
8748 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

Application-Oriented Scheduling for Optimizing

the Age of Correlated Information:

A Deep-Reinforcement-Learning-Based Approach
Bo Yin , Student Member, IEEE, Shuai Zhang, Student Member, IEEE, and Yu Cheng , Senior Member, IEEE

Abstract—Recent advances in communications technologies
and the proliferation of connected devices have spawned a
variety of information-centric Internet-of-Things (IoT) systems,
where timely information updating is normally required. Age of
Information (AoI) has recently been introduced to quantify the
freshness of the knowledge the controller has about the remote
information sources. With the development of IoT applications,
it is becoming increasingly common that the application-level
services, e.g., status updates, rely on the timely delivery of
fresh information from a number of information sources. In
this article, we study the application-oriented scheduling for
optimizing information freshness in the presence of correlated
information sources. To this end, we adopt the concept of Age
of Correlated Information (AoCI) and formulate the schedul-
ing problem as an episodic Markov decision process (MDP)
problem with an application-oriented policy. Given the complex-
ity of the above problem, we develop a learning-based approach
that not only leverages the emerging deep reinforcement learning
(DRL) techniques but also exploits diverse-domain knowledge.
The numerical results show that the proposed approach achieves
better performance in terms of AoCI, compared to some typical
baseline methods.

Index Terms—Age of Information (AoI), deep reinforcement
learning (DRL), information correlations, scheduling.

I. INTRODUCTION

T
HE Internet of Things (IoT) is regarded as one of the

biggest paradigm shifts that have the potential to change

all aspects of our lives drastically. Due to the convergence of

pervasive connectivity and ubiquitous computing, IoT systems

are becoming increasingly information centric, evolving from

end-to-end data communication networks to integral intelli-

gent systems that involve sensing, data analytics, information

extraction, and decision making. In these systems, there is

a commonly centralized controller that collects the raw data

from diverse devices with different sizes and shapes and sup-

ports a variety of IoT applications, such as home security

applications and home appliances management applications

in a smart home ecosystem. The Quality of Service (QoS)

of most of IoT applications, particularly those real-time ones,

Manuscript received January 28, 2020; revised April 14, 2020; accepted
May 15, 2020. Date of publication May 21, 2020; date of current version
September 15, 2020. This work was supported in part by the U.S. National
Science Foundation, under Grant CNS-1816908 and Grant ECCS-1610874.
(Corresponding author: Yu Cheng.)

The authors are with the Department of Electrical and Computer
Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA (e-mail:
byin@hawk.iit.edu; szhang104@hawk.iit.edu; cheng@iit.edu).

Digital Object Identifier 10.1109/JIOT.2020.2996562

depends heavily on the timely delivery of fresh information.

For example, in an industrial automation application, the con-

trol center needs to collect time-sensitive measurements from

different machines for maintaining situational awareness and

performing real-time control.

Given the importance of optimizing the timeliness of

information update in real-time applications, a performance

metric, called Age of Information (AoI), has recently been

introduced to quantify the freshness of the knowledge the

controller has about the remote information sources [1].

Specifically, the AoI is defined as the time elapsed since

the generation of the latest updated information. Due to the

capability of capturing information freshness in various appli-

cations, AoI has sparked tremendous interests and been studied

in many networking systems [2], ranging from wireless sen-

sor networks, cellular networks to vehicular networks. The

optimization of AoI requires careful considerations over the

whole lifetime of the information, i.e., from its creation to the

delivery, which yields a series of novel system designs in the

areas of sampling strategy [3]–[5], queuing discipline [6]–[8],

and link scheduling policy [9]–[18].

The fundamental difference between AoI and other QoS

metrics, e.g., latency and throughput, is that AoI is information

centric rather than transmission centric. However, in the

present state of the art, the evaluation of information freshness

is still constrained at the packet level or message level, that

is, the controller’s knowledge gets refreshed upon the delivery

of a single packet. In this article, we argue that the received

information is effective only when it helps the applications or

users to make certain meaningful decisions or facilitate spe-

cific application-level actions. From this angle, the existing

packet-level AoI modeling cannot well meet the application-

level service requirements in many practical scenarios, where

a user or an application has to aggregate the information from

multiple sources for making a sensible decision. For example,

an indoor routing algorithm may rely on the real-time position

information of the object, which is obtained by aggregating the

range measurements from multiple anchor nodes. Generally,

we say two information sources are correlated if information

from them contributes to the same decision-making process.

Given the pervasiveness of the information correlation, it is

of importance to understand its influences on the develop-

ment of freshness optimization approach. Nevertheless, few

of the existing literature in this area seriously considered the

correlations across different information sources.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: APPLICATION-ORIENTED SCHEDULING FOR OPTIMIZING AGE OF CORRELATED INFORMATION 8749

In this article, we target a study of application-oriented

scheduling for optimizing information freshness in the pres-

ence of correlated information sources. Specifically, we con-

sider a general IoT system, where various time-sensitive

information monitored by different IoT devices is collected

regularly to support multiple applications and study the trans-

mission scheduling problem for this system. We adopt the

concept of the Age of Correlated Information (AoCI) intro-

duced in [19] to characterize the application-level freshness of

information. Motivated by the recent successful applications of

the deep reinforcement learning (DRL) framework in network

optimization, we seek a DRL-based approach to deal with the

correlations that arise in the scheduling problem. The main

contributions of this article can be summarized as follows.

1) By leveraging the dynamics of the AoCI, we formulate

the scheduling problem as an episodic Markov deci-

sion process (MDP) problem and prove its NP-hardness.

Furthermore, we employ the options framework to

model the scheduling policy, which incorporates the

all-or-nothing characteristic of the AoCI-based status

update.

2) We propose a DRL-based approach that can exploit a

variety of domain knowledge and yield a reasonable

scheduling policy. Specifically, we utilize the reward

decomposition technique to exploit the special structure

of the reward signal to reduce the complexities of the

target approximations. Besides, an attention-integrated

relevance network (ARN) architecture is developed for

capturing the correlations among the applications.

3) We conduct extensive simulations to demonstrate the

effectiveness of the proposed approach. The results show

that a stable and reasonable approximation to the option-

value function can be derived by the learning agent,

which generates a scheduling policy that outperforms

conventional algorithms.

The remainder of this article is organized as follows.

Section II describes the system model as well as the freshness

optimization problem in which the correlations across different

information are considered. Section III introduces some basics

of the RL framework and the emerging DRL techniques. The

characterizations of the application-oriented scheduling pol-

icy are discussed in Section IV while Section V presents the

proposed DRL-based approach. The performance evaluation of

the proposed approach is provided in Section VI. Section VII

overviews the related work. Finally, Section VIII concludes

this article.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider an IoT uplink system that is served by a local

area network (LAN), e.g., the smart homes or Industrial IoT

(IIoT) systems. An IoT hub, acting as the central controller,

collects time-sensitive information from a set M of M IoT

devices to support N IoT applications. The system works in

a frame-based manner [13], [17], where each frame consists

of T transmission slots and T < M. At the beginning of

Fig. 1. IoT system with correlated information sources (the square with a
certain color indicates a collected updating message from the corresponding
source while the arrow means that the message is consumed by an application).

every frame, each device generates a packet1 that contains

the information of its current status. This synchronized update

model occurs in many monitoring and control applications,

where packets are generated periodically. The hub pulls the

information from some devices during a transmission frame.

At the end of that frame, the hub will update the statuses of

the applications according to the information it collects. As

illustrated in Fig. 1, we consider a generic scenario in which

updating the status of an application requires to integrate

the information gathered from multiple devices. Formally, let

Fn ⊆ M denote the set of devices whose information is nec-

essary to update the status of application n. Moreover, the sets

of devices that are associated with different applications can

overlap. In other words, the packet from one device may be

useful in updating multiple applications.

1) Transmission Model: The IoT hub is in charge of the

packet transmission within each frame such that at most one

device can receive the transmission grant in one slot. The

channels between the devices and the hub are assumed to

be unreliable. Specifically, transmission failures are modeled

by independent and identically distributed Bernoulli processes,

e.g., packet erasure channels in wireless networks. That is, if

device m is scheduled in a slot, the probability for successful

packet reception and decoding is pm. In addition, the chan-

nels are assumed to be quasistatic. In this article, the channel

characteristics are described for definiteness and we consider

that the statistics of transmission failure are unknown. Packets

that remain in the buffer, either undelivered or from unselected

devices, will be dropped at the end of each frame.

2) Age of Correlated Information Model: We assume that

the IoT hub can only utilize the messages which at generated at

the same time to update the status of an application. In other

words, the status of application n will not be updated until

the latest packets from all devices in Fn are received by the

hub. As considered in [19], we employ a coflow-like abstrac-

tion [20] to model the correlations across the information from

multiple devices. Let cn(k, t) denote the AoCI with respect

to application n at the beginning of the tth slot of frame k.

1The proposed approach can be extended to handle more general case,
where one or multiple packets are needed to convey the information of a
device, by encoding the transmission progress of each device with the unary
coding scheme.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

8750 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

Fig. 2. AoCI dynamic of an application over five consecutive frames (the
update for this application requires the packets from two devices, illustrated
as blue and yellow squares).

Before update, cn(k, t) grows linearly in time. If all the packets

required for updating the status of application n are delivered

over the duration of a frame, say frame k, cn(k + 1, 1) will

drop to T since all these packets are generated at the beginning

of frame k. The typical AoCI dynamic of an application over

five consecutive frames is illustrated in Fig. 2. The status of

this application is updated successfully at the end of the first

and third frames.

B. Problem Statement

We study the scheduling policy for the aforementioned

model. Let a(k, t) ∈ {0, 1, . . . , M} denote the scheduling deci-

sion at the tth slot of frame k, i.e., a(k, t) = i, i > 0 if device

i is scheduled at that slot while a(k, t) = 0 indicates an idle

slot. The quality of a scheduling policy π is characterized by

the expected long-term average AoCI of all the applications

in the IoT system, denoted by J(π)

J(π) = lim sup
K→∞

1

KNT
Eπ

[

K
∑

k=1

N
∑

n=1

T
∑

t=1

cn(k, t)

]

. (1)

During frame k, let hn,k denote the number of frames

elapsed since the generation of the latest received packet of

application n. The evolution of hn,k can be expressed as

hn,k+1 =
{

1, if Fn ⊆ Dk

hn,k + 1, otherwise
(2)

where Dk represents the set of devices whose packet gets deliv-

ered during frame k. Consider that the updates can only occur

at the end of a frame, we have

cn(k, t) = hn,kT + t − 1. (3)

With proper manipulations, J(π) can be expressed as

J(π) = lim sup
K→∞

T

KN
Eπ

[

K
∑

k=1

N
∑

n=1

hn,k

]

+ T − 1

2
. (4)

For a given system setting, i.e., N and T are fixed, the optimal

policy that minimizes J(π) is also the policy that achieves the

lowest J̃(π)

J̃(π) = lim sup
K→∞

1

K

K
∑

k=1

Eπ

[

N
∑

n=1

hn,k

]

. (5)

In this article, we aim to leverage the RL framework to pro-

pose a scheduling policy that results in low J̃(π). Particularly,

we focus on the model-free approach, where the policy is

derived through the interactions with the environment without

estimating the dynamics of the environment, i.e., the proba-

bilities pm. The model-free approach can be easily adapted

for the systems in which the environment is nonstationary,

e.g., pm changes slowly. Inspired by the recent advances in

DRL techniques, we explore an experience-driven approach

in which artificial neural networks (ANNs) are utilized as

function approximators to extract valuable knowledge that is

valuable for AoCI-based scheduling. In order to exploit both

the spatial and temporal structures of the scheduling problem,

we will develop a multiscale hierarchical framework. More

precisely, the learning agent makes the slot-level scheduling

decisions under the guidance of a frame-level policy while

the per-slot decision is abstracted as the outcome of a two-tier

decision-making process.

III. PRELIMINARIES

In this section, we introduce some basics of the RL frame-

work as well as the emerging DRL techniques. Generally, the

RL methods are applied to solve an MDP in which an agent

interacts with an environment in a discrete decision slot. Let

S and A, respectively, denote the state space of the environ-

ment and the action space of the agent. At slot τ , the agent

observes the current state of the environment, say S(τ), and

takes an action A(τ) according to a policy π , which is a map-

ping from S to a probability distribution over A. Afterward,

the state of the environment becomes S(τ + 1) and the agent

receives a scalar reward R(τ), which is determined by the

reward function r(S(τ), A(τ), S(τ + 1)). Let G(τ) denote the

discounted cumulative reward, i.e., G(τ) =
∑∞

t=τ γ t−τ R(t),

where γ ∈ [0, 1] is the discount factor. The goal of the agent

is to derive the optimal policy that maximizes G(τ) in the

sense of expectation.

The action-value function for policy π , denoted by Qπ (s, a),

plays an important role in model-free RL methods. It quantifies

the value of taking action a in state s under π , i.e.,

Qπ (s, a) = Eπ [G(τ)|S(τ) = s, A(τ) = a]. (6)

A fundamental property of the action-value function for any

policy π is that it satisfies the following recursive property,

also known as, the Bellman equation:

Qπ (s, a) = Es′
[

R(τ) + γEa′∼π(s′)
[

Qπ (s′, a′)
]]

(7)

where s′ is the next state and a′ is the next action. This

property is used throughout the RL methodology. Basically,

if the action-value function for an optimal policy is known,

say Q∗(s, a), then the policy that acting greedily with respect

to Q∗(s, a), i.e., A(τ) = argmaxa Q∗(S(τ), a), is also optimal.

The famous Q-learning algorithm [21] leverages the Bellman

optimality equation and improves the estimate of Q∗(s, a)

iteratively via sample-based update as follows:

Q(S(τ), A(τ)) := Q(S(τ), A(τ)) + αδ(τ) (8)

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: APPLICATION-ORIENTED SCHEDULING FOR OPTIMIZING AGE OF CORRELATED INFORMATION 8751

where α is the learning rate and δ(τ) is called temporal-

difference (TD) error and can be calculated as

δ(τ) = R(τ) + γ max
a

Q(S(τ + 1), a) − Q(S(τ), A(τ)). (9)

When the number of the state–action pair is enormous,

ANNs are used by DRL methods for learning a low-

dimensional representation of the estimate of Q∗(s, a). In

this way, the action-value function is expressed as a param-

eterized functional form with weight vector θ , denoted by

Q(s, a; θ). Typically, the ANN of Q(s, a; θ), called deep Q-

network (DQN), takes the state representation as its input

and outputs a |A|-dimensional vector, each component of

which is the Q-value with respect to a specific action. The

weights θ are updated iteratively with the objective of min-

imizing a loss function L(θ) via the gradient-based method

θ := θ − α�θL(θ), i.e., backpropagation algorithms. The

main challenge of the DRL methods is that the ANNs diverge

aggressively during the training process. The DQN approach

in [22] introduces several novel techniques to improve stabil-

ity. First, a separate target network, denoted by Q̃(s, a; θ
−)

is used to calculate the TD errors. The target network is a

copy of the DQN except that its weights θ
− are updated less

frequently. More precisely, the target network duplicates the

current weights of the DQN regularly whenever a certain num-

ber of updates of θ have been performed. θ
− are held fixed

during this interval. Second, the agent stores its experience,

say (s, a, r, s′), in a replay buffer. Instead of the latest sample

in the relay buffer, a minibatch of samples that are randomly

drawn from the replay buffer is used to update θ , which elimi-

nates the correlation between successive updates and smooths

out the training. In this way, the loss function that quantifies

the expected TD errors is expressed as

L(θ) = E(s,a,r,s′)

[

(y − Q(s, a; θ))2
]

(10)

where y = r + γ maxa′ Q̃(s′, a′; θ
−) is the training target. In

addition, clipping techniques, e.g., reward clipping and error

clipping, are used to further mitigate the divergence issue.

The works in [23]–[25] also shed light on the devel-

opment of the DRL-based scheduling policy. Specifically,

the work in [23] proposes the options framework to enable

temporal abstraction and boost exploration in RL. As a gen-

eralization of primitive actions, an option includes temporally

extended actions. Formally, an option o is denoted by a tuple

(Io, φo, βo) in which Io is an initiation set, φo is called

option’s policy (intraoption policy), and βo is a termination

condition. Specifically, if the option o is initiated in state

s ∈ Io, actions will be taken according to φo until the ter-

mination condition βo is met. The selection of options is

controlled by policy over options (interoption policy), denoted

by µ. Commonly, the initiation set of option o is defined as

{s : βo(s) = 0}. Thinking of options as the subgoals of the

system, an option’s policy is designed to achieve that specific

subgoal.

The method of hybrid reward architecture (HRA) proposed

in [24] facilitates the DQN training with decomposed reward

signals. The key insight of the HRA method is that rather than

an accurate approximation, a sufficiently consistent approx-

imation to the Q-value function is adequate for deriving a

reasonable policy. A function Q(s, a; θ) is said to be consis-

tent with Q∗(s, a) if acting greedily with respect to it also

results in an optimal policy. A straightforward example is a

product of Q∗(s, a) and a constant number, noting that the rel-

ative rank of the Q-values of different actions with respect to

an arbitrary state does not change. In this sense, acting greed-

ily with respect to a semiconsistent approximation results in

a good policy. Furthermore, the results in [24] show that a

semiconsistent approximation can be obtained by employing

a uniformly random policy.

For handling the representations learning in text-based

games, a deep reinforcement relevance network (DRRN)

is proposed in [25] to capture the semantic and syntactic

information in the state space and action space, which are both

described by the text. Different from the ANN architecture in

the regular DQN approach that directly outputs the Q-values

with respect to particular actions, DRRN models the Q-values

via an interaction function, which characterizes the relevance

between the high-level embedding vectors of the specific state

and action.

IV. OPTIONS-BASED MODELING

A. MDP Formulation

With the objective (5), the scheduling problem can be

naturally cast as an infinite horizon control problem. This

innocent-looking formulation, nevertheless, could stifle the

development of the scheduling policy. In the frame-based

model, each device generates a new message periodically,

which implies that the transmission states about the latest

messages will be reset to a specific starting state at the begin-

ning of every frame regardless of the scheduling policy. Such

a recurring pattern makes it intractable to learn an ergodic

policy, which is typically desirable for performing infinite hori-

zon control. From a different perspective, the aforementioned

unconditional transition can also be interpreted as the termina-

tion in an episodic task that interrupts the normal flow of state

transitions. In this way, we resort to the episodic MDP model

to develop the scheduling policy under which the learning

agent will perform episodic control over the schedule of the

transmissions. Specifically, the duty of the agent is to derive

an intraframe control policy that could drive the system to

the desirable states at the end of each frame. Exploiting this

special structure of the scheduling problem reduces the com-

plexity of learning a reasonable policy since the learning agent

can restrict its attention to addressing the intricacies caused

by the correlations between the information updates within a

frame. To this end, a macropolicy is expected, which can make

use of the frame-based dynamics of the system and guide the

learning agent, e.g., informing the agent of what kind of states

are favorable at the beginning of each frame.

Consider the similarity between the dynamics of hn,k and

that of a network queue, we employ the Max-Weight pol-

icy [26], which is a widely used scheduling algorithm for

networks of queues, as the macropolicy for the intraframe con-

trol. The Max-Weight policy can be derived via the Lyapunov

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

8752 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

optimization [27], [28]. Specifically, a quadratic Lyapunov

function is used to quantify the desirability of the system

states, i.e.,

L(hk) =
N

∑

n=1

h2
n,k (11)

where hk = [h1,k, h2,k, . . . , hN,k]. Intuitively, to achieve a low

J̃(π), the scheduling policy is expected to prevent L(hk+1)

from becoming too large. Given hk, the Max-Weight policy

achieves this by minimizing the Lyapunov drift, i.e.,

�L(hk) = Eπ

[

L(hk+1) − L(hk)|hk

]

. (12)

According to the results in [13], the Max-Weight policy in the

frame-based setting is equivalent to the policy that maximizes

the one-frame return, denoted by Gk(π), at each frame

Gk(π) = Eπ

[

N
∑

n=1

1{Fn⊆Dk}hn,k

(

hn,k + 2
)

]

(13)

where 1{e} is the indicator function which equals to 1 if the

expression e is true.

Informally speaking, the Max-Weight policy breaks down

the long-term goal (5) into frame-by-frame subgoals (13).

Within a frame, it schedules the message transmissions with

the objective of maximizing the sum of the “weights” of

the applications whose status can be updated at the end of

that frame. The “weight” of application n at frame k is

hn,k(hn,k +2). As shown in the following theorem, performing

such episodic control in the presence of correlated information

sources is generally a nontrivial task.

Theorem 1: The episodic control problem, i.e., maximizing

Gk(π) given hk, is NP-hard.

Proof: The NP-hardness of the episodic control problem

is proven via reduction. Consider a special case of this

problem where the channels are error free. Correspondingly,

the episodic control problem becomes the problem of select-

ing at most T devices to transmit their messages such that

Gk(π) is maximized. Note that the relations between devices

and applications can be characterized by a hypergraph, where

each edge is denoted by an arbitrary set of nodes. Specifically,

the nodes represent devices and the edges represent applica-

tions, each of which can be unequivocally identified by a set

of devices, say Fn. Besides, each edge is associated with a

weight, say hn,k(hn,k + 2). In this way, the above problem is

equivalent to finding the weighted densest subgraph with at

most T nodes, which is the generalized version of the dens-

est subgraph problem [29]. Due to the NP-hardness of the

densest subgraph problem, the episodic control problem is

NP-hard.

As discussed above, the episodic control framework enables

the agent to explore the characterizations of the scheduling

policy by considering only a single frame. Therefore, hereafter

in this article, the frame index k is dropped for brevity. The

discounted factor γ is also omitted since it equals to 1 in

the episodic scenario. In order to apply the RL framework

to solve the episodic control problem, we describe the state

space, action space, and reward signal as follows.

1) State Space: A state captures the AoCI of each appli-

cation and the transmission status with respect to the

packet of each device. To ensure stationary state tran-

sition, the current slot index is also included. That

is, s � [h1, h2, . . . , hN; u1, u2, . . . , uM; t], where um ∈
{0, 1} indicates whether the information from device i is

delivered. At the beginning of a frame, um = 0∀m.

2) Action Space: The actions in the episodic control

problem are the scheduling decisions of each slot.

Therefore, A � {0, 1, . . . , M}.
3) Reward Function: Let dn and d′

n be the indicator vari-

ables that, respectively, denote whether Fn ⊆ D at the

beginning and end of the current slot.2 According to

(13), the per-slot reward can be defined as R =
∑N

n=1 rn,

where

rn =
{

d′
nhn(hn + 2), if dn = 0

0, otherwise.
(14)

B. Application-Oriented Scheduling

In general, an RL agent improves its control policy by

exploring the action space stochastically and exploiting what

it has learned from the reward signal. Due to the all-or-nothing

nature of the status update of each application, the agent

rarely receives positive rewards if the devices are scheduled

in an arbitrary stochastic manner. In other words, straightfor-

ward exploration over the primitive action space will yield an

extremely sparse reward signal. Under such a circumstance, it

is very difficult for the RL agent to make progress since zero

reward offers little knowledge about how to accumulate the

rewards. In light of the hierarchical structure of the scheduling

problem, we employ the options framework [23] to incorpo-

rate the temporally abstract knowledge and action, i.e., the

status update of an application requires series of successful

transmissions of messages from multiple devices. This allows

the agent to efficiently explore the environment and learn a

reasonable policy from the perspective of high-level abstract

actions.

In the context of transmission scheduling, an option can be

naturally associated with an application. Therefore, the option

space is defined as O � {0, 1, . . . , N}, where o = 0 represents

an idle slot. The scheduling policy π is the composition of the

interoption policy and a collection of options’ policies. For an

option o = n, its termination condition is either all the packets

application n needs are delivered or the remaining slots are not

sufficient for transmitting the undelivered packets, i.e.,

βn(s) = 1
{(

∑

m∈Fn
(1−um)

)

=0
} ∨ 1

{(

∑

m∈Fn
um

)

>T−t+1
}. (15)

In this article, we restrict our attention to scheduling policies

in which the decision of idle slot can be made if and only if all

the other options are terminated, i.e., β0(s) = 1−
∧N

n=1 βn(s).

It is not difficult to see that an arbitrary policy is dominated

by at least one scheduling policy of this type. Therefore, the

learning agent only considers the options o ∈ {1, . . . , N} in

the development of the policies µ and {φn}. In what follows,

2The values of dn and d′
n can be derived from the current state s and the

next state s′, respectively.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: APPLICATION-ORIENTED SCHEDULING FOR OPTIMIZING AGE OF CORRELATED INFORMATION 8753

indexes o and n are used interchangeably. Consider that option

n implies the subgoal as updating the status of application n, it

is not difficult to see that the corresponding option’s policy is

to sequentially schedule the devices in Fn whose information

is not delivered yet.

Analogous to the action-value function, the option-value

function for a policy µ quantifies the expected cumulative

rewards the agent can obtain by initiating an option at a

specific state, i.e.,

Qµ(st, o) = E

[

T
∑

τ=t

R(τ)

∣

∣

∣

∣

∣

E(o ◦ µ, st, t)

]

(16)

where E(o ◦ µ, st, t) represents the events of following the

composition of the intraoption policy of option o and the

interoption policy. That is, keep executing the option o until

its termination and then select another option according to

the policy µ. With deterministic options’ policies, Q-learning

algorithm can be extended to the options-based formulation

by leveraging the Bellman-like optimality equations [23]

Q∗(s, o) = E
[

R + U∗(s′, o
)
∣

∣s, φo(s)
]

(17)

where U∗(s, o) is called the option-value function upon

arrival, i.e.,

U∗(s, o) = (1 − βo(s))Q
∗(s, o) + βo(s) max

o′∈O
Q∗(s, o′). (18)

The one-step TD update of the option-value function is

manifested as

Q(st, o) := Q(st, o) + α
[

Rt+1 + U(st+1, o) − Q(st, o)
]

(19)

where U(s, o) represents the current estimate of U∗(s, o).

The above algorithm can efficiently utilize the experience

sample by updating the Q-values with respect to multiple

options simultaneously. That is, the update rule (19) is applied

to all those options that will take the same action at as

that in the sample. With this in mind, an option’s policy,

say φn, is designed to schedule the devices {m : m ∈ Fn}
in descending order of lm, where lm denotes the number

of applications that require the information of device m.

The establishment of such policies follows the intuition that

scheduling devices with higher lm earlier can in some sense

increase the flexibility of intraoption learning. In the next

section, we develop a DQN-based approach to learn an approx-

imation to the optimal option-value function Q∗(s, o) under

the aforementioned options’ policies and then derive the

application-oriented scheduling policy.

V. DRL-BASED APPROACH

A. Reward Decomposition

The options-based modeling captures the hierarchical struc-

ture of the scheduling policy such that the learning agent

can explore the action space effectively. Unless extra care

is taken, however, the regular DQN approach is of limited

applicability for yielding an acceptable approximation due to

the complexity incurred by {hn}. When a DQN is used, the

optimal Q-value function is approximated by an ANN with

low-dimensional representations. It is of paramount impor-

tance that resultant representation has strong generalization

capability such that the agent can make sensible decisions

in states that are unprecedented or rarely visited. Typically,

the more complex the approximation function is, the poorer

generalization the trained DQN can achieve. Including {hn}
as part of the inputs to the ANN turns out to be trouble-

some since it significantly increases the dimensionality of the

function mapping. In addition, the dynamics of {hn} imply

that the scale of rewards varies greatly. Conventionally, the

DQN approach clips all the positive rewards to be 1 to sta-

bilize the training process. However, ignoring the information

of {hn} does not make sense for the scheduling problem since

it will lead to a policy that always tries to perform the easi-

est updates. Those challenges suggest a separate consideration

of {hn} rather than feeding them into the ANN. Observing

that the reward function defined in Section IV-A is additive,

we decompose Qµ(s, o) via reward decomposition such that

several simpler option-value functions need to be estimated.

Specifically, the option-value function for a policy µ can be

decomposed as follows:

Qµ(s, o) = E

[

T
∑

τ=t

R(τ)

∣

∣

∣

∣

∣

E(o ◦ µ, s, t)

]

=
N

∑

n=1

E

[

T
∑

τ=t

rn(τ)

∣

∣

∣

∣

∣

E(o ◦ µ, s, t)

]

=
N

∑

n=1

qµ
n (s, o)

(20)

where q
µ
n (s, o) is the option-value functions for the policy µ

under reward signal rn.

Decomposing the option-value function Qµ(s, o) in the

applicationwise manner facilitates the exploitation of domain

knowledge. Since fine-grained reward signal is utilized, we

can circumvent the reward clipping technique by estimating

the surrogate function q̂
µ
n (s, o), with the reward signal

r̂n =
{

d′
n, if dn = 0

0, otherwise.
(21)

Since the information of {hn} is known at the beginning of

each frame, q
µ
n (s, o) can be directly evaluated with the esti-

mation of q̂
µ
n (s, o). In this way, Qµ(s, o) is estimated via the

surrogate rewards {r̂n}, where r̂n ∈ {0, 1}. Moreover, since no

further reward with respect to application n can be received if

βn(s) = 1, we can safely set q
µ
n (s, o) = 0 if terminal states are

encountered during the training process. Therefore, the param-

eters θ in the DQN can be fully used to represent q
µ
n (s, o) in

the case of βn(s) = 0.

Consider that Q∗(s, o) is an aggregation of all q∗
n(s, o), the

optimal next option o′ is determined by the estimations of all

q∗
n(s, o). In other words, q∗

n(s, o) loses the recursive property

the Bellman optimality equation of Q∗(s, o) enjoys. Similar to

the HRA approach [24], we train the DQN by evaluating a

stationary random policy ρ, where an option is selected uni-

formly at random from the set of nonterminal options, say Os.

Under this policy, the Bellman operator of Qµ(s, o) is decom-

posable. Therefore, θ can be updated by using the expected

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

8754 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

Sarsa method [30], with the target value

yo
n = r̂n + ûn(s

′, o) (22)

where

ûn(s, o) = (1 − βo(s))q̃n

(

s, o; θ
−)

+ βo(s)

|Os|
∑

o′∈Os

q̃n

(

s, o′; θ
−)

.

(23)

The corresponding loss function is written as

L(θ) = E(s,o,r,s′)

⎡

⎣

∑

ô∈�o
s

N
∑

n=1

(

yô
n − q̂

(

s, ô; θ
)

)2

⎤

⎦ (24)

where �o
s represents the set of options that will schedule the

same device as option o does.

Another benefit of using the stationary random policy ρ

is that the complexity of approximating q̂
ρ
n (s, o) can be fur-

ther amortized by excluding {hn} from the inputs of the ANN.

Under policy ρ, the reward signal r̂n is independent of {hn}.
Therefore, the information of {hn} is irrelevant to the update of

q̂n(s, o; θ). According to [24], such irrelevant information only

adds noise to the learning process. Let ŝ � [u1, u2, . . . , uM; t].

Since only the information of ŝ is necessary in approximating

q̂
ρ
n (s, o), we rewrite the parameterized representation of the

ANN for q̂
ρ
n (s, o) as q̂n(ŝ, o; θ), indicating that the irrelevant

information {hn} is not used by the ANN.3 In this way, the

semiconsistent approximation to Q∗(s, o) is represented as

Q̂(s, o; θ) =
N

∑

n=1

q̂n

(

ŝ, o; θ
)

∗ hn(hn + 2). (25)

Instead of performing the nonlinear transformations via an

ANN, information of {hn} is utilized explicitly in the above

expression by leveraging the additive structure of the schedul-

ing problem. Compared to Q∗(s, o), q̂
ρ
n (ŝ, o) is easier to learn

since it characterizes a clearer connection between the option

selections and the outcomes.

B. Attention-Integrated Relevance Network Architecture

The q̂-value function q̂
ρ
n (ŝ, o) characterizes the probability

that the status of application n can be updated while the agent

executes the option o. Intuitively, executing different options

may have a similar impact on the status update of a cer-

tain application. For example, consider a set of IoT devices

(1, 2, 3, 4, 5), each application can be represented by a subset

of the device set. With error-free transmissions assumed, the

effect of executing the option of application (1, 4) on the sta-

tus update of application (1, 2, 3) is almost the same as that of

executing the option of application (2, 5). Likewise, the option

values of executing a specific option with respect to different

applications may be close to each other. In this sense, values of

q̂
ρ
n (ŝ, o) for different combinations of application n and option

o are highly correlated. Taking this into account, we embrace

the idea of DRRN [25] to design the network architecture of

the DQN such that the correlations among applications can

be modeled in an expressive fashion. That is, q̂n(ŝ, o; θ) is

3The value of the termination condition βn(s) does not rely on hn, either.

Fig. 3. ARN (the blue blocks represent the hidden layers that consist of
trainable parameters).

expressed as a pairwise interaction between a state embed-

ding vector for application n and the embedding vector for

option o.

As illustrated in Fig. 3, we build two separate ANNs to

embed the state space and option space, respectively. Formally,

let {�n(ŝ, θ s)} be the outputs of the former ANN and �(o, θo)

denote the embedding vector of option o generated by the later

ANN. Given the scale of the estimations, the scaled dot prod-

uct is used as the interaction function. Specifically, q̂
ρ
n (ŝ, o) is

estimated as

q̂n

(

ŝ, o; θ
)

=
�

n

(

ŝ, θ s

)

�(o, θo)√
V

(26)

where (·) represents the transpose operator and V is the

dimension of each embedding vector, e.g., �n(ŝ, θ s) or

�(o, θo). Combining (25) and (26), Q̂(s, o; θ) can be con-

sidered as the outcome of a simplified scaled dot-product

attention mechanism [31] with inputs {�n}, �, and {hn}. In this

sense, the proposed DQN is called ARN. The state embedding

network has a multihead structure, where each head outputs

the state embedding vector for a particular application. The

collection of heads can share several lower level layers of

the ANN.

The training process follows a practice common for training

a DQN, which is presented in Algorithm 1. The He ini-

tialization method [32] and Glorot initialization method [33]

are used to initialize the network weights in the hidden lay-

ers and output layer, respectively (line 1). Given that the

experience samples of idle slots are useless for the learning

agent, those samples will not be added into the replay buffer

(lines 9 and 10). We apply the ε-greedy policy to balance the

exploration–exploitation tradeoff. That is, a random option will

be selected with probability ε; otherwise, the option that yields

the maximum value of Q(s, o, θ) is chosen (line 13). The value

of ε decays from 1 to 0.05 during the training process. Since

an experienced sample may be used to update multiple q̂-

values, the popular experience sampling method—prioritized

experience replay (PER) [34]—cannot be applied directly. In

this article, we sample a minibatch of transitions via the com-

bined experience replay (CER) method (line 19), where the

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: APPLICATION-ORIENTED SCHEDULING FOR OPTIMIZING AGE OF CORRELATED INFORMATION 8755

Algorithm 1 DQN Training

1: Initialize {�n(ŝ, θ s)} and �(o, θo) with random weights

θ s and θo

2: Initialize the target networks {�̃n(ŝ, θ
−
s)} and �̃(o, θ−

o)

with θ
−
s = θ s and θ

−
o = θo

3: Initialize the replay buffers B

4: for k = 1, . . . , K do

5: Update {hn}
6: Term ← 0, o ← 0

7: for t = 1, . . . , T do

8: Update s

9: if
∧N

n=1 βn(ŝn) = 1 then

10: Keep idle

11: else

12: if Term = 0 then

13: Select option o according to the ε-greedy

policy

14: end if

15: Schedule a device according to option o’s

policy; Receive rewards {r̂n} and observe s′

16: Add transition (s, o, r, s′) into B

17: Term ← βo(s
′)

18: end if

19: Sample a random minibatch of transitions from B

20: Perform a gradient descent step on θ s and θo with

respect to the loss function (24)

21: Update the target networks:

θ
−
s ← αθ s + (1 − α)θ−

s

θ
−
o ← αθo + (1 − α)θ−

o

22: end for

23: end for

latest sample has the highest priority [35]. Instead of updat-

ing the target DQN periodically, the method of “soft” target

update [36] is used to update the weights in the target networks

(line 21). With α � 1, the target networks track the learned

networks quite slowly.

Remark: Although Algorithm 1 is presented in an online set-

ting, the training process can be performed offline given that

the expected SARSA method is used in an off-policy man-

ner. In this way, the learning agent can derive the policy out

of historical data, e.g., a set of transitions generated by other

policies. To completely transform the proposed algorithm to a

batch RL algorithm, however, extra considerations are neces-

sary, e.g., how to efficiently perform the importance sampling.

We leave it as our future work.

VI. PERFORMANCE EVALUATION

In this section, numerical results are presented to evalu-

ate the performance of the DRL-based approach. We consider

IoT systems with 50 devices. The number of devices that

are associated with an application is randomly selected from

{2, 3, 4, 5}. Therefore, depending on the number of appli-

cations, the actual number of devices which are involved

in the scheduling problem varies between 19 and 41. The

probabilities of successful transmission pm follow a uniform

TABLE I
HYPERPARAMETERS SETTINGS

Fig. 4. Training curves tracking q̂-values of representative (n, o) pairs.

distribution, ranging from 0.3 to 1. Unless otherwise stated, the

length of each frame is set to 10. The ANNs in the ARN model

are implemented using TensorFlow [37]. The state embed-

ding network consists of a shared stack and multiple heads.

The shared stack contains two hidden layers, between which

is a batch normalization layer. Each hidden layer has 200

units with ReLU activation. We adopt the method of dueling

network architecture [38] to further smooth out the learning

such that the advantage function rather than the q̂-value func-

tion is approximated via the scaled dot-product operation. The

output of the shared stack is routed to the head blocks, each

of which consists of 100 ReLU units followed by |V|+1 units

with tanh activation. The option embedding network has the

same architecture as the aforementioned shared stack except

that 100 ReLU units are used in each hidden layer. The output

of the second hidden layer is fed to the output layer with V

tanh units. We choose the tanh function because it is zero cen-

tered and has bounded output value within the range −1 to 1.

More of the detailed hyperparameter settings can be found in

Table I.

A. Semiconsistent Approximation

Before discussing the performance achieved by the DRL-

based approach, we use some representative examples to

demonstrate that our approach robustly learns a reasonable

policy that captures the correlations across the applications.

Here, we consider that there are total 19 devices that are asso-

ciated with ten applications, say M = 19 and N = 10. The

training curves, which track the predicted q̂-values of three

(n, o) pairs at the beginning of a frame,4 are illustrated in

Fig. 4. Recall that each application can be represented by a set

4The state at this moment is denoted by ∗.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

8756 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

(a) (b) (c)

Fig. 5. Snapshots of q̂-values. (a) t = 1. (b) t = 5. (c) t = 9.

TABLE II
COMPARISONS OF THE AOCI PERFORMANCES

of devices, the applications involved in Fig. 4 are App. 1:(1,

2, 3, 4, 11), App. 4:(7, 8), and App. 5:(3, 7, 9).

From Fig. 4, we can observe that each predicted q̂-value

reaches a relatively stable value. Specifically, q̂4(∗, 1; θ) ≈
0.27, q̂4(∗, 4; θ) ≈ 1, and q̂4(∗, 5; θ) ≈ 0.55. Given that

App. 4 relies on the information from two devices, it is almost

certain that the status of this application can be updated by the

end of a frame if option 4 is selected at the beginning of that

frame. However, if option 1 is executed, the status of App. 4

will be updated with a low probability since App. 1 requires

the information from four devices which are all irrelevant to

App. 4. Compared to App. 1, App. 5 needs information from

a smaller number of devices. Moreover, one of these devices

is also associated with App. 4. Therefore, it also makes sense

that executing option 5 leads to a higher q̂-value with respect

to App. 4.

With the trained model, snapshots of q̂-values of all (n, o)

pairs in an episode are presented in Fig. 5. We choose three

cases: 1) t = 1; 2) t = 5; and 3) t = 9, which, respectively, rep-

resent the moments in the beginning, in the middle, and near

the end of a frame. As shown in Fig. 5(a), for each applica-

tion, executing its corresponding option always results in the

largest q̂-value. Most of those values in the diagonal direction

are approximately equal to 1 at the beginning of the frame.

The relative magnitude of values in the same row indicates the

relevances of options to a particular application. App. 9 is an

application that does not share any devices with other appli-

cations and two of the devices it relies on have poor channels.

Thus, the status of this application can only be updated by

executing option 9. In the case of Fig. 5(b), option 3 is com-

pleted and option 1 is being executed. We can observe that the

q̂-value of executing option 9 with respect to App. 9 decreases

since there are fewer slots left. Another interesting observa-

tion is that the q̂-value of executing option 1 with respect to

App. 10 becomes almost 1. This is because the set of devices

for App. 10 is a subset of the union of the device sets for

App. 3 and App. 1. When t = 9, there are only two slots left.

As shown in Fig. 5(c), applications with nonterminal corre-

sponding option benefit mainly from executing their options.

Executing option 5 or 7 yields a nonnegligible q̂-value with

respect to App. 4. This is because executing any one of the

two options will lead to the same result as executing option 4,

i.e., scheduling the same device at the current slot.

B. Performance Comparisons

We compare the DRL-based approach, which is denoted by

ARN, with the following two baseline methods.

1) AoCI Greedy Policy (GREEDY): Devices that are asso-

ciated with the application that has the largest AoCI will

be scheduled in sequence first.

2) Randomized Policy (RAND): Application is selected uni-

formly at random from the set of nonterminal options.

The devices which are associated with the selected

application will be scheduled in sequence.

These approaches are evaluated over different system set-

tings. Specifically, we consider systems with 10, 15, and 20

applications, which involves 19, 32, and 41 devices, respec-

tively. The long-term average and some other useful statistics

of the AoCI performance are summarized in Table II. In terms

of the long-term average AoCI, the DRL-based approach out-

performs the other two methods in all three settings. Recall

that the RAND policy is used as the target policy in the train-

ing phase, the significant performance boost achieved by the

ARN policy indicates that the learning agent is able to distill

insightful knowledge and obtain a semiconsistent approxima-

tion to the option-value function. Compared to the GREEDY

policy, the proposed approach achieves 9%, 16%, and 13%

improvements in those three settings, respectively. The 90th

percentile and 95th percentile of the values of AoCI under

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: APPLICATION-ORIENTED SCHEDULING FOR OPTIMIZING AGE OF CORRELATED INFORMATION 8757

Fig. 6. Average number of applications which are updated at each frame.

different policies are also presented. As shown in Table II,

values of AoCI generated by the ARN policy have better tail

behavior than the other two methods.

Furthermore, we investigate the average number of appli-

cations these three policies can update at each frame, which

is illustrated in Fig. 6. It turns out that the GREEDY policy

always achieves the least updates, even less than that ful-

filled by the RAND policy. This is because the preference of

the GREEDY policy to the application with the largest AoCI

makes it pay more attention, compared to the RAND policy, to

those hard-to-update applications, which typically requires rel-

atively more transmissions. Given the poor AoCI performance

of the RAND policy, a certain portion of updates achieved by

the RAND policy, e.g., updates of the applications which have

low AoCI, are in some sense ineffective in improving the aver-

age AoCI. In other words, such a preference is meaningful in

maintaining a good AoCI performance. Nevertheless, naively

sticking to the application with the largest AoCI may waste a

portion of slots. For example, consider the case that the appli-

cation with the largest AoCI still requires the information from

four devices while the current frame has only five slots left.

Definitely, the GREEDY policy will execute the option that is

associated with this application, which probably fails to fin-

ish by the end of the current frame and will be reexecuted at

the beginning of the next frame. Taking the application cor-

relations and the probabilities of the update completion into

account, the ARN policy may execute other options in the

aforementioned case to increase the number of updates, as

exemplified in Fig. 5(b). Moreover, the option chosen by the

GREEDY policy will also be executed by the ARN policy

at the beginning of the next frame, as indicated in Fig. 5(a).

In this way, the ARN policy can effectively plan the trans-

mission schedule to improve the system freshness by jointly

considering the quality and the quantity of the updates.

C. Impact of the Frame Length

Fig. 7 presents the time-average AoCI under the ARN pol-

icy with different frame lengths. As shown in Fig. 7, given

a system setting, there is a sweet spot in terms of the frame

length T , where the lowest time-average AoCI is achieved.

With a small T , only a small portion of applications can be

updated at each frame, which yields high time-average AoCI.

On the other hand, when T is relatively large, although more

messages can be transmitted during a frame, the waiting time

of status update becomes longer since the controller updates

the applications at the end of each frame. In addition, it is illus-

trated in Fig. 7 that the ARN can offer superior performance

over the GREEDY policy. The reasons that the advantage of

the ARN policy diminishes as the frame length increases are

twofold. The first one is the generalization degradation. Recall

that the learning agents used by the ARN policy are trained

with T = 10 when tested in a setting with different frame

length, the distribution of the state changes. Particularly, many

system states are not even in the state space of the original

problem, e.g., states with t > 10. Such an issue is commonly

mitigated by fine tuning the models based on the system set-

ting, i.e., the exact frame length that is used in the system. The

other one is due to the nature of the scheduling problem. That

is, the optimality gap of the GREEDY policy decreases with

an increase of T . This phenomenon can be observed clearly in

Fig. 7(a). Note that there are 19 devices involved in this set-

ting. When T = 25, it is probably the GREEDY policy itself

is near optimal and thus marginal performance boost can be

achieved by the ARN policy. Nevertheless, we argue that in

practical systems, the setting that the value of frame length is

larger than the number of devices is more reasonable and com-

mon, where the proposed approach can be applied to improve

the system’s information freshness.

VII. RELATED WORK

As an emerging topic in the area of wireless networking,

AoI-based link scheduling optimization has been explored via

different approaches. The work in [9] demonstrated that the

problem of wireless link scheduling with age minimization is

NP-hard in general. Consider the NP-hardness of the schedul-

ing problem, a couple of heuristics are proposed in [12]–[14],

among which the greedy policy is shown to be optimal in

symmetric network settings [13] and the round-robin policy

was proven to be asymptotically optimal [12]. Observing that

the dynamics of AoI can be characterized by a virtual queue,

the works in [10], [13], [14], and [17] developed scheduling

policies by leveraging the Lyapunov optimization theory. With

MDP formulations, analytical results for scheduling prob-

lems in different scenarios were presented in [11] and [18].

The scheduling problems were modeled as restless multi-

armed bandit (RMAB) problems in [13]–[16] and [18], where

Whittle’s index policies were, respectively, derived. The work

in [39] studied the AoI minimization problem with nonuni-

form status packet sizes and used the MDP methods to design

a joint scheduling and sampling policy while a unified sam-

pling and scheduling approach is proposed in [40] to minimize

the tracking errors of status updates. A common limitation

of these approaches is that they apply for weakly coupled

systems in which the relationships between the sources and

the information of interest are one to one.

The work in [19] pointed out the potential correlations

across multiple information flows in wireless camera networks,

where images from multiple cameras are processed jointly

for 3-D scene reconstruction. With the objective of mini-

mizing the AoCI, a greedy strategy was proposed for the

transmission schedule. In this article, we generalize the AoCI

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

8758 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020

(a) (b) (c)

Fig. 7. Time-average AoCI versus different frame length. (a) N = 10 and M = 19. (b) N = 15 and M = 32. (c) N = 20 and M = 41.

model proposed in [19] such that many-to-many associations

between devices and applications are considered. In many

wireless networking problems, temporal dependency has a

dramatic impact on the system performance and has been

exploited through various approaches [41]–[43]. This article

leverages the emerging DRL techniques to model the cor-

relations across multiple information sources and exploit the

temporally extended action.

Recently, there are few works that also investigated the

applicability of RL/DRL methods to develop control algo-

rithms that optimize AoI in different networking context

[44]–[47]. It was shown in these works that direct applica-

tions of general learning frameworks, e.g., Q-learning, DQN

approach, or actor–critic algorithm can provide a significant

performance gain in terms of AoI. Due to the correlations that

arise in the scheduling problem, however, the global Q-value

function is so complicated that applying the DQN approach

directly cannot lead to a stable approximation. Therefore, this

article tailors the general learning framework to the schedul-

ing problem such that domain knowledge can be exploited in

various ways to learn a semiconsistent approximation, which

yields a reasonable scheduling policy.

VIII. CONCLUSION

In this article, we have investigated the uplink transmission

scheduling problem for IoT systems in which the application-

level services rely on the timely delivery of information from

multiple devices. By formulating the scheduling problem as

an episodic MDP problem with the application-oriented pol-

icy, we have developed a DRL-based approach to optimize

the long-term average AoCI, which adopts the reward decom-

position technique for complexity reduction and introduces

an attention-based relevance network architecture that cap-

tures the correlations among applications. Through extensive

simulations, we have shown that the proposed approach can

robustly learn a semiconsistent approximation to the option-

value function, yielding a scheduling policy that outperforms

some conventional algorithms.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. IEEE Annu. Commun.

Soc. Conf. Sensor Mesh Ad Hoc Commun. Netw. (SECON), 2011,
pp. 350–358.

[2] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new con-
cept, metric, and tool,” Found. Trends Netw., vol. 12, no. 3, pp. 162–259,
2017.

[3] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, 2012, pp. 2731–2735.

[4] R. D. Yates, “Lazy is timely: Status updates by an energy har-
vesting source,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2015,
pp. 3008–3012.

[5] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[6] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2014,
pp. 1583–1587.

[7] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2016, pp. 2569–2573.

[8] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates
of multiple information flows,” in Proc. IEEE INFOCOM Workshops,
2018, pp. 136–141.

[9] Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age
minimization in wireless systems,” IEEE Trans. Inf. Theory, vol. 64,
no. 7, pp. 5381–5394, Jul. 2018.

[10] C. Joo and A. Eryilmaz, “Wireless scheduling for information freshness
and synchrony: Drift-based design and heavy-traffic analysis,” in Proc.

IEEE WiOpt, 2017, pp. 1–8.

[11] Y.-P. Hsu, E. Modiano, and L. Duan, “Age of information: Design and
analysis of optimal scheduling algorithms,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), 2017, pp. 561–565.

[12] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely
status update in wireless uplinks: Analytical solutions with asymptotic
optimality,” IEEE Internet Things J., vol. 6, no. 2, pp. 3885–3898,
Apr. 2019.

[13] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broad-
cast wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6,
pp. 2637–2650, Jun. 2018.

[14] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in Proc. IEEE

INFOCOM, 2018, pp. 1844–1852.

[15] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochas-
tic arrivals,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2018,
pp. 2634–2638.

[16] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Can decentral-
ized status update achieve universally near-optimal age-of-information
in wireless multiaccess channels?” in Proc. IEEE Int. Test Conf. (ITC),
vol. 1, 2018, pp. 144–152.

[17] N. Lu, B. Ji, and B. Li, “Age-based scheduling: Improving data fresh-
ness for wireless real-time traffic,” in Proc. ACM MobiHoc, 2018,
pp. 191–200.

[18] B. Yin et al., “Only those requested count: Proactive scheduling policies
for minimizing effective age-of-information,” in Proc. IEEE INFOCOM,
2019, pp. 109–117.

[19] Q. He, G. Dan, and V. Fodor, “Minimizing age of correlated information
for wireless camera networks,” in Proc. IEEE INFOCOM Workshops,
2018, pp. 547–552.

[20] M. Chowdhury and I. Stoica, “CoFlow: A networking abstraction for
cluster applications,” in Proc. ACM HotNets, 2012, pp. 31–36.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: APPLICATION-ORIENTED SCHEDULING FOR OPTIMIZING AGE OF CORRELATED INFORMATION 8759

[21] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 279–292, 1992.

[22] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[23] R. S. Sutton, D. Precup, and S. Singh, “Between MDPS and semi-
MDPS: A framework for temporal abstraction in reinforcement learn-
ing,” Artif. Intell., vol. 112, nos. 1–2, pp. 181–211, 1999.

[24] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,” in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5392–5402.

[25] J. He et al., “Deep reinforcement learning with a natural language action
space,” 2015. [Online]. Available: arXiv:1511.04636.

[26] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” in Proc. IEEE CDC, 1990, pp. 2130–2132.

[27] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synth. Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1–211, 2010.

[28] Y. Cheng, H. Li, D. M. Shila, and X. Cao, “A systematic study
of maximal scheduling algorithms in multiradio multichannel wireless
networks,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1342–1355,
Aug. 2015.

[29] U. Feige, D. Peleg, and G. Kortsarz, “The dense k-subgraph problem,”
Algorithmica, vol. 29, no. 3, pp. 410–421, 2001.

[30] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering, “A theoret-
ical and empirical analysis of expected SARSA,” in Proc. IEEE ADPRL,
2009, pp. 177–184.

[31] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.

Process. Syst., 2017, pp. 5998–6008.
[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2015, pp. 1026–1034.

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” in Proc. AISTATS, 2010,
pp. 249–256.

[34] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016, pp. 449–458.

[35] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” 2017.
[Online]. Available: arXiv:1712.01275.

[36] T. P. Lillicrap et al., “Continuous control with deep reinforce-
ment learning,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016,
pp. 1–142.

[37] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. [Online]. Available: http://tensorflow.org/
[38] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,

“Dueling network architectures for deep reinforcement learning,” in
Proc. ICML, 2016, pp. 1995–2003.

[39] B. Zhou and W. Saad, “Minimizing age of information in the Internet
of Things with non-uniform status packet sizes,” in Proc. IEEE ICC,
2019, pp. 1–6.

[40] Z. Jiang, S. Zhou, Z. Niu, and C. Yu, “A unified sampling and scheduling
approach for status update in multiaccess wireless networks,” in Proc.

IEEE INFOCOM, 2019, pp. 208–216.
[41] H. Zhu, S. Chang, M. Li, K. Naik, and S. Shen, “Exploiting temporal

dependency for opportunistic forwarding in urban vehicular networks,”
in Proc. IEEE INFOCOM, 2011, pp. 2192–2200.

[42] H. Zhu, M. Dong, S. Chang, Y. Zhu, M. Li, and X. S. Shen, “ZOOM:
Scaling the mobility for fast opportunistic forwarding in vehicular
networks,” in Proc. IEEE INFOCOM, 2013, pp. 2832–2840.

[43] J. Qin, H. Zhu, Y. Zhu, L. Lu, G. Xue, and M. Li, “POST: Exploiting
dynamic sociality for mobile advertising in vehicular networks,” IEEE

Trans. Parallel Distrib. Syst., vol. 27, no. 6, pp. 1770–1782, Jun. 2015.
[44] E. T. Ceran, D. Gündüz, and A. György, “A reinforcement learn-

ing approach to age of information in multi-user networks,” in Proc.

IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2018,
pp. 1967–1971.

[45] E. Sert, C. Sönmez, S. Baghaee, and E. Uysal-Biyikoglu, “Optimizing
age of information on real-life TCP/IP connections through reinforce-
ment learning,” in Proc. IEEE Signal Process. Commun. Appl. Conf.

(SIU), 2018, pp. 1–4.
[46] A. Elgabli, H. Khan, M. Krouka, and M. Bennis, “Reinforcement learn-

ing based scheduling algorithm for optimizing age of information in
ultra reliable low latency networks,” in Proc. IEEE Int. Symp. Comput.

Commun. (ISCC), 2019, pp. 1–6.
[47] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad,

“Deep reinforcement learning for minimizing age-of-information in
UAV-assisted networks,” 2019. [Online]. Available: arXiv:1905.02993.

Bo Yin (Student Member, IEEE) received the B.E.
degree in electronic information engineering and
the M.E. degree in electronic science and tech-
nology from Beihang University, Beijing, China,
in 2010 and 2013, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, Illinois
Institute of Technology, Chicago, IL, USA.

His research interests include network security,
network resource allocation, and ML-based network
optimization.

Shuai Zhang (Student Member, IEEE) received
the B.Eng. degree from Zhejiang University,
Hangzhou, China, in 2013, and the M.S. degree
from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2015. He is currently
pursuing the Ph.D. degree with Illinois Institute of
Technology, Chicago, IL, USA.

His research interests include wireless communi-
cation and distributed learning.

Yu Cheng (Senior Member, IEEE) received the B.E.
and M.E. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1995 and
1998, respectively, and the Ph.D. degree in electri-
cal and computer engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2003.

He is currently a Full Professor with the
Department of Electrical and Computer Engineering,
Illinois Institute of Technology, Chicago, IL, USA.
His research interests include wireless network
performance analysis, network security, big data,

cloud computing, and machine learning.
Prof. Cheng received the Best Paper Award at QShine 2007 and IEEE ICC

2011, the Runner-Up Best Paper Award at ACM MobiHoc 2014, the National
Science Foundation CAREER Award in 2011, and the IIT Sigma Xi Research
Award in the Junior Faculty Division in 2013. He is an Associate Editor for the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE INTERNET

OF THINGS JOURNAL, and IEEE WIRELESS COMMUNICATIONS. He has
served as the Symposium Co-Chair for IEEE ICC and IEEE GLOBECOM,
and the Technical Program Committee Co-Chair for WASA 2011 and ICNC
2015. He was a Founding Vice Chair of the IEEE ComSoc Technical
Subcommittee on Green Communications and Computing. He was an IEEE
ComSoc Distinguished Lecturer from 2016 to 2017.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 24,2021 at 00:46:11 UTC from IEEE Xplore. Restrictions apply.

