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Abstract—A smart grid is delay sensitive and requires the
techniques that can identify and react on the abnormal changes
(i.e., system fault, attacker, shortcut, etc.) in a timely manner.
In this paper, we propose a real-time detection scheme against
false data injection attack in smart grid networks. Unlike the
classical detection test, the proposed algorithm is able to tackle
the unknown parameters with low complexity and process mul-
tiple measurements at once, leading to a shorter decision time
and a better detection accuracy. The objective is to detect the
adversary as quickly as possible while satisfying certain detection
error constraints. A Markov-chain-based analytical model is con-
structed to systematically analyze the proposed scheme. With the
analytical model, we are able to configure the system parameters
for guaranteed performance in terms of false alarm rate, average
detection delay, and missed detection ratio under a detection delay
constraint. The simulations are conducted with MATPOWER 4.0
package for different IEEE test systems.

Index Terms—Abnormal detection, CUSUM, false data injec-
tion attack, network security, signal detection and estimation,
smart grid, quickest detection.

I. INTRODUCTION

THE smart grid has improved the robustness and efficiency
of traditional power grid networks by exploiting the mod-

ern technologies. In particular, information exchange among
users, operators, and control devices significantly improves the
efficiency in production, transmission, and distribution. How-
ever, integration of intelligence into the power grid needs to act
punctually on abnormal situations (i.e., system fault, attacks,
shortcut, etc.) [1].

Indeed, the smart grid is delay sensitive and requires the
techniques that can identify and react on the abnormal changes
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in a timely manner. If the detection and responses are not made
promptly, the grid may become unstable and further cause the
catastrophic failures over the entire network. For example, in
the control center of the smart grid, an essential task of the
energy management system (EMS) is to estimate the system
states by collecting data from remote meters periodically. If
the adversaries are able to inject malicious data, EMS may
produce the false state estimation, which potentially results in
wrong decisions on billing, power dispatch, erroneous analysis,
and even blackout [2]. Thus, the smart grid network must
incorporate the protection mechanism, which has the capability
of detecting the abnormal change and then making the decision
as quickly as possible. Such an issue strongly motivates us to
propose the quick detection-based detection scheme.

There are many studies on smart grid security in the liter-
ature. A framework for analyzing the impact of cyber-attacks
in a smart grid was presented in [3] and [4]. The work in [5],
[6], and [8] formulated the attacks that are able to evade the
conventional detection in smart grids. The false data injections
are studied in [9]–[11] as one type of the cyber-attacks in the
power system. The authors in [12] discovered the microgrid
vulnerability in the smarter power system under the false data
injection attack. In [13], the false data injection attacks are
shown to interrupt the energy-routing process. In this paper,
we would like to focus on studying in the observable context
with the proposed detection scheme that can be an interesting
practical contribution for smart grid networks.

To address the false data injection attacks in the smart
grid, EMS in the control center needs to be equipped with
the capability of real-time detection of malicious attacks by
analyzing the statistical behavior of the state estimation process.
According to the quickest detection (QD) framework [14], the
cumulative sum (CUSUM) based approach fits well to this type
of detection problems because of its non-Bayesian properties.
Such a framework aims to determine a change of the observed
statistics as quickly as possible based on the online obser-
vations, the user-defined decision rules, and the requirement
of detection accuracy. The decision rules should be properly
designed to optimize the tradeoff between the stopping time and
decision accuracy.

The QD technique is normally combined with the statistical
hypotheses test (SHT) [15], [16]. The mechanism of SHT is that
the receiver classifies a sequence of observations into one of the
candidate hypotheses; a hypothesis normally represents a type
of distributions. The QD and SHT have been applied to a variety
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of networks. The authors in [17] used the CUSUM tests as a col-
laborative QD for detecting a distribution change in ad hoc net-
works. The authors in [18] utilized the CUSUM test to address
the real-time backoff misbehavior problem in IEEE 802.11
based wireless networks. However, not much existing work has
considered the unique environment of smart grid networks.

In this paper, a countermeasure strategy of the false data
injection attack is considered in the form of adversary detection.
The problem formulation of detecting the false data injection
is based on the bad data detection (BDD) for the smart grid
state estimation. The proposed scheme is able to determine the
existence of adversary as quickly as possible without violat-
ing the given constraints such as a certain level of detection
accuracy in terms of the false alarm rate (FAR) and missed
detection rate. In [19], we studied some preliminary works
that include the basic mathematic derivation and numerical
simulations; without loss of generality, one in conference ver-
sion is motivated on the straightforward approach by directly
evaluating the likelihood of load for detection decision, instead
of formulating the algorithm based on the likelihood of residual
in this paper, i.e., state estimation in power systems is based
on measurement of residual, and therefore, the derivation and
result from this journal can be more accurate and practical
for real-world applications. In addition, the conference one
measured a limited range of the unknown by utilizing one-
side Rao test for simplicity, while this paper considers the
quadratic equivalence of Rao test for solving the unknown.
Essentially, this journal focuses on the thorough examination
of the proposed algorithm in terms of analytical model and per-
formance simulations. The development of an analytical model
in this paper for the proposed algorithm provides theoretical
guidance for quantitative performance analysis, and it further
makes available the precious insight on system parameter con-
figuration for guaranteed performance in terms of fundamental
performance metrics. The main contributions are as follows.

1) We develop a framework for real-time detection of false
data injection attacks in the smart grid network, under
certain detection quality constraints. While the conven-
tional state estimation [20], [21] for BDD focuses on
balancing between the FAR and missing detection ratio,
our approach aims to minimize the detection delay under
the error probability constraint. In addition, the con-
ventional approach makes decisions based on snapshot
measurements only, but the proposed framework ana-
lyzes a sequence of samples for more reliable decisions
over time.

2) The proposed algorithm is able to detect the presence of
false data attacks in that the probability density function
of the postchange is unknown due to the unknown pa-
rameters. However, the classical CUSUM test assumes
the perfect knowledge of the likelihood functions. While
the existing generalized likelihood ratio test (GLRT) ap-
proach can resolve the unknown parameters, it has high
complexity. This paper proposes a new low-complexity
approach with shorter decision delay and more accu-
rate decision, which is asymptotically equivalent to the
GLRT test.

TABLE I
DESCRIPTION OF SOME IMPORTANT SYMBOLS AND ABBREVIATIONS

3) An analytical model for the proposed algorithm is devel-
oped, which provides the theoretical guidance for quanti-
tative performance analysis. With the analytical model,
it gives the insight on system parameter configuration
for the online detection of false data injection attacks.
System parameters can also be computed for guaranteed
performance in terms of three fundamental performance
metrics: the FAR, average detection delay, and missed
detection ratio under a detection delay constraint. In other
words, our analytical model can guide us to configure a
detection system based on some detection performance
requirements.

4) The performance of the proposed algorithm is evaluated
by both mathematical analysis and simulations. Note
that simulations are conducted under MATPOWER 4.0
package [22] for different IEEE test systems to ensure the
experimental accuracy and proficiency.

The remainder of this paper is organized as follows.
Section II describes the system model. Section III presents and
analyzes the newly proposed scheme, the adaptive CUSUM
algorithm. Section IV develops the Markov-chain-based ana-
lytical model. Section V presents extensive numerical and sim-
ulation results for performance evaluation. Section VI gives the
concluding remarks. Table I includes some important notations
used in this paper.
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Fig. 1. Illustration of the four-bus power network, control center, few main
functions (AGC, OPF, and EMS), and operator. Note that “G” represents the
generators, the black dot represents the available active power flow measure-
ments, and the triangle on the bus represents the load of the region or city.

II. PROBLEM FORMULATION

Fig. 1 illustrates the IEEE four-bus test system with two
generators. Each bus has its corresponding voltage (Vq) and
phase angle (θq). The control center sends the power mea-
surement data (zqr) to the state estimator which generates
an estimate of system state to be used in different functions
such as the automatic generation control (AGC), optimal power
flow (OPF), or EMS. The operator makes the final decision on
generator control and load management.

As an essential role in the power system, the state estimator
uses the steady-state system model to estimate the system status
(i.e., the voltages at all buses over the time) [23]. Speaking in
general, state estimation with a total of B active buses in a
practical power system can be described as

Z = h(x) + e (1)

where Z denotes the measurement data, x represents the un-
known state including the voltage level Vq and the phase angle
θq of each bus q ∈ B, and e is the Gaussian measurement noise
with a zero mean and a covariance matrix Σe. Noticing that a
nonlinear h(x) is determined by the network topology, the real
power flow from bus q to bus r can be expressed as

Mqr =V 2
q (gsq + gqr)− VqVr(gqr cos θqr + bqr sin θqr)

M̃qr = −V 2
q (bsq+bqr)−VqVr(gqr cos θqr−bqr sin θqr) (2)

where the admittance of the series branch between buses q and r
is (gqr+jbqr) and the admittance of the shunt branch at bus q is
(gsq+jbsq). The formulations of real and reactive power injec-
tion can be constructed in the same way as that described in (2).

For simplicity, the linear state estimation model is applied
in this paper. Notice that all shunt elements, bus, branch,
and reactive power flow are neglected, and the bus voltage
magnitude is known [20]. The power flow and power injection
can be linearized and described as

Mqr =
θqr
Xqr

Mq =
∑
r∈Bq

Mqr (3)

where Mq is denoted as the power injection, Bq is the set of
bus numbers that are directly connected to bus q, and Xqr is
the reactance between bus q and bus r. Furthermore, we can
simplify1 (1) to

Zn = Hx+ en (4)

where H is the constant Jacobian matrix, Zn = [Zn,1, . . . ,
Zn,m]T with m measurements at the observation index n ∈
1, 2, 3, . . . , and x = [θ2, . . . , θB ]

T . Notice that phase angle θ0
for bus 0 is assumed known as a reference angle, and the size of
Zn is normally greater than that of x [20], [24]. One objective
of (4) is to determine the x̂ which can minimize

(Zn −Hx̂)TΣ−1
e (Zn −Hx̂).

By applying the weighted least square, the estimated system
state x̂ is

x̂ =
(
HTΣ−1

e H
)−1

HTΣ−1
e Zn. (5)

For BDD systems, we compare the power flow measure-
ments Zn with the estimated active power flow Ẑn by the phase
angle estimate x̂. Ẑn can be written as

Ẑn = Hx̂ = H
(
HTΣ−1

e H
)−1

HTΣ−1
e Zn = �Zn (6)

where � is known as the hat matrix. Define the residue
vector as

Rn = Zn − Ẑn. (7)

The expected value and the covariance of residual Rn are

E(Rn) =0 (8)

ΣR =
[
I−H

(
HTΣ−1

e H
)−1

HTΣ−1
e

]
Σe (9)

respectively. The system can perform BDD by analyzing
Rn [20].

In brief, the conventional state estimation for false data injec-
tion detection uses only snapshot measurements, and therefore,
we like to apply the online QD technique using a sequence of
measurements for more reliable decisions.

III. ADAPTIVE CUSUM ALGORITHM

In this paper, we propose an adaptive CUSUM algorithm
for real-time detection of false data attacks in smart grid state
estimation. The proposed scheme evaluates the measurements
before the potential bad data are removed by BDD. The de-
tection system formulation as presented in [14] and [26] is no
longer useful in the scenario under our consideration because

1The DC model is adopted due to practical security constraint unit commit-
ment and market operations. Most of the control centers use a linear power
model for state estimation because of two reasons. First, the phase differences
are relatively small so that a linear model can be employed. Second, due to the
complexity of computing the AC model, the linear model is used for real-time
analysis in the power system operation [25].
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unknown parameters exist in the postchange distribution and
may dynamically change over the detection process. Our main
motivation is to derive a detection model considering the exis-
tence of the unknown and then develop an analytical model that
can guide us configure the detection system for guaranteed per-
formance. The proposed scheme does not require the maximum
likelihood (ML) estimate of the unknown, thereby making the
computation process much simpler.

Under a false data injection attack, the false data bn is
maliciously injected into the power flow measurement vector as

Zn = Hx+ bn + en. (10)

Residual vector Rn can be well approximated by a Gaussian
random variable because of Gaussian thermal measurement
noise en [7], [27]. When there is no attack, the residual vector
Rn follows Gaussian distribution N (0,ΣR). Under attack, Rn

follows N (an,ΣR), where

an = Kbn (11)

where K = (I−�). Notice that an = [an,1, an,2, . . . , an,m]T ,
∈ R

m is not known a priori (i.e., the adversary’s statistical
model, attack patterns, or mathematical distributions cannot be
known in advance. This issue will be addressed later in this
section.). Then, we have the binary hypothesis as{

H0 : Rn ∼ N (0,ΣR)
H1 : Rn ∼ N (an,ΣR)

(12)

and assume that the false data injection becomes active at
random-time moment τ , in other words a change of the distribu-
tion from N (0,ΣR) to N (an,ΣR) at τ . Note that we process
the measurement data before a BDD removes the potential
residual.

We denote Th as the stopping time for declaring the best arm
under current observation. τ is a change time. In other words,
it is the switch point from one distribution that belongs to the
normal state to another distribution under the attack. Based on
the Lorden’s formulation [14], we minimize the worst case of
detection delay, which can be described as

TD = infTh∈T sup esssup Eτ

[
(Th − τ + 1)+|Fτ−1

]
(13)

where τ > 1, Fτ denotes the smallest α-field with respect
to the observations, T is the set of all stopping time with
respect to Fτ , and Eτ is the expectation that the change time
is τ . However, most CUSUM-based models assume the perfect
knowledge of the likelihood functions [26]. In the scenario of
intrusion detection in smart grid state estimation, the variable
from the H1 distribution cannot be completely defined because
of the unknown. The detection also needs to address the issue
that multiple measurements are correlated each together in
a single online observation. Thus, we need to employ the
technique to solve the issues for real-time detection of false data
injection in smart grid networks.

The proposed QD algorithm is recursive in nature, and each
recursion comprises two interleaved steps: 1) unknown variable
solver based on Rao test and 2) multithread CUSUM test. The
proposed CUSUM algorithm updates a likelihood ratio term

based on a series of power measurements with a stopping time
Th, described as

Th = inf{n ≥ 1|Sn > h} (14)

where the detection threshold h is a function of FAR and
its value is determined numerically. We will discuss how to
determine the value of h in Section IV. At nth, the cumulative
statistic Sn can be solved recursively and described as

Sn = max[ 0, Sn−1 + Ln] (15)

where Sn returns to zero for statistical accuracy if its value is
negative, S0 = 0 initially, and

Ln = log
f1(Rn)

f0(Rn)
(16)

being the likelihood ratio function based on the nth round of
measurement denoted as the observation vector Rn (Rn,l, l ∈
1, 2, . . . ,m). In (16), f1(Rn) is the distribution associated
with the hypothesis H1 with false data injection, and f0(Rn)
is the distribution associated with the hypothesis H0 in the
normal state. Therefore, the control center is able to declare
the alarm when the accumulation crosses a certain threshold h,
the cumulative process is terminated, and average run length
(ARL) is equivalent to Th.

As the value of an in (11) is unknown, the author in [28] pro-
posed to implement the GLRT in the Page’s CUSUM algorithm
with the unknown. The idea is to apply likelihood ratio test
(LRT) by replacing the unknown with the ML estimation. The
GLRT approach is asymptotically minimax and can be written as

Sn = min
1≤n≤Th

max
an

Th∑
i=n

log
f1(Ri|ai)
f0(Ri)

. (17)

In other words, we minimize the effect of the unknown while
considering the worst case situation (i.e., the second maxi-
mization in (17)). Thus, by applying GLRT in the CUSUM
algorithm, we can ensure a certain level of detection accuracy
for QD while minimizing the potential effect from the unknown
in the system. However, the recursive expression of (17) for
the CUSUM test is no longer available, as shown in (15). It
is because GLRT needs to compute every unknown element
of an based on samples up to the current observation n. In
other words, the GLRT approach requires storing the estimated
data and ML-estimating the unknown at every point. Thus,
in practice, the GLRT is too difficult from the viewpoints of
hardware and software implementation. Moreover, the work
in [29] states that Rao test might be more robust but less
complex than the GLRT real operating situations. In [30], the
performance of Rao-test-based detectors is better than GLRT in
parameter estimation and handling training-free scenarios.

For the multithread CUSUM algorithm, the desired approach
is to solve the unknown recursively, avoiding ML estimation.
Thus, we consider the Rao test [31], which is asymptotically
equivalent to the GLRT. The derivation of the Rao test is similar
to the locally most powerful test but much simpler. The Rao
test has the straightforward calculation by taking the derivative
of Ln with respect to the unknown evaluated around the region
of interests. In our case, we analyze the case where the region
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is around zero because the hypothesis H0 has zero mean. The
statistic [31] of the Rao test for detection can be modified and
rewritten as follows at observation n:

I(Rn) =
∂Ln

∂an

∣∣∣∣
T

an=0

[
J−1(an)

∣∣
an=0

] ∂Ln

∂an

∣∣∣∣
an=0

(18)

where J is the Fisher information matrix [32]. By inspecting
(18) and evaluating (11) and (12), we notice that the computa-
tion of the inverse Fisher information matrix can be simplified
and equivalent to the covariance of residual.

Based on (12), we can write the binary hypothesis {H0,H1}
by expanding the multivariate normal distributions. Next, we
apply (18) to (16) by taking its derivative with respect to
an evaluated at an = 0. Finally, by recursion, the multithread
CUSUM-based statistic can be described as follows:

Sn = max {0, Sn−1 + I(Rn)} (19)

where I(Rn) = [(RT
nΣ

−1
R )T +Σ−1

R Rn]
TΣR[(RT

nΣ
−1
R )T +

Σ−1
R Rn]. Notice that the cumulative statistic is now indepen-

dent from the unknown variable, and (19) becomes a scalar
quantity once it is computed. In summary, the control center
observes actual power flow measurements and generates the
vector of residual from m measurement samples taken in
the nth round of observation. The proposed scheme is com-
posed of two interleaved steps: the unknown variable solver
and the multithread CUSUM test. The control center will mon-
itor the CUSUM statistic in (19) against the threshold to detect
the false data injection attacks. The alarm rises when the
CUSUM statistic Sn exceeds the threshold. The framework
of the adaptive CUSUM algorithm of the proposed scheme is
shown in Algorithm 1.

Algorithm 1 Adaptive CUSUM algorithm

n ← (1, 2, 3 · · ·)
Rn ← compute the difference between Ẑ and Z.
repeat

Update of: n ← n+ 1
continues the observation
Unknown solver based on Rao test:
eliminate an by taking derivative of Ln with

respect an evaluated at 0
Multithread CUSUM test:
compute recursively Sn for all m measurements

at current n as shown in (19)
until Th = inf{n ≥ 1|Sn > h} is determined
Terminate the adaptive CUSUM process
Report the determined hypothesis and ARL

IV. MARKOV-CHAIN-BASED ANALYTICAL MODEL

In this section, we develop the Markov-chain-based analyti-
cal model to systematically examine the proposed scheme for
the false data injection attack. The Markov-chain-based model
produces quantitative performance analysis and provides theo-
retical guidance on the system configuration for performance

guarantee in terms of three fundamental performance metrics:
the expectation of FAR, the expectation of missing-detection
rate, and the expectation of detection delay.

A. Analysis Model

For analysis purposes, we discretize R
+
⋃
0 into the finite

sets {U1, . . . , UF−1, UF }, where U1 = 0 and UF is the set
whose value is greater than or equal to h. In other words, F
is the total number of transition from 0 to the state that has the
value greater than or equal to h. There are several approaches
for discretization [33], [34]. In this paper, we employ uniform
sampling without loss of generality. Alternative discretization
methods can also be employed, like the μ-law or A-law in the
pulse-code modulation. Moreover, from (19), we know that the
sequence exhibits the Markov property, where the current state
j = Sn at observation n only depends on the previous state
i = Sn−1 at n− 1 but not on the past history [35].

The transition probabilities of the Markov chain for the
proposed scheme from state i at (n− 1) to state j at n can be
described as

Pij =P (Sn = j|Sn−1 = i), under H0;

P̂ij =P (Sn = j|Sn−1 = i), under H1. (20)

Note that the Markov-chain-based analytical model for the
proposed scheme involves two different transition probability
matrices (TPMs): one is under the normal state environment,
and the other one is under the false data attack. The normal
TPM can help in determining the initial state as well as FAR.
With the initial states, the average detection delay and detection
delay can be analyzed by using the TPM under attack. We can
calculate TPMs: P and P̂ with the size of (F + 1)× (F +
1), under the hypothesis H0 and H1 according to f0(Rn)
and f1(Rn), respectively. Here, we assume that the attacker’s
strategy is stationary. If the attackers’ attack has zero mean
but nonzero variance, the hypothesis test problem becomes
detecting the different variances with versus without attack. If
the attackers’ attack has nonzero mean and nonzero variance,
the hypothesis test has two dimensions (mean and variance).
Both cases can be investigated by a similar way to our current
analysis (attacker has nonzero mean and zero variance). Due to
page limitation, we leave this for the future study.

The initial steady-state probability of the Markov chain, where
the process starts from a normal state, can be determined as

π0
j =

πj∑F−1
i=0 πj

, given j ∈ {0, U1, . . . , UF−1} (21)

and the steady-state probability can be determined

πj =

F∑
i=0

Pijπi (22)

where j ∈ {0, U1, . . . , UF} and
∑F

j=0 πj = 1.
Next, based on the Markov chain model, we study the

theoretical performance analysis of detection delay, FAR, and
missed detection ratio expectations, respectively, in the follow-
ing sections.



HUANG et al.: REAL-TIME DETECTION OF FALSE DATA INJECTION IN SMART GRID NETWORKS 537

B. Expectation of Detection Delay

To determine the expectation (EP̂[TD]) of detection delay,
we utilize the weighted average of the expected number of
transitions from every initial state (π0

0 , π
0
1 , . . . , π

0
F−2, π

0
F−1) to

state UF based on P̂. We set ΩgF , g ∈ {0, U1, . . . , UF−1},
as the expected number of transitions for state g to state UF .
Following the derivation from [35], the numerical value of ΩiF

can be determined as follows:

ΩiF = 1 +
∑
g �=F

P̂igΩgF (23)

where the transition probability P̂ig ∈ P̂ is from state i to state
g. The expectation of detection delay can be obtained from the
results of (21) and (23)

EP̂[TD] =

F−1∑
i=0

π0
iΩiF . (24)

C. Expectation of FAR

The expectation (EP[FAR]) of FAR is the probability that
the proposed CUSUM statistic Sn reaches to the state UF

when there is no attacker in the network. As described in [35],
EP[FAR] is equivalent to the probability that Sn stays at state
UF (i.e., exceeding threshold h) under hypothesis H0.

According to [35], it states the TPM P always has a special
eigenvector with only one eigenvalue λ = 1 and the rest is zero.
Thus, we can obtain the solution by re-elaborating (22) into the
matrix form as
⎡
⎢⎢⎢⎢⎣

P00 − 1 P01 · · · P0F

P10 P11 − 1 · · · P0F
...

...
. . .

...
PF0 PF1 · · · PFF − 1
1 1 · · · 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
π0

π1
...
πF

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎦. (25)

By least squares estimation, the average FAR can be deter-
mined by

EP[FAR] = πF . (26)

D. Expectation of Missed Detection Ratio

We define the missing detection probability as the probability
that the detection delay is greater than or equal to a detection
delay constraint C. The expectation (EP̂[MDR]) of the miss-
ing detection probability is, starting from the initial state, the
summation of probabilities that Sn stays at a state other than
state UF at time C. Let pi(s) denote the probability of the state
variable at time s and at state i. We set the initial condition for
the transition probabilities as

pi(0) = π0
i (27)

where i ∈ {0, U1, . . . , UF−1} and pF (0) = 0. By the iteration,
at each s, the state probability vector is updated by the previous

Fig. 2. Simulation of the adaptive CUSUM algorithm. The x-axis is the obser-
vation index (n), and the y-axis is the recursive CUSUM statistic (Sn). Case 1
with FAR of 1% corresponds to h1, and case 2 with FAR of 0.1% corresponds
to h2. The proposed algorithm signals the alarm and then terminates the process
at Th = 7 and 8, respectively.

state probability vector in a matrix form as
⎡
⎢⎢⎢⎢⎣

p0(s)
p1(s)

...
pF−1(s)
pF (s)

⎤
⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎣

p0(s− 1)
p1(s− 1)

...
pF−1(s− 1)
pF (s− 1)

⎤
⎥⎥⎥⎥⎦

T

P̂ (28)

pF (s) = 0, s ∈ {0, C − 1}. (29)

Here, the pF (s) at every s of state UF is reset to zero for the
next iteration since we only concern the missing detection case
only. The expectation of missed detection ratio under the given
delay constraint C can be obtained as

EP̂[MDR] =
F−1∑
i=0

pi(C). (30)

V. PERFORMANCE ANALYSIS

In this section, we present the analytical and numerical simu-
lations to demonstrate the performance of the proposed scheme.
This section is composed of two main sections. The first section
demonstrates the performance of the proposed scheme from the
simulated data. In other words, we heuristically configure the
parameter and analyze the detection performance. The second
section involves both analytical and numerical results under the
realistic power test systems by MATPOWER 4.0 package [22].
Without loss of generality, we assume that the simulation has
normalized sample rate2 and the static system.3 Note that the
adversary is able to inject the false power flow measurement at
the random time.

2Since the measured noise is white Gaussian (independent over time), the
performance of the QD depends on the number of observations. In other words,
the decision time is related to the sampling rate, and the decision time is
equivalent to the number of observation divided by the sampling rate.

3The reason that we have a steady-state or quasi-steady-state system is that
our algorithm can converge in a very short time. For the PJM network, it is able
to have state estimation for measurement of more than 2000 buses per minute
[25]. From the simulation, we can see that our algorithm converges around 100
samples. In other words, our algorithm can converge within a couple of seconds,
during which the states can be considered at least quasi-steady.
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Fig. 3. Performance analysis of the adaptive CUSUM algorithm in comparison with CUSUM GLRT.

A. Simulation Results With Simulated Data

Fig. 2 illustrates the relation between the detection param-
eters (Sn, h) and performance metrics (FAR and TD). The
number of measurements m = 4. On the detector side, the de-
tector has no information about the adversary statistical model,
distribution, or any unknown. The adversary manipulates and
injects the false data into the system at the random time. As
shown in Fig. 2, we consider that case 1 has a FAR of 0.01
and case 2 has a FAR of 0.0001. The adversary becomes active
and injects the false data at n = 6. In other words, a change
distribution is at τ = 6 from N (0,ΣR) to N (an,ΣR), where
an is unknown. For both cases, the curve of adaptive CUSUM
statistic (Sn) shows the sudden increase right after a change
of distributions. The proposed algorithm quickly responses the
abnormal event by signaling an alarm when Sn passes the
threshold. At observation index 7, the threshold parameters h1

and h2 correspond to case 1 and case 2, respectively. As a result,
h1 is less than h2 because of the different FARs. For the smaller
FAR, the stricter constraint that causes increasing the threshold,
the higher requirement for system to declare the decision. The
ARLs (Th) of the adaptive CUSUM algorithm are 7 and 8 at Sn

of 6.07 (case 1) with h = 5.97 and 9.11 (case 2) with h = 8.19,
respectively. The ARL (TD) of detection delay is 1 for cases 1
and 2 for case 2 in this simulation. The proposed algorithm is
able to signal the alarm and terminates the process after the
active false date attack.

Fig. 3 shows the characteristics of the proposed algorithm
by varying FAR for the accuracy rate and expected (E[TD]) of
detection delay in comparison to that of the CUSUM GLRT.
We run 5000 realizations for the simulation. FAR varies from
10−10 to 10−2. The false data injection begins at the sixth
observation index. The accuracy rate in Fig. 3 (right) represents
the ratio of successful detection that the algorithm terminates
the process and declares the existence of adversary after the
sixth observation index (the actual attack index). As shown
in the figure for both the proposed scheme and the CUSUM
GLRT, the stricter FAR is, the greater expected detection delay
and higher detection accuracy we have. The expected detection
delay of CUSUM GLRT seems to increase exponentially, while
that of the proposed scheme steadily rises as FAR decreases.
E[TD] of the proposed scheme has the average 50% less than

that of CUSUM GLRT. We also obtain the better accuracy
rate as FAR decreases. By giving the sufficiently low FAR,
the proposed scheme is able to reach the accuracy above 95%,
while CUSUM GLRT struggles it below 83%. Therefore, the
proposed scheme outperforms the CUSUM GLRT in terms
of shorter decision time and higher detection accuracy. The
simulation result also shows the tradeoff between the detection
delay, false alarm, and accuracy rate. The smaller FAR causes
higher delay but better accuracy, i.e., the system needs to spend
more observations for making a decision.

B. Simulation Results With MATPOWER 4.0

For the experimental setup of this section, we first apply the
analytical model to theoretically analyze the performance of the
detection system for guiding the system parameter configura-
tion. Then, we use the parameter from the theoretical analysis
to confirm the accuracy of the analysis in the first half of the
section and then demonstrate the performance of the detection
system in the second half of the section.

1) Accuracy of the Analytical Model: In this section,
the power flow data for all simulations are generated by
MATPOWER 4.0 instead of random independent variables in
the previous section. MATPOWER 4.0 is a MATLAB simula-
tion tool for solving power flow and OPF problems. It provides
realistic power flow data and test systems that are used widely
in research-oriented studies as well as in practice. We consider
four popular IEEE test systems from the MATPOWER 4.0
package. Case 1 is the IEEE four-bus test system, which has
two generators for four measurements; case 2 is the IEEE 57-
bus test system, which has 7 generators for 80 measurements;
case 3 is the IEEE 118-bus test system, which has 54 generators
for 186 measurements; and case 4 is the IEEE 2383-bus test
system, which has 326 generators for 2896 measurements. The
analytical performance measures and the simulation results are
compared under the same setting and input data to examine.
Hence, by using power flow data sets with four different
study cases from MATPOWER 4.0, the performance indices
(E[FAR], E[MDR], E[TD]) comparisons between the analyti-
cal and simulation results can be conducted. With the parame-
ter from the theoretical analysis, the performance indices are
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Fig. 4. Expectation E[TD] of detection delay for different IEEE bus test systems.

simulated so that we can properly configure the proposed
algorithm for the guaranteed performance. Notice that both the-
oretical analysis and simulation are plotted together to confirm
the accuracy of the analysis and demonstrate the performance.

Fig. 4 gives us an insight of the relationship between the
system parameters h and the detection delay E[TD] of the
proposed scheme. The higher the threshold, the larger the delay.
Also, shown in Fig. 4, both analytical and simulation results are
matched closely in all IEEE 4-bus, 57-bus, and 118-bus test
systems. The maximum difference between the analysis and
simulation is around 2% in the case of the IEEE 2383-bus test
system.

The numerical examination is presented to understand the
impact of the fundamental performance metric FAR on system
parameters h of the proposed scheme. As shown in Fig. 5,
the analytical and simulation results are close. Note that the
logarithmic scale is used in the figure for the vertical axis. In
cases of IEEE 4-bus and 57-bus test systems, the difference
percentage between the analysis and simulation is very small
and near zero. However, as the number of buses increases (the
total number of active power flow measurement increases, too),
the maximum difference percentage is about 8% in the IEEE
2383-bus test system. More measurements can cause the larger
variance when we try to calculate the covariance for computing
R. From the figure, we also can observe that a larger h yields a
smaller FAR as expected.

The analytical result of E[MDR] is demonstrated under two
scenarios of the delay constraints, in which C = 7 and C = 18.
The result is shown in Fig. 6, which helps us study the impact
of the missed detection ratio on h of the proposed scheme.
The logarithmic scale is used in the figure for the vertical axis.
From the figure, the larger constraint C results to a smaller

expectation of missed detection ratio as expected. In other
words, the probability of detection rises if we allow to increase
the cost of longer delay. We also compute the mean of expected
missed detection ratio as the baseline, in comparison with the
analytical results for four different IEEE test systems. The trend
of analysis follows the baseline closely. However, as the number
of active power flow measurement increases, the gap between
them becomes obvious, particularly, in case of the IEEE 2383-
bus test system, the maximum difference percentage is obtained
around 10%. More measurements can cause the larger variance
when we try to calculate the covariance for computing R. In
addition, the smaller h is, the better the expectation of missed
detection ratio that corresponds to the result of expected FAR
in Fig. 5 as the tradeoff.

2) Detection With Performance Guarantee: From Figs. 4–6,
we demonstrate the performance metrics with different h. It
also helps us to configure the system parameter h for guaranteed
performance under three fundamental metrics. For each differ-
ent IEEE test system, we can select the proper configuration of
h from the reasonable range to satisfy the desired performance
constraints. For example, the configuration of h is set to 135
for the IEEE 57-bus test system; the analytical model of the
proposed scheme shows the expectation of the FAR of 0.001,
the expectation of the detection delay of 20, and the expecta-
tion of the missed detection ratio of 0.00005 under the delay
constraint C = 18. In addition, if we wish to have a certain level
of detection probability, we can compute the numerical value of
detection probability from Fig. 4; with its corresponding h, we
can explicitly determine the cost of detection delay from Fig. 4
and the tradeoff for the FAR from Fig. 5. The aforementioned
analysis can be extended to other IEEE power systems in a
similar way.
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Fig. 5. Expectation E[FAR] of FAR for different IEEE bus test systems.

Fig. 6. Expectation E[MDR] of missed detection ratio for different IEEE bus test systems.

In Fig. 7, we show the CUSUM statistics Sn over observation
index n for the IEEE 4-bus, 57-bus, and 118-bus test systems.
For the simulation setup, we consider that the FAR of 0.01
is presented, and the active false data injection attack is ini-
tialized after observation index 15. For the simulation results,
in the IEEE four-bus test system, the system is alarmed after
24 observations with the corresponding detection threshold
of 34.51; the detection delay is 9. In the IEEE 57-bus test
system, the system is alarmed after 37 observations with the

corresponding detection threshold of 133.52 and the detection
delay of 22. In the IEEE 118-bus test system, the system is
alarmed after 45 observations with the corresponding detection
threshold of 283.14; the detection delay in this test system is 30.
As expected, the simulation also shows that the detector needs
more observations to make the decision when the number of the
power flow measurements and buses increases. Notice that the
numerical results of each IEEE test system in Fig. 7 correspond
to our analytical results, which are presented in Figs. 4–6.
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Fig. 7. Detection simulation of the adaptive CUSUM algorithm with
MATPOWER 4.0 power flow measurements for the IEEE 4-bus test system,
IEEE 57-bus test system, and IEEE 118-bus test system. The x-axis is the
observation (n), and the y-axis is the recursive CUSUM statistic (Sn). The
proposed algorithm signals the alarm and then terminates the process at Th =
24, 37, and 45, respectively.

VI. CONCLUSION

In this paper, we have proposed the adaptive CUSUM algo-
rithm for defending false data injection attacks in smart grid
networks. We have successfully derived a detection model by
considering the existence of the unknown and then developed
an analytical model that can guide us configure the detection
system for performance guarantee based on the fundamen-
tal detection requirements. Our proposed scheme for smart
grid state estimation is composed of two interleaved steps:
1) introduces the unknown variable solver technique based
on the Rao test and 2) applies the multithread CUSUM al-
gorithm for determining the possible existence of adversary
as quickly as possible without violating the given constraints.
Furthermore, we have developed the Markov-chain-based an-
alytical model to characterize the behavior of our proposed
scheme. We can quantitatively study the system parameters
to achieve the guaranteed detection performance in terms of
three fundamental metrics (E[FAR], E[MDR], and E[TD]).
The analytical and numerical simulation results have shown
that the proposed scheme is efficient in terms of detection
accuracy and minimum detection delay. Overall, the proposed
scheme is able to achieve the important objectives of smart
grid security in terms of real-time operation and security
requirement.

In future work, we further investigate the optimality of a joint
attack detection and state estimation in smart grid. When an

attacker occurs in the power network, the ultimate objective
of the network operator is beyond a reliable detection of the
attack. In fact, detecting the attack will be used as an inter-
mediate step toward obtaining a reliable estimate about the
injected false data, which, in turn, facilitates eliminating the
disruptive effects of the false data. Assuring good estimation
performance is the core of the estimation and detection problem
in the smart grid networks. To account for the significance of
estimation quality, we can define an estimation performance
of measure and seek to optimize it while ensuring satisfac-
tory detection performance. The objective is to minimize the
estimation-related cost subject to appropriate constraints on
the tolerable levels of detection errors. This approach can
provide the operator with the freedom to strike desired balance
between estimation and detection qualities. Other future work
can include the analysis of load/generation disruption and joint
consideration with PMU.
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