

TABLE I
DEFINITIONS OF KEY NOTATIONS

energy consumption, the optimal sleep parameters are derived
to minimize peak AoI. In [23], a new AoI-penalty function
is proposed to characterize the data eagerness for sensors that
wake up after sleeping for a certain time. Then, a Max-Weight-
based sensor scheduling policy is proposed to minimize the
sensors’ AoI-penalty. The above studies leverage sensors’
sleep mode to save energy, which, however, lacks a theoretical
explanation whether and to what extent the sensor can benefit
in terms of AoI by employing sleep mode.

III. SYSTEM MODEL

The main notations used throughout this article are summa-
rized in Table I.

We consider a real-time monitoring system in which a wire-
less sensor measures the dynamical state of a physical process
and sends the measurement data through an unreliable wireless
channel to a remote data processing center (DPC) [24], [25].
For example, in [24], a sensor sends real-time measurements
of a 2-DOF (degree of freedom) serial flexible joint robot to
a controller for monitoring and control purposes, where the
dynamics of the robot is modeled as follows:

x(k) = Ax(k − 1)+ Bθ(k − 1)+ w(k − 1) (1)

where x ∈ R
nx is the system state, θ ∈ R

nc is the control input,
and A and B are coefficient matrices with proper dimensions.
w is the system noise which is Gaussian with zero mean and
covariance matrix �. k ∈ {1, 2, . . . , K} is the index of the
discrete-time steps. Note that (1) is only an example of the
physical process. This article focuses on a generic form of
AoI, which does not rely on any specific forms of the dynamic
process model. For other processes under monitoring, as long
as the corresponding AoI function evolves as in (5) below, the
results obtained in this article remain valid.

When the wireless sensor is in active mode, it measures
the state of the physical process at the beginning of the cur-
rent step and sends the measurement to the DPC. Whereas,

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

9664 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 1. Schematic of the binary variables.

it keeps inactive to save energy in sleep mode. At the begin-
ning of every step, the sensor chooses whether to switch the
current mode or not. Let s(k) ∈ {0, 1} denote the working
mode of the sensor during step k (after switching) with s(k)
equals to 1 indicating active mode and 0 otherwise. Denote
by u(k) ∈ {0, 1} the switching decision at the beginning of
step k1 such that u(k) = 0 means keeping the mode while
u(k) = 1 means otherwise. Therefore, the working mode of
the sensor during step k is determined by

s(k) = s(k − 1)⊕ u(k). (2)

The relationship between s(k) and u(k) is shown in Fig. 1.
We assume that each sensor packet transmission can be

completed within one step and that the DPC replies the sen-
sor an acknowledgment upon successfully receiving the sensor
packet. The transmissions from the sensor are over an unre-
liable wireless channel with the probability of a successful
data transmission as p ∈ (0, 1]. Since the acknowledgment
from the energy-rich DPC is short in length and can be sent
with high power, we assume its transmission is reliable [7].
Let γ (k) = 1 indicate that the DPC successfully receives the
sensor’s measurement in k and γ (k) = 0 otherwise. We have

E
[
γ (k)

] = pE[s(k)] = pE[s(k − 1)⊕ u(k)]. (3)

A. Optimization Problem

According to [5], the AoI at the DPC at the beginning of
step k is defined as the time difference between the genera-
tion time of the freshest measurement packet that the DPC
receives from the sensor. Let tg(k) denote the generation time
of the freshest measurement the DPC receives from the sensor
by the end of step k− 1. Denote by �(k) = k− tg(k) the AoI
at the beginning of step k (the definition of AoI in [7]). If
the sensor is in active mode and transmits the measurement
successfully during step k (i.e., γ (k) = 1), at the beginning
of the next step, tg(k + 1) = k; otherwise, tg(k + 1) = tg(k).
Hence, we have

�(k + 1) =
{

1, if γ (k) = 1
�(k)+ 1, otherwise.

(4)

We define an AoI function f (�) that evolves as follows [15]:

f (�(k + 1)) =
{

f (1), if γ (k) = 1
f (�(k)+ 1), otherwise

(5)

where f (·) is assumed nondecreasing. The AoI function is a
metric of how AoI impacts the system performance. Taking

1In practice, if in sleep mode, the sensor may not be able to make switching
decisions. A viable way can be that the sensor decides a sleep period and sets
a wake-up timer accordingly before it sleeps. In this article, for the ease of
problem formulation, we assume that the sensor can decide whether to wake
up or not when sleeping. However, our proposed optimal policy does not need
this assumption.

the real-time monitoring system in (1), for example, the AoI
function can be defined as [3]

f (�) =
�−1∑

i=0

tr
((

AT)iAi�
)

(6)

where � is the covariance of the system noise w. Equation (6)
represents the mean-squared error of the state estimation
performance in terms of AoI at the controller. In communica-
tion systems, typical AoI functions are defined as f (�) = �

(e.g., [5], [6], and [7]) and f (�) = e� (e.g., [15]). Notice that
the above AoI functions satisfy the assumption that they are
nondecreasing.

B. Problem Formulation

Denote the energy consumption of the sensor as Ea > 0
and Es > 0 (Ea > Es) at every step when it is in active and
sleep modes, respectively. Besides, in order to save energy, the
sensor should avoid switching its working mode too frequently.
As a consequence, we denote the energy consumption of the
sensor for waking up (from sleep to active) and turning off
(from active to sleep) as Eon > 0 and Eoff > 0, respectively.
Then, the total energy consumption during step k is

C(k) = Ea[s(k − 1)⊕ u(k)]+ Es[1− s(k − 1)⊕ u(k)]

+ Eonu(k)[1− s(k − 1)]+ Eoffu(k)s(k − 1). (7)

For example, if s(k − 1) = 0 and u(k) = 1, the sensor wakes
up from the sleep mode and keeps in active during k, and,
hence, C(k) = Ea + Eon.

Then, the total cost function during step k is set as
a weighted combination of both AoI function and energy
consumption as follows:

J(k) = (1− λ)f
(
�(k)

)+ λC(k) (8)

where λ ∈ [0, 1] represents the weight of energy consumption
in the optimization objective. On the one hand, minimizing
AoI would require the sensor to keep active trying to send
its data as quickly as possible, which results in high energy
consumption. On the other hand, saving energy by letting
the sensor sleep may miss some data sending opportunities
and, hence, sacrifices the AoI. The larger the value of λ, the
more the sensor prefers to sleep to save energy; otherwise,
it prefers to reduce the value of AoI if its energy is rich. For
the above problem to be meaningful, hereafter we assume that
0 ≤ λ < 1. Since the AoI function can be application specific,
its magnitude may be different from the energy consumption.
Therefore, in order to analyze them together, both the AoI
function and the energy consumption should be normalized.

Let π = [u(1), . . . , u(K)] be a sleep scheduling policy that
determines whether the sensor sleep or awake and � be the
set of all admissible policies. Without loss of generality, we
set tg(1) = 0, �(1) = 1, and s(1) = 0. Then, our optimization
problem can be formulated as follows:

min
π∈� J̄ = lim

K→∞
1

K

K∑

k=1

E[J(k)] (9a)

s.t. u(k) ∈ {0, 1} ∀k. (9b)

Let J̄∗ be the optimal solution.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

CAO et al.: OPTIMAL SLEEP SCHEDULING FOR ENERGY-EFFICIENT AoI OPTIMIZATION 9665

IV. OPTIMAL SCHEDULING POLICY

In this section, we first reformulate Problem (9) as an MDP,
based on which we find a structural property of the optimal
policy. Then, we derive the optimal scheduling policy and
analytically characterize its performance.

A. MDP Formulation of Problem (9)

At the beginning of step k, define the state and action of
the sensor as (�(k), s(k − 1)) and u(k), respectively, with
the action space {0, 1}. If the sensor was in sleep mode, i.e.,
s(k− 1) = 0, based on the dynamics of �(k) as given in (4),
one can see that �(k + 1) = �(k) + 1 if u(k) = 0. If the
sensor chooses to switch its working mode, i.e., u(k) = 1
when s(k − 1) = 0, the change of AoI relies on the channel
state during step k in terms of that �(k+ 1) will drop to 1 if
the transmission is successful (with probability p); otherwise,
�(k + 1) = �(k) + 1. Therefore, the one-step probabil-
ity transfer function from current state (�, 0) to a new state
(�′, s′) at the beginning of the next step under action u can
be summarized as follows:

Pr
(
�′, s′|�, 0

) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if u = s′ = 0 and �′ = �+ 1
p, if u = s′ = 1 and �′ = 1
1− p, if u = s′ = 1 and �′ = �+ 1
0, otherwise.

(10)

Similarly, we can derive the probability transfer function when
the sensor was previously in active mode as

Pr
(
�′, s′|�, 1

) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if u = 1, s′ = 0 and �′ = �+ 1
p, if u = 0, s′ = 1 and �′ = 1
1− p, if u = 0, s′ = 1 and �′ = �+ 1
0, otherwise.

(11)

In view of (9), define the reward as

R(�, s, u) = (1− λ)f (�)+ λEa(s⊕ u)

+ λEs[1− (s⊕ u)]+ λEonu(1− s)

+ λEoffus (12)

where we have used (7) and (8). Then, the value function
Vt(�, s) can be given as follows:

Vt+1(�, s) = min
π∈�

{
R(�, s, u)+ βE

[
Vt
(
�′, s′

)]}
(13)

where β ∈ (0, 1) is the discount factor. The above value
iteration can start at any initial value function V0, and for
convenience, we set V0(�, s) = (1 − λ)f (�). Then,
Vt(�, s) converges to the optimal value function V∗(�, s) =
limt→∞ Vt(�, s) for any � ≥ 0 and s ∈ {0, 1}.

When the sensor was previously in sleep mode, submit-
ting (10) and (11) into (13), we have

Vt+1(�, 0) = min
u∈{0,1}

{
(1− λ)f (�)+ λuEa + λ(1− u)Es + λuEon

+ βE
[
Vt
(
�′, s′

)]}

= min
u∈{0,1}

{(1− λ)f (�)+ λuEa + λ(1− u)Es + λuEon

+ β(1− u)Vt(�+ 1, 0)+ βupVt(1, 1)

+ βu(1− p)Vt(�+ 1, 1)}
= min

u∈{0,1}
{
(1− u)L1,t(�)+ uL2,t(�)

}

= min
{
L1,t(�), L2,t(�)

}
(14)

= L1,t(�)+ min
u∈{0,1}

{
u
[
L2,t(�)− L1,t(�)

]}

= L1,t(�)+ min
u∈{0,1}

{
uLsleep,t(�)

}
(15)

where we have used (10) in deriving the second equality. In
the above

L1,t(�) � (1− λ)f (�)+ λEs + βVt(�+ 1, 0) (16)

L2,t(�) � (1− λ)f (�)+ λEon + λEa

+ βpVt(1, 1)+ β(1− p)Vt(�+ 1, 1) (17)

Lsleep,t(�) � L2,t(�)− L1,t(�)

= −β
[
Vt(�+ 1, 0)− (1− p)Vt(�+ 1, 1)

]

+ λ(Eon + Ea − Es)+ βpVt(1, 1). (18)

Similarly, when the sensor was previously active

Vt+1(�, 1)

= min
u∈{0,1}

{
(1− λ)f (�)+ λ(1− u)Ea + λuEs + λuEoff

+ βE
[
Vt
(
�′, s′

)]}

= min
u∈{0,1}

{
uL3,t(�)+ (1− u)L4,t(�)

}

= min
{
L3,t(�), L4,t(�)

}
(19)

= L4,t(�)+ min
u∈{0,1}

{
uLactive,t(�)

}
(20)

where we have used (11) in deriving the second equality and

L3,t(�) � L1,t(�)+ λEoff (21)

L4,t(�) � L2,t(�)− λEon (22)

Lactive,t(�) � L3,t(�)− L4,t(�). (23)

In the sequel, we shall drop the subscript t in Li,t, Lsleep,t,
and Lactive,t to indicate their converged values as t→∞.

B. Optimal Policy

Based on the above, we can derive the following properties
of the value function.

Lemma 1: ∀� ≥ 0 and ∀n ≥ 0, the following inequalities
hold:

1) V∗(�+ n, s) ≥ V∗(�, s) (24)

2) V∗(�+ n, 0)− V∗(�, 0)

≥ V∗(�+ n, 1)− V∗(�, 1) (25)

3) V∗(�+ n, 0)− (1− p)V∗(�+ n, 1)

≥ V∗(�, 0)− (1− p)V∗(�, 1). (26)

Proof: The proof is provided in the Appendix.
Next, we derive a threshold structure of the optimal policy.
Lemma 2: ∀� ≥ 0, there exist �active ≤ �sleep ≤ ∞ such

that the optimal scheduling policy π∗ has a threshold structure
in terms of that

u∗(�, s) =
{
1�≥�sleep , if s = 0
1�≤�active , if s = 1

(27)

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

9666 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

where u∗(�, s) represents the optimal scheduling decision
when the sensor is in state (�, s).

Proof: According to (15) and (20), the optimal schedul-
ing decision depends on the sign of Lsleep(�) and Lactive(�).
When Lsleep(�) > 0 or Lactive(�) > 0, (15) and (20) sug-
gest that the corresponding optimal scheduling decision is
u∗ = 0. Similarly, if Lsleep(�) < 0 or Lactive(�) < 0, the
corresponding optimal scheduling decision is u∗ = 1. When
Lsleep(�) = 0 or Lactive(�) = 0, the corresponding optimal
scheduling decision u∗ is derived as below by considering
whether Lsleep(�) = 0 or Lactive(�) = 0 have nonnegative
solutions.

First, suppose that Lsleep(�) = 0 (or Lactive(�) = 0) has
nonnegative solutions. Let �sleep be the maximum nonnegative
solution of the following:

Lsleep(�) = λEon − λEs + λEa + βpV∗(1, 1)

− β
[
V∗(�+ 1, 0)− (1− p)V∗(�+ 1, 1)

]

= 0. (28)

Consider that the sensor was previously in sleep mode, i.e.,
s = 0. According to (26), Lsleep(�) is nonincreasing in �.
Therefore, combining (28) and Lsleep(�sleep) = 0, we have
the following inequalities hold for any n > 0:

Lsleep
(
�sleep + n

) ≤ Lsleep
(
�sleep

) = 0 (29)

Lsleep
(
�sleep − n

) ≥ Lsleep
(
�sleep

) = 0. (30)

From (29), one can see that the optimal scheduling decision is
u∗ = 1 when the current AoI is greater than �sleep. Similarly,
from (30), one can see that the optimal scheduling decision is
u∗ = 0 when the current AoI is less than �sleep. Notice that if
the nonnegative solutions of (28) are not unique, the solutions
must be a continuous interval, say [�sleep,�sleep], which is
because Lsleep(�) is nonincreasing in �. In this case, without
affecting its optimality, u∗ can be set as 1 if the current AoI
is greater than �sleep and 0 if otherwise. Above all, we obtain
the first line of (27).

When the sensor was previously in active mode, i.e., s = 1,
in a similar argument, we obtain the second line of (27), where
�active is the minimum nonnegative solution of the following:

Lactive(�) = βV∗(�+ 1, 0)− β(1− p)V∗(�+ 1, 1)

+ λEoff + λEs − λEa − βpV∗(1, 1)

= 0. (31)

Besides, according to (18) and (23)

Lactive(�)+ Lsleep(�) = λEon + λEoff ≥ 0. (32)

At the point �active where Lactive(�active) = 0, Lsleep(�active)

should be nonnegative according to (32), i.e.,

Lsleep(�active) > 0 = Lsleep
(
�sleep

)
. (33)

Therefore, �sleep ≥ �active due to that Lsleep(�) is nonincreas-
ing in �.

Next, we discuss the cases when Lsleep(�) = 0 or
Lactive(�) = 0 has no nonnegative solution. For ease of expo-
sition, in what follows, when we say one of Lsleep(�) = 0
and Lactive(�) = 0 has no nonnegative solution while the

Fig. 2. Four cases where Lsleep(�) = 0 or Lactive(�) = 0.

other has nonnegative solution, we mean that the other has
a unique solution. For the cases when it has multiple solu-
tions, our analysis below remain valid for the reason similar
to the above.

As shown in Fig. 2, there are four cases for that
Lsleep(�) = 0 or Lactive(�) = 0 has no nonnegative solution.

1) Case 1: If Lsleep(�) > 0 and Lactive(�) < 0 ∀� ≥ 0.
Since ∀� ≥ 0, Lsleep(�) > 0, the optimal scheduling
decision is u∗ = 0 when the sensor was in sleep mode
according to (15). Similarly, since ∀� ≥ 0, Lactive(�) <

0, the optimal scheduling decision is u∗ = 1 when
the sensor was in active mode. Therefore, (27) holds
if letting �sleep = �active = ∞.

2) Case 2: If ∀� ≥ 0, Lsleep(�) > 0 while Lactive(�) = 0
has a nonnegative solution �active. As aforementioned,
the optimal scheduling decision is u∗ = 0 when the sen-
sor was previously in sleep mode, which validates the
first line of (27) by letting �sleep = ∞. Meanwhile, the
second line of (27) holds for the same reason above (31).

3) Case 3: If Lsleep(�) < 0 and Lactive(�) > 0 ∀� ≥ 0.
Similar to case 1, (27) holds if letting �sleep =
�active = 0.

4) Case 4: If ∀� ≥ 0, Lactive(�) > 0 while Lsleep(�) = 0
has a nonnegative solution �sleep. Similar to case 2, (27)
holds if letting �active = 0.

In sum, the optimal scheduling decision of u∗ is given in (27)
for some �active ≤ �sleep ≤ ∞.

The threshold structure in Lemma 2 can be interpreted as
follows. When the sensor was previously in sleep mode with
low energy consumption, the increasing AoI becomes domi-
nating the cost function J(k). When the value of AoI becomes
excessively large, the sensor switches to the active mode and
spends some energy to transmit data in order to make AoI
drop. The switching happens at the point �, which is the
smallest integer greater than �sleep with Lsleep(�sleep) = 0.
This can be viewed as that the expected change of the
value function V due to mode switching, i.e., L2(�) −
L1(�) as in (18), is beneficial to reducing the total cost J.
The scheduling decision threshold �active can be interpreted

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

CAO et al.: OPTIMAL SLEEP SCHEDULING FOR ENERGY-EFFICIENT AoI OPTIMIZATION 9667

Fig. 3. Illustration of the sleep–wake working pattern.

similarly. In extreme cases, e.g., λ = 1 (i.e., only energy con-
sumption matters in J) or p = 0 (i.e., the wireless channel
between the sensor and the remote DPC is blocked), the sensor
may keep in sleep mode, which can be viewed as �sleep = ∞.

Based on Lemma 2, we can further obtain the working
pattern of the sensor.

Theorem 1: Under the optimal sleep scheduling policy, the
sensor works in a cycling pattern as follows: in each cycle, it
first sleeps for a fixed period T ∈ N, and then wakes up and
keeps active until successfully sending a data packet. After
that, a new cycle begins and it switches to sleep mode again.

Proof: As has been assumed, initially � = 1 and s = 0.
According to Lemma 2, � ≥ 1 and �sleep ≥ �active. Since
�sleep and �active can be any of {0, 1, . . . ,∞}, we prove the
theorem by dividing the problem into the following cases.

1) If �active ≤ �sleep ≤ 1: The sensor will keep active all
the time, which is equivalent to that the sleep period T
is equal to 0.

2) If �sleep = ∞: The sensor will sleep all the time, and
the sleep period T is equal to ∞.

3) If �active ≤ 1 and 1 < �sleep < ∞: The sensor
will stay in sleep mode until the AoI gets greater than
�sleep. Then, the sensor will switch to active mode and
start to transmit the measurement. After that, the sensor
will keep active all the time and the sleep period T is
equal to 0.

4) Otherwise: The sensor will stay in sleep mode until the
AoI is greater than �sleep. Then, the sensor will switch to
active mode and start to transmit the measurement. The
AoI will drop to 1 when the transmission is successful.
After that, the sensor will turn to sleep since �active ≥ 1.

Above all, the sensor will repeat the above working process
to form a cycle, where T = �sleep.

An example of the sleep–wake working pattern is depicted
in Fig. 3.

C. Performance Analysis

We may wonder about the performance comparison of
AoI and energy consumption between the sensor with sleep
scheduling policy and the nonsleeping sensor in [7]. Since the
sensor will be nonsleeping when the sleep period T = 0, we
only discuss the case where T ≥ 1. Let ϕAoI and ϕenergy denote

the ratio of time-average AoI function and time-average energy
consumption between the sensor with sleep scheduling policy
and nonsleeping policy, respectively.

Lemma 3: The ratio of time-average AoI and time-average
energy consumption between the sensor under sleep schedul-
ing policy (T ≥ 1) and the nonsleeping sensor are, respectively

ϕAoI =
∑T

�=1 f (�)+∑∞�=1(1− p)�−1f (T +�)

(pT + 1)
∑∞

�=1(1− p)�−1f (�)
(34)

ϕenergy = Ẽ

(pT + 1)Ea
+ Es

Ea
(35)

where Ẽ = Ea−Es+pSign(T)(Eon+Eoff) and Sign(T) equals
to 1 if T > 0 and 0 otherwise.

Proof: First, let us consider the sensor under the proposed
sleep–wake policy. In each cycle, the AoI � evolves as fol-
lows: it starts at 1 and grows to T during the sleeping period.
After that, � grows to T + �, where � is the number of trans-
mission trials for the sensor to successfully transmit a packet.
Thus, the deliveries of the sensor data form a renewal pro-
cess [26], and the number � follows a geometric distribution
with Pr(� = j) = p(1− p)j−1 and E[�] = 1/p. Therefore, the
average energy consumption of the sleep–wake sensor is

EaE[�]+ TEs + Eon + Eoff

T + E[�]
= Ẽ

pT + 1
+ Es (36)

and the averaged AoI function is

E

[∑T+�
�=1 f (�)

]

T + E[�]
=

pE
[∑T+�

�=1 f (�)
]

pT + 1

= p

pT + 1

∞∑

�=1

T+�∑

�=1

p(1− p)�−1f (�)

= p2

pT + 1

[
T∑

�=1

∞∑

�=1

(1− p)�−1f (�)

+
∞∑

�=1

∞∑

�=�

(1− p)�−1f (T +�)

]

= p

pT + 1

[
T∑

�=1

f (�)+
∞∑

�=1

(1− p)�−1f (T +�)

]

.

(37)

Then, for the nonsleeping sensor, the average energy con-
sumption is Ea and the averaged AoI function is

pE

[
�∑

�=1

f (�)

]

= p
∞∑

�=1

(1− p)�−1f (�). (38)

Thus, (34) and (35) are proved.
Remark 1: It is difficult to analyze (34) for a generic AoI

function. If we consider the special AoI function f (�) = �,
(34) can be simplified as ϕAoI = (1/2)(p + pT + 1 +
([1− p]/[pT + 1])) ≥ 1. On the other hand, since usually
Es, Eon, and Eoff are much smaller than Ea, (35) reduces
to ϕenergy ≈ (1/[pT + 1]) ≤ 1. Therefore, by applying the
sleep–wake policy, the sensor is able to balance between AoI
and energy consumption. Moreover, by using an optimal sleep
period T , the sleep–wake sensor is able to achieve better
performance in terms of J̄ than the nonsleeping sensor.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

9668 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Further, we may be interested in the optimal value of the
sleep period T∗ in the sleep–wake working pattern. Below we
first show that the optimal T∗ is finite in normal cases and
then we derive an expression of T∗ for a commonly used AoI
function [6], [7]: f (�) = �.

Theorem 2: If λ
= 1 and p
= 0, and the AoI
function increases at a speed faster than α > 0, i.e.,
f (�+ 1)− f (1) ≥ α�, then the optimal sleep period is upper
bounded as

T∗ ≤ T̄∗ � λ

αp(1− λ)
Ẽ − 1. (39)

Additionally, if Ẽ < 2αp(1/λ− 1), T∗ = 0.
Proof: By (36) and (37), the objective of Problem (9) is

J̄(T) = (1− λ)p

pT + 1

[
T∑

�=1

f (�)+
∞∑

�=1

(1− p)�−1f (T +�)

]

+ λ

(
Ẽ

pT + 1
+ Es

)

. (40)

Then, let us examine the monotonicity of J̄(T). We have

J̄(T + 1)− J̄(T)

∝ (1− λ)p

[

(pT + 1)

T+1∑

�=1

f (�)− (pT + p+ 1)

T∑

�=1

f (�)

+ (pT + 1)

∞∑

�=1

(1− p)�−1f (T + 1+�)

− (pT + p+ 1)

∞∑

�=1

(1− p)�−1f (T +�)

]

− λpẼ

(41)

where ∝ means “proportional to.” After some rearrangements,
the right-hand side of the above becomes

(1− λ)p2

[

p(T + 1)

∞∑

�=1

(1− p)�−1f (T + 1+�)

−
T+1∑

�=1

f (�)− λ

(1− λ)p
Ẽ

]

≥ (1− λ)p2

[

(T + 1)f (T + 2)−
T+1∑

�=1

f (�)− λ

(1− λ)p
Ẽ

]

≥ (1− λ)p2
[

f (T + 2)− f (1)− λ

(1− λ)p
Ẽ

]

≥ (1− λ)p2
[
α(T + 1)− λ

(1− λ)p
Ẽ

]
. (42)

Therefore, when T ≥ T̄∗, the objective J̄(T) becomes mono-
tonically increasing, which means the optimal T∗ exists and
is below T̄∗.

From the above, one can see that when λ = 1 or p = 0,
the optimal sleep period is ∞, which means the sensor better
sleep all the time to save energy. For a special case of the AoI
function, the optimal sleep period can be obtained as follows.

Corollary 1: In case if the AoI function is defined as
f (�) = �, under the sleep–wake working pattern, the optimal

Algorithm 1: Searching the Optimal Sleep Period T∗

Input: Ea, Es, Eon, Eoff, p, λ, f (�), T̄∗;
1 T∗ ← 0, T ← 0, Jmin ←∞ ;
2 for T = 1 to T̄∗ do
3 Calculate J by (40) ;
4 if J < Jmin then
5 T∗ ← T , Jmin ← J;
6 end
7 end

cost is

J̄∗(T) = 1− λ

2
T + (1− p)(1− λ)+ 2λpẼ

2p(1+ pT)

+ (1− λ)(1+ p)

2p
+ λEs (43)

and the optimal sleep period T∗ that minimizes J̄∗(T) is

T∗ = arg min
T∈{0,

⌈
T̃
⌉
,
⌊

T̃
⌋}

J̄∗(T) (44)

where

T̃ = max

{

1,
1

p

(√
2pλ

1− λ
Ẽ + 1− p− 1

)}

. (45)

Proof: First, (43) can be directly obtained by submitting
f (�) into (40). When T ≥ 1, by letting the derivative of J(T)

with respect to T [i.e., J′(T)] be zero, we obtain

T̂ = 1

p

(√
2pλ

1− λ
Ẽ + 1− p− 1

)

which is not necessarily an integer. If T̂ ≤ 1, then J′(1) ≥ 0
and J(T) increases monotonically when T ≥ 1. In this case,
the optimal sleep period T∗ is 1. If T̂ > 1, then J′(T) ≤ 0
when 1 ≤ T ≤ T̂ and J′(T) > 0 when T > T̂ . Therefore,
J(T) decreases monotonically when 1 ≤ T ≤ T̂ and increases
monotonically when T > T̂ . In this case, the optimal sleep
period T∗ should be the closest integer around T̂ .

Remark 2: If f (�) = �, one can see that, when Ea, Eon,
and Eoff increase, the optimal sleep period T∗ increases so that
the sensor can sleep longer to save energy. However, when
Eon or Eoff become very large, the sensor will spend a lot of
mode-switching energy. In such a situation, the sensor may be
unwilling to spend extra energy to switch its working mode
and, hence, will keep active all the time. This corresponds to
the case of T∗ = 0 in Corollary 1.

Remark 3: Above we have characterized the optimal sleep
period T∗ in a special case. For a generic AoI function f (�),
it is difficult to find a generic expression of T∗. Therefore, we
propose Algorithm 1 to search the optimal sleep period T∗.
The computation complexity of this algorithm is O(T̄∗ζ)

where ζ is the time complexity of calculating the objective
function in (40).

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

CAO et al.: OPTIMAL SLEEP SCHEDULING FOR ENERGY-EFFICIENT AoI OPTIMIZATION 9669

V. SIMULATION RESULTS

In our simulations, we consider remotely estimating the state
of a dynamical system (1) with parameters

A =
[

1 0.2
−0.1 1.2

]
, B =

[
1
1

]
, � =

[
0.1 0
0 0.1

]
. (46)

The AoI function is chosen as (6) which represents the
mean-squared error of the remote estimation performance [3].
According to the parameters of TR1001 in [27], the default
settings of the following parameters are Ea = 3.6 × 10−4J,
Es = 0.0015× 10−4J, Eon = 0.252× 10−4J, Eoff = 0.0283×
10−4J, p = 0.5, λ = 0.5, and K = 2× 104.

A. Performance of the Proposed Sleep Scheduling Policy

First, we evaluate the performance of the proposed sleep
scheduling policy by simulations and compare it with four
other existing policies—Greedy policy [6], optimal stationary
randomized (OSR) policy [7], duty-cycle (DC) policy [13], and
dynamic programming (DP)-based policy [28]. The Greedy
policy makes decisions according to the cost it brings.
Specifically, during step k, the Greedy policy considers the
energy cost during step k and the AoI during step k + 1.
Therefore, the sensor changes its working mode from sleep
to active when

λ(Eon + Ea)+ (1− λ)
[
pf (1)+ (1− p)f (�(k) + 1)

]

≤ (1− λ)f (�(k)+ 1)+ λEs (47)

and changes its working mode from active to sleep when

λ(Eoff + Es)+ (1− λ)f (�(k)+ 1)

≤ λEa + (1− λ)
[
pf (1)+ (1− p)f (�(k) + 1)

]
. (48)

The OSR policy switches the sensor’s working mode with a
fixed probability β ∈ [0, 1] at every step. The deliveries of the
measurement form a renewal process. Then, we can establish
an optimization problem to minimize the average cost in (9)
and get the optimal probability β∗, which forms the OSR pol-
icy. The DC policy makes the sensor switch the working mode
at a fixed time interval [29], in which we set the sleep and
active periods of equal length which is calculated by (44) for
a fair comparison. We apply the DP method as in [28] to
optimally solve the optimization problem (9) and the solution
forms the DP policy. Then, we conduct Monte Carlo simula-
tions to evaluate the proposed sleep scheduling policy and the
above four existing policies in terms of the average cost in (9).
The results reported in the following figures are averages of
3× 104 independent simulation runs.

Fig. 4 shows the results with different Eon ∈ {0.152,

0.252, 0.352, . . . , 1.052}. Fig. 5 shows the results with differ-
ent Ea ∈ {3.5, 3.6, 3.7, . . . , 4.4}. Fig. 6 shows the results with
different p ∈ {0.3, 0.4, 0.5 . . . , 1}. From Figs. 4–6, we can find
that the proposed optimal sleep scheduling policy has the best
average cost performance. And the performance of the optimal
sleep scheduling policy is almost coincident with that of the
DC policy. This also reflects the correctness of Theorem 1
and Corollary 1. The DC requires backtracking every time a
decision is made, which leads to a very high time complexity
and may rise the so-called “dimension disaster” problem [28].

Fig. 4. Performance comparisons under different Eon.

Fig. 5. Performance comparisons under different Ea.

Fig. 6. Performance comparisons under different p.

Moreover, in practice, the sensor if in sleep mode may not
be able to make scheduling decisions. The DC policy may be
not applicable in this situation. Therefore, a viable method can
be that the sensor decides a sleep period and sets a wake-up
timer before it sleeps. The proposed optimal sleep scheduling
policy meets the above condition and it only needs to calcu-
late the optimal sleep period T∗ in advance. The sensor only
needs to work according to the preset pattern when running,
and no extra calculation is needed when making decisions. We
evaluate the performance of our policy when the function is
the most commonly used one [15]: f (�) = �. As shown in
Fig. 7, the optimal sleep scheduling policy also has the best

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

9670 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 7. Performance comparisons under different Ea with f (�) = �.

performance. Notice that the curve of the Greedy policy has
some inflection points. The reason is as follows. Based on (47)
and (48), it is easy to deduce that, under the Greedy policy
and with f (�) = �, the sensor also works in a cyclic pattern
similar to that in Theorem 1, except that the sleeping period is
�(λ/[p(1− λ)])(Ea+Eon−Es)�. That is, the inflection points
occur mainly due to the nonsmoothness of this sleeping period.
In contrast, in our sleep scheduling policy, the optimal sleep-
ing period is used which is derived from solving the original
optimization problem.

B. Performance Comparison With Event-Based Policy

We compare the sleep scheduling policy and a typical
Event-Based policy as proposed in [30] for reducing mea-
surement transmissions in remote state estimation systems.
In the Event-Based policy [30], during every step, the sen-
sor generates an independent random variable φ(k) which is
uniformly distributed over the interval [0, 1]. When the sen-
sor is in sleep mode, it will switch to active mode when
φ(k) > exp(−(1/2)�(k)2Y), where Y is a positive param-
eter. When the sensor is in active mode, it will switch to
sleep mode when φ(k) < exp(−(1/2)�(k)2Y). Fig. 8 shows
the performance of the optimal sleep scheduling policy and
the Event-Based policy. With the increase of Y , the Event-
Based policy will make the sensor stay in active mode for
a longer time, resulting in the decrease of AoI function and
the increase of energy consumption. Fig. 8(c) shows the aver-
age cost comparisons of the optimal sleep scheduling policy
and the Event-Based policy. We can see that the optimal sleep
scheduling policy outperforms the other one. In addition, since
the event-based policy requires the sensor to make decisions
at every step, the sensor might have to wake up at the begin-
ning of every step to decide whether to remain in active or
sleep again. This may incur extra energy cost. In contrast,
in our proposed policy, the sensor only needs to maintain a
wakeup clock once sleeps and wake up when the clock counts
down to 0.

C. Optimal Sleep Period T∗

Furthermore, we analyze the optimal sleep period T∗ by
simulations under the proposed sleep scheduling policy. Fig. 9
demonstrates the value of the optimal sleep period T∗ under

(a)

(b)

(c)

Fig. 8. Performance comparison with event-based policy [30]. (a) Average
AoI function. (b) Average energy consumption. (c) Average energy
consumption.

different Eon and Ea. For a fix Ea, the optimal sleep period
increases when the value of Eon increases. However, when
Eon exceeds a certain value, the optimal sleep period drops
to 0. This is because the sensor becomes unwilling to spend
more energy to wake up as Eon is high, and, hence, it keeps
active all the time and T∗ = 0. On the other hand, for a
fixed Eon, the figure shows that the larger the Ea is, the longer
the optimal sleep period will be. This is reasonable because
when the energy consumption for staying in active mode grows
larger, the sensor prefers to sleep for a longer time to save

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

CAO et al.: OPTIMAL SLEEP SCHEDULING FOR ENERGY-EFFICIENT AoI OPTIMIZATION 9671

Fig. 9. Optimal value of sleep period T∗ under different Eon and Ea.

Fig. 10. Optimal value of sleep period T∗ under different p and λ.

energy. Fig. 10 demonstrates the value of the optimal sleep
period T∗ under different p and λ. We can observe that the
larger the λ is, the longer the optimal sleep period becomes.
This is because the larger the weight of energy consumption is,
the more time the sensor will spend in sleeping to save energy.
In addition, with a smaller successful data transmission rate p,
the sensor is expected to spend more time in active in order
to successfully deliver a packet, leading to a higher energy
consumption. Thus, it needs to sleep less to reduce AoI by
using a shorter sleep period, as shown in Fig. 10.

D. Comparison With Nonsleeping Sensor

Then, we compare the performance of AoI and energy con-
sumption between the sensor with the optimal sleep scheduling
policy and the nonsleeping sensor [7]. Fig. 11 demonstrates
the comparison results with λ ∈ {0.1, 0.2, . . . , 0.9}. When
λ = 0.1, the optimal sleep period is 0 for the sleep–wake
sensor, so the AoI and energy cost of the sleep–wake sensor
are the same as the nonsleeping sensor. When λ is larger, the
energy cost is more important and the optimal sleep period is
larger. Although the optimal sleep–wake sensor sacrifices the
freshness of the data, it saves a lot of energy. Therefore, intro-
ducing sleep mode for the sensor and adopting the optimal
sleep scheduling policy in this article are good attempts to
balance AoI and energy consumption.

VI. CONCLUSION

Although the freshness of the data is quite important, we
have to consider the energy consumption of the sensor in IIoT.
In order to provide fresh information while reducing the energy
consumption of the sensor, we introduce two working modes
for the sensor: 1) sleep mode and 2) active mode. The sensor
can switch its mode at the beginning of every step. Then,

Fig. 11. Performance comparison with the nonsleeping sensor scenario.

we establish an AoI and energy consumption optimization
problem. The problem is formulated into an MDP and we
reveal the optimal scheduling policy follows a kind of thresh-
old structure. Furthermore, we find the optimal scheduling
policy forms a cyclic sleep–wake working pattern. Then, we
theoretically obtain the ratio of average AoI function and
average energy consumption between the sleep–wake sensor
and the nonsleeping sensor. Later, we theoretically derive the
optimal sleep period when the AoI function is linear and we
propose an algorithm to find the optimal sleeping period for
the common AoI function. In the simulation results, we can
find that the proposed optimal sleep scheduling policy has the
best performance. Moreover, the simulation demonstrates the
introduction of sleep mode and the optimal sleep scheduling
policy saves a lot of energy, which is a good way to balance
the freshness of data and energy consumption.

APPENDIX

PROOF OF LEMMA 1

Proof: First, we prove (24) by induction. Initially when
t = 0, we choose V0(�, s) = (1− λ)f (�). Then, we can get
V0(�+n, s) = (1−λ)f (�+n). Since f (�) is nondecreasing,
it holds that V0(� + n, s) ≥ V0(�, s) ∀� ≥ 0 and ∀n ≥
0. Next, assuming that Vt(� + n, s) ≥ Vt(�, s) ∀� ≥ 0
and ∀n ≥ 0, we need to prove that this inequality also holds
for t + 1. Because Vt(� + n, 0) ≥ Vt(�, 0), L1,t(� + n) ≥
L1,t(�), and L2,t(�+ n) ≥ L2,t(�), i.e., all the two terms in
the minimum operation of (14) are nondecreasing, we have
Vt+1(�+ n, 0) ≥ Vt+1(�, 0) ∀� ≥ 0 and ∀n ≥ 0. Similarly,
we can get Vt+1(�+n, 1) ≥ Vt+1(�, 1) ∀� ≥ 0 and ∀n ≥ 0.
As a consequence, Vt+1(�+ n, s) ≥ Vt+1(�, s) ∀� ≥ 0 and
∀n ≥ 0. By induction, ∀t ∈ N

Vt(�+ n, s) ≥ Vt(�, s) ∀� ≥ 0 ∀n ≥ 0. (49)

Thus, when t → ∞, we have V∗(� + n, s) ≥ V∗(�, s)
∀� ≥ 0 and ∀n ≥ 0.

Second, we prove (25) by induction. Similar to the above,
we choose V0(�, s) = (1−λ)f (�). Then, we can get V0(�+
n, 0) − V0(�, 0) = V0(� + n, 1) − V0(�, 1) ∀� ≥ 0 and
∀n ≥ 0. Next, we assume that the above inequality holds for

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

9672 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

iteration t and we need to prove the inequality for t + 1, i.e.,

Vt+1(�+ n, 0)− Vt+1(�, 0)

≥ Vt+1(�+ n, 1)− Vt+1(�, 1). (50)

Based on (21) and (22), it is obvious that L1,t(�) ≤ L3,t(�)

and L2,t(�) ≥ L4,t(�). Moreover, according to the proof
of (24), L1, L2, L3, and L4 are nondecreasing in �. From
iteration t on, we have the following inequality for any n ≥ 0
and � ≥ 0:

L3,t(�+ n)− L3,t(�) = L1,t(�+ n)− L1,t(�)

= (1− λ)(f (�+ n)− f (�))

+ βVt(�+ n+ 1, 0)− βVt(�+ 1, 0)

≥ (1− λ)(f (�+ n)− f (�))

+ βVt(�+ n+ 1, 1)− βVt(�+ 1, 1)

≥ (1− λ)(f (�+ n)− f (�))

+ β(1− p)Vt(�+ n+ 1, 1)

− β(1− p)Vt(�+ 1, 1)

= L2,t(�+ n)− L2,t(�)

= L4,t(�+ n)− L4,t(�) (51)

where we have used (49) in deriving the first inequality. To
prove (50), we divide the problem into the following 20 cases
according to the property of L1, L2, L3, and L4. The following
discussions are valid for any n ≥ 0 and any � ≥ 0.

1) Case 1: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and
L1,t(�+n) ≤ L3,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n),
based on (14) and (19), we have

Vt+1(�+ n, 0)− Vt+1(�, 0) = L1,t(�+ n)− L1,t(�)

Vt+1(�+ n, 1)− Vt+1(�, 1) = L3,t(�+ n)− L3,t(�).

Then, Vt+1(�+n, 0) −Vt+1(�, 0) = Vt+1(�+n, 1) −
Vt+1(�, 1) by (51). Therefore, (50) holds in this case.

2) Case 2: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and
L1,t(�+n) ≤ L4,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),
we can get

Vt+1(�+ n, 0)− Vt+1(�, 0) = L1,t(�+ n)− L1,t(�)

= L3,t(�+ n)− L3,t(�)

Vt+1(�+ n, 1)− Vt+1(�, 1) = L4,t(�+ n)− L3,t(�)

≤ L3,t(�+ n)− L3,t(�).

where we have used L4,t(� + n) ≤ L3,t(� + n).
Hence, (50) holds in this case.

3) Case 3: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and
L1,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 2, (50) holds.

4) Case 4: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),
similar to case 2, (50) holds.

5) Case 5: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 2, (50) holds.

6) Case 6: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),

we can get

Vt+1(�+ n, 0)− Vt+1(�, 0) = L2,t(�+ n)− L1,t(�)

= L4,t(�+ n)− L3,t(�)+ λEon + λEoff

≥ L4,t(�+ n)− L3,t(�)

= Vt+1(�+ n, 1)− Vt+1(�, 1).

Therefore, case 6 meets (50).
7) Case 7: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),
we can get

Vt+1(�+ n, 0)− Vt+1(�, 0) = L1,t(�+ n)− L1,t(�)

Vt+1(�+ n, 1)− Vt+1(�, 1) = L4,t(�+ n)− L4,t(�).

According to (50), (51) holds.
8) Case 8: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 7, (50) holds.

9) Case 9: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),
similar to case 7, (50) holds.

10) Case 10: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 7, (50) holds.

11) Case 11: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),
similar to case 6, (50) holds.

12) Case 12: If L1,t(�) ≤ L4,t(�) ≤ L2,t(�) ≤ L3,t(�) and
L1,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 7, (50) holds.

13) Case 13: If L1,t(�) ≤ L4,t(�) ≤ L2,t(�) ≤ L3,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 7, (50) holds.

14) Case 14: If L1,t(�) ≤ L4,t(�) ≤ L2,t(�) ≤ L3,t(�) and
L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),
we can get

Vt+1(�+ n, 0)− Vt+1(�, 0) = L2,t(�+ n)− L1,t(�)

Vt+1(�+ n, 1)− Vt+1(�, 1) = L4,t(�+ n)− L4,t(�)

= L2,t(�+ n)− L2,t(�).

Therefore, (50) holds since L1,t(�) ≤ L2,t(�).
15) Case 15: If L4,t(�) ≤ L1,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),
similar to case 7, (50) holds.

16) Case 16: If L4,t(�) ≤ L1,t(�) ≤ L3,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 7, (50) holds.

17) Case 17: If L4,t(�) ≤ L1,t(�) ≤ L3,t(�) ≤ L2,t(�) and
L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),
similar to case 14, (50) holds.

18) Case 18: If L4,t(�) ≤ L1,t(�) ≤ L2,t(�) ≤ L3,t(�) and
L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),
similar to case 7, (50) holds.

19) Case 19: If L4,t(�) ≤ L1,t(�) ≤ L2,t(�) ≤ L3,t(�) and
L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),
similar to case 14, (50) holds.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

CAO et al.: OPTIMAL SLEEP SCHEDULING FOR ENERGY-EFFICIENT AoI OPTIMIZATION 9673

20) Otherwise: If L4,t(�) ≤ L2,t(�) ≤ L1,t(�) ≤ L3,t(�)

and L4,t(� + n) ≤ L2,t(� + n) ≤ L1,t(� + n) ≤
L3,t(�+ n), then

Vt+1(�+ n, 0)− Vt+1(�, 0) = L2,t(�+ n)− L2,t(�)

Vt+1(�+ n, 1)− Vt+1(�, 1) = L4,t(�+ n)− L4,t(�).

Based on (51), we can get that Vt+1(� + n, 0) −
Vt+1(�, 0) = Vt+1(� + n, 1) − Vt+1(�, 1).
Therefore, (50) holds.

Above all, (50) holds in all cases. Then, by induction, we prove
the inequality (50) for iteration t ∈ N. As a consequence, (25)
can be proved when t→∞.

Finally, we prove (26). Equation (25) can be rewritten as

V∗(�+ n, 0)− V∗(�+ n, 1) ≥ V∗(�, 0)− V∗(�, 1). (52)

While (24) reveals that

pV∗(�+ n, 1) ≥ pV∗(�, 1). (53)

Then, combining (52) and (53) yields (26).

REFERENCES

[1] L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang, and M. Wang, “Status update
in IoT networks: Age-of-information violation probability and optimal
update rate,” IEEE Internet Things J., vol. 8, no. 14, pp. 11329–11344,
Jul. 2021.

[2] X. Wang, C. Chen, J. He, S. Zhu, and X. Guan, “AoI-aware control
and communication co-design for industrial IoT systems,” IEEE Internet
Things J., vol. 8, no. 10, pp. 8464–8473, May 2021.

[3] J. P. Champati, M. H. Mamduhi, K. H. Johansson, and J. Gross,
“Performance characterization using AoI in a single-loop networked
control system,” in Proc. IEEE Int. Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr. 2019, pp. 197–203.

[4] W. Y. B. Lim et al., “When information freshness meets service
latency in federated learning: A task-aware incentive scheme for smart
industries,” IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 457–466,
Jan. 2022.

[5] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM),
Mar. 2012, pp. 2731–2735.

[6] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broad-
cast wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6,
pp. 2637–2650, Dec. 2018.

[7] I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for
optimizing age of information in wireless networks with throughput
constraints,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1359–1372,
Aug. 2019.

[8] B. Sombabu and S. Moharir, “Age-of-information based scheduling for
multi-channel systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7,
pp. 4439–4448, Jul. 2020.

[9] G. Chen, S. C. Liew, and Y. Shao, “Uncertainty-of-information schedul-
ing: A restless multiarmed bandit framework,” IEEE Trans. Inf. Theory,
vol. 68, no. 9, pp. 6151–6173, Sep. 2022.

[10] X. Cao, L. Liu, Y. Cheng, and X. Shen, “Towards energy-efficient wire-
less networking in the big data era: A survey,” IEEE Commun. Surveys
Tuts., vol. 20, no. 1, pp. 303–332, 1st Quart., 2018.

[11] H. Harb and A. Makhoul, “Energy-efficient sensor data collection
approach for industrial process monitoring,” IEEE Trans. Ind. Informat.,
vol. 14, no. 2, pp. 661–672, Feb. 2018.

[12] P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless
network design for control systems: A survey,” IEEE Commun. Surveys
Tuts., vol. 20, no. 2, pp. 978–1013, 2nd Quart., 2018.

[13] J.-B. Seo, “On minimizing energy consumption of duty-cycled wire-
less sensors,” IEEE Commun. Lett., vol. 19, no. 10, pp. 1698–1701,
Oct. 2015.

[14] Q. Chen and Y.-H. Zhu, “Scheduling channel access based on target
wake time mechanism in 802.11ax WLANs,” IEEE Trans. Wireless
Commun., vol. 20, no. 3, pp. 1529–1543, Mar. 2021.

[15] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[16] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information
in multihop networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3,
pp. 1248–1257, Jun. 2019.

[17] P. R. Jhunjhunwala, B. Sombabu, and S. Moharir, “Optimal AoI-aware
scheduling and cycles in graphs,” IEEE Trans. Commun., vol. 68, no. 3,
pp. 1593–1603, Mar. 2020.

[18] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of information
with power constraints: Multi-user opportunistic scheduling in multi-
state time-varying channels,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 854–868, May 2020.

[19] M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-penalty
minimization for networked control systems with packet loss,” in Proc.
IEEE Int. Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Apr. 2019, pp. 189–196.

[20] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “AoI-optimal joint
sampling and updating for wireless powered communication systems,”
IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14110–14115, Nov. 2020.

[21] Z. Zhou, C. Fu, C. J. Xue, and S. Han, “Energy-constrained data fresh-
ness optimization in self-powered networked embedded systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2293–2306, Oct. 2020.

[22] A. M. Bedewy, Y. Sun, R. Singh, and N. B. Shroff, “Low-power status
updates via sleep–wake scheduling,” IEEE/ACM Trans. Netw., vol. 29,
no. 5, pp. 2129–2141, Oct. 2021.

[23] J. Wang, X. Cao, B. Yin, and Y. Cheng, “Sleep–wake sensor schedul-
ing for minimizing AoI-penalty in industrial Internet of Things,” IEEE
Internet Things J., vol. 9, no. 9, pp. 6404–6417, May 2022.

[24] D. Shah, A. Mehta, K. Patel, and A. Bartoszewicz, “Event-triggered
discrete higher-order SMC for networked control system having
network irregularities,” IEEE Trans. Ind. Informat., vol. 16, no. 11,
pp. 6837–6847, Nov. 2020.

[25] M. H. Mamduhi, J. P. Champati, J. Gross, and K. H. Johansson, “Where
freshness matters in the control loop: Mixed age-of-information and
event-based co-design for multi-loop networked control systems,” J.
Sens. Actuat. Netw., vol. 9, no. 3, p. 43, Sep. 2020.

[26] S. M. Ross, Stochastic Processes. New York, NY, USA: Wiley, 1996.
[27] A. G. Ruzzelli, P. Cotan, G. M. R. O’Hare, R. Tynan, and

P. J. M. Havinga, “Protocol assessment issues in low duty cycle sen-
sor networks: The switching energy,” in Proc. IEEE Int. Conf. Sens.
Netw. Ubiquitous Trustworthy Comput. (SUTC), vol. 1, Jun. 2006,
pp. 136–143.

[28] T. Sun and X.-M. Sun, “An adaptive dynamic programming scheme
for nonlinear optimal control with unknown dynamics and its applica-
tion to turbofan engines,” IEEE Trans. Ind. Informat., vol. 17, no. 1,
pp. 367–376, Jan. 2021.

[29] A. A. Lata and M. Kang, “A review on broadcasting protocols for duty-
cycled wireless sensor networks,” in Proc. Int. Conf. Ubiquitous Future
Netw. (ICUFN), Jul. 2019, pp. 649–652.

[30] L. Li, D. Yu, Y. Xia, and H. Yang, “Remote nonlinear state estimation
with stochastic event-triggered sensor schedule,” IEEE Trans. Cybern.,
vol. 49, no. 3, pp. 734–745, Mar. 2019.

Xianghui Cao (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in control science and engi-
neering from Zhejiang University, Hangzhou, China,
in 2006 and 2011, respectively.

From 2012 to 2015, he was a Senior Research
Associate with the Department of Electrical
and Computer Engineering, Illinois Institute of
Technology, Chicago, IL, USA. He is currently a
Professor with the School of Automation, Southeast
University, Nanjing, China. His current research
interests include cyber–physical systems, wireless

network performance analysis, wireless networked control, and network
security.

Dr. Cao was a recipient of the Best Paper Runner-Up Award from ACM
MobiHoc in 2014 and the First Prize of Natural Science Award of Ministry of
Education of China in 2017. He also serves as an Associate Editor for ACTA
Automatica Sinica and IEEE/CAA JOURNAL OF AUTOMATICA SINICA.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

9674 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Jia Wang (Student Member, IEEE) received the
B.E. degree in control science and engineering from
Harbin Engineering University, Harbin, China, in
2019, and the M.E. degree in control science and
engineering from Southeast University, Nanjing,
China, in 2022.

His research interests include transmission
scheduling of wireless networks.

Yu Cheng (Senior Member, IEEE) received the
B.E. and M.E. degrees in electronic engineer-
ing from Tsinghua University, Beijing, China, in
1995 and 1998, respectively, and the Ph.D. degree
in electrical and computer engineering from the
University of Waterloo, Waterloo, ON, Canada,
in 2003.

He is currently a Full Professor with the
Department of Electrical and Computer Engineering,
Illinois Institute of Technology, Chicago, IL, USA.
His research interests include wireless network

performance analysis, information freshness, machine learning, and network
security.

Dr. Cheng was the recipient of the Best Paper Award at QShine 2007 and
IEEE ICC 2011, and the Runner-Up Best Paper Award at ACM MobiHoc
2014. He was the recipient of the National Science Foundation CAREER
Award in 2011 and the IIT Sigma Xi Research Award in the Junior Faculty
Division in 2013. He has served as the Symposium Co-Chair for IEEE
ICC and IEEE GLOBECOM, and the Technical Program Committee Co-
Chair for IEEE/CIC ICCC 2015, ICNC 2015, and WASA 2011. He was the
Founding Vice Chair of the IEEE ComSoc Technical Subcommittee on Green
Communications and Computing. He was an IEEE ComSoc Distinguished
Lecturer in 2016–2017. He is an Associate Editor of IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, IEEE INTERNET OF THINGS JOURNAL, and
IEEE WIRELESS COMMUNICATIONS.

Jiong Jin (Member, IEEE) received the B.E.
degree (with First-Class Hons.) in computer engi-
neering from Nanyang Technological University,
Singapore, in 2006, and the Ph.D. degree in electri-
cal and electronic engineering from the University
of Melbourne, Melbourne, VIC, Australia, in 2011.

From 2011 to 2013, he was a Research Fellow
with the Department of Electrical and Electronic
Engineering, University of Melbourne. He is cur-
rently an Associate Professor with the School of
Science, Computing and Engineering Technologies,

Swinburne University of Technology, Melbourne. His research interests
include network design and optimization, edge computing and networking,
robotics and automation, and cyber–physical systems and Internet of Things
as well as their applications in smart manufacturing, smart transportation, and
smart cities.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2023 at 05:57:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

