
Only Those Requested Count:

Proactive Scheduling Policies for Minimizing

Effective Age-of-Information

Bo Yin∗, Shuai Zhang∗, Yu Cheng∗, Lin X. Cai∗, Zhiyuan Jiang†, Sheng Zhou‡, and Zhisheng Niu‡
∗Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago 60616, USA

†Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
‡Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Email: {byin, szhang104}@hawk.iit.edu; {cheng, lincai}@iit.edu; {zhiyuan, sheng.zhou, niuzhs}@tsinghua.edu.cn

Abstract—Motivated by the increasingly urgent demands for
delivering fresh information, the age-of-information (AoI) has
recently been introduced as an important metric for evaluating
the timeliness performance of information update systems and
has shed light on a number of research studies. Nevertheless, the
most common goal of the existing works does not characterize
the value of information freshness from the users’ perspective.
In this paper, we introduce the concept of effective AoI (EAoI)
to quantify the freshness of the information users utilize for
decision-making. We consider a general request-response model,
which captures both proactive information update and timely in-
formation delivery, for investigating the scheduling problem with
respect to EAoI minimization. By decomposing the scheduling
problem into multiple computationally tractable subproblems, we
propose request-aware scheduling policies for static and dynamic
request models, respectively. The numerical results show that
serving users requests proactively can reduce time-average EAoI
in both scenarios.

I. INTRODUCTION

Recent years have witnessed a significant advancement

of networking technologies as well as the proliferation of

mobile devices. The convergence of pervasive connectivity

and ubiquitous computing has spawned a plethora of real-

time applications, boosting the demand for timely informa-

tion updates. With dense IoT deployment, it is becoming

increasingly common that different types of time-sensitive data

are collected, analyzed and delivered to end users based on

their personalized interests. For example, a plug-in hybrid

electric vehicle (PHEV) can request the information about road

conditions, e.g., traffic information, and current energy prices

at different charging stations to adjust their charging strategies

as well as the routes to their target stations. Therefore, the

delivery of fresh information has become a major concern.

Age-of-information (AoI) is a recently proposed metric that

quantifies the freshness of the knowledge we have about a

remote system [1]. Formally, it is defined as the time elapsed

since the latest information update. In [2], the concept of AoI

was first introduced to capture the timeliness requirement of

safety applications in vehicular networks that maintain the

current state information of nearby nodes. Since its inception,

AoI has attracted great attention and been studied in a va-

riety of areas, ranging from information sampling in sensor

networks [3]–[7], scheduling discipline in queue management

systems [8]–[14] to link scheduling optimization in wireless

networking [15]–[22].

Although considerable efforts have been made to explore the

optimal schedule of information updates in various contexts,

prior studies on AoI minimization have a common goal: trying

to keep the AoI low all the times. However, we argue that

the freshness of information is not of equal importance at any

time. Specifically, information is valuable only when it enables

certain decisions or actions. In this paper, we will use the term

effective AoI (EAoI) to represent the age of the information

that is associated with decision-making. With this in mind, in

order to improve the value of information freshness from the

user’s perspective, users’ request patterns are supposed to be

taken into account in the development of scheduling policy for

information update. Thanks to recent advances in data mining

or machine learning technologies, predicting user requests and

serving them proactively has become a promising method for

enhancing system performance in a range of applications [23]–

[26]. However, how to exploit the predictable requests and

leverage the proactive serving mechanism in the control of

information updates remains open.

In this paper, we aim to close the gap and explore how to

take advantage of the knowledge about the requests for provid-

ing users with fresh information. To this end, we consider the

scenario of a server delivers the information requested by users

in a timely manner. With the objective of minimizing the time-

average EAoI, we propose scheduling policies for the server to

proactively update users’ information, given different types of

knowledge about the arrivals of future requests. Our simulation

results demonstrate the benefit of proactive scheduling with

request awareness. The main contributions of this paper can

be summarized as follows.

(1) We propose a general request-response model for study-

ing the scheduling problem with respect to EAoI mini-

mization. This model captures both proactive information

update and timely information delivery. To the best of our

knowledge, such request-aware model has not been inves-

tigated in the existing work on timeliness optimization.

And we believe the idea of proactive scheduling can be

applied on top of existing approaches in improving the

information freshness.

109

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

(2) We develop two computationally tractable scheduling

policies for addressing the EAoI minimization problem in

the context of static and dynamic request models, respec-

tively. For the static scenario, we apply the restless multi-

armed bandit (RMAB) framework to model the problem

above and derive the Whittle’s index policy [27]. For the

dynamic scenario, we employ the principle of receding

horizon control (RHC) to leverage the knowledge about

users’ requests. Casting the EAoI minimization problem

in the dynamic scenario as a weakly coupled dynamic

programs (WCDP) problem, we decompose this problem

by dual decomposition technique and propose a low-

complexity heuristic.

(3) We show using extensive simulations that the proposed

approaches outperform conventional scheduling algo-

rithms in terms of minimizing the time-average EAoI.

The numerical results also provide insights into the qual-

itative relationships between different design parameters

and the system performance.

The remainder of this paper is organized as follows. We

describe the system model in Section II. The scheduling

policies for static request model and dynamic model are

derived in Section III and Section IV, respectively. Numerical

results are presented in Section V. Finally, we conclude the

paper in Section VII.

II. SYSTEM MODEL

We consider a general scenario where a single server serves

N users with time-sensitive information. A time-slotted system

is considered. In a time slot, a user may make a query into

the server and utilize the information he/she obtains to take

certain actions, e.g., stock trading based on the stock price

information. We assume that the information update with

respect to one user takes one time slot. Due to resource

constraints, the server can only update the information of K

users in one slot. At the beginning of each slot, the server

selects K users and initialize the update process for their

information. Let an(t) ∈ {0, 1} indicate the server’s decision

on user n in slot t, where an(t) = 1 if user n is selected at

that slot. Potential update failures are considered, which are

modeled by independent and identically distributed Bernoulli

processes. That is, the information of user n, if selected, will

get updated successfully with probability qn. For example,

the server may update the information of one user by pulling

data from a remote IoT hub via a wireless connection. In this

case, qn can be considered as the coverage probability of this

communication link.

In this paper, we consider the scheduling policy under which

the server updates the information requested by the users such

that the users can make decisions based on the most up-to-

date information. We employ the AoI metric to quantify the

freshness of the information that the server has. Formally, let

hn(t) denote the AoI with respect to user n at time t, its

dynamic can be expressed as

hn(t+ 1) =

{

1 if un(t) = 1

hn(t) + 1 otherwise
(1)

where un(t) is an indicator variable which represents whether

or not user n’s information gets updated at time slot t. Those

variables are influenced by both the scheduling policy and the

system randomness. Given that user n is selected at slot t,

un(t) follows Bernoulli distribution with mean qn. According

to Eq. (1), hn(t) grows linearly as time goes by and drops to

1 when a successful update occurs during the previous slot.

In order to deliver prompt response, the server serves the

user requests in a proactive fashion. Specifically, given a user n

who is not selected at slot t, his/her request will be responded

immediately upon arrival. In this way, the EAoI with respect

to this user equals to hn(t). On the other hand, if user n is

selected at this slot, the server will deliver the most up-to-

date information to this user at the end of slot t. Therefore, if

the requested information gets updated successfully, the EAoI

will be 1. Otherwise, the user has to make decisions based

on information with age hn(t) + 1. Let dn(t) be the indicator

variable that represents whether or not user n will make a

query during slot t. According to the aforementioned service

model, the EAoI with respect to user n at time t, denoted by

gn(t), can be formulated as

gn(t) =

{

dn(t) if un(t) = 1

dn(t) ∗ (hn(t) + an(t)) otherwise
(2)

According to Eq. (2), gn(t) equals to 0 if user n does not make

any query during that slot. The objective of the scheduling

policy π is to minimize the expected time-average EAoI J(π),
i.e,

J(π) = lim sup
T→∞

1

TN
E

[

T
∑

t=1

N
∑

n=1

gn(t)

]

(3)

It’s worth noting that minimizing the time-average EAoI is

in general different from minimizing the time-average AoI. In

the following, we use a toy example to show that these two

goals result in different scheduling policies. Consider a system

that consists of three users and the server can perform one

update per slot. The initial AoI with respect to user a, b, c are

3, 2, 1, respectively. Only one user will make query at a certain

slot and the three users request information in cyclic order

[b, c, a]. The information update processes are assumed to be

error-free. Obviously, the optimal solution for minimizing the

time-average EAoI is a round-robin schedule with the same

cyclic order. Based on the results in [19], the age-greedy policy

achieves the minimum time-average AoI in this simple setting.

That is, information with the largest AoI gets updated at each

slot, which leads to a round-robin schedule with cyclic order

[a, b, c]. The dynamics of AoI (EAoI) with respect to each user

are shown in Fig. 1. It can be seen in Fig. 1 that the time-

average EAoI achieved by the age-greedy policy is the double

of that of the optimal solution.

110

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

time

3(0)

2(1)

1(0)

user a

user b

user c

4(0)

1(0)

2(1)

5(1)

2(0)

1(0)

1(0)

3(1)

2(0)

2(0)

1(0)

3(1)

3(1)

2(0)

1(0)

1(0)

3(1)

2(0)

3(0)

2(2)

1(0)

user a

user b

user c

1(0)

3(0)

2(2)

2(2)

1(0)

3(0)

3(0)

2(2)

1(0)

1(0)

3(0)

2(2)

2(2)

1(0)

3(0)

3(0)

2(2)

1(0)

schedule that achieves minimum AoI

schedule that achieves minimum EAoI

Fig. 1. Dynamics of AoI (EAoI) with respect to each user (the dashed box
indicates the scheduled user)

The above example also shows that the knowledge of future

requests plays an important role in the design of the scheduling

policy. In this paper, the arrivals of user’s requests are modeled

by Bernoulli processes with rate pn(t). That is, at slot t, user

n will make a query (dn(t) = 1) with probability pn(t).
Specifically, we focus on the following two request models.

(1) Static requests: In this case, variables dn(t) of different

slots are independent and identically distributed. In other

words, pn(t) is fixed in time. And we assume that such

statistics are known to the server.

(2) Dynamic requests: In this case, pn(t) may change over

time. In practical applications, near-term future user re-

quest patterns can be estimated by leveraging request

history and certain context information, e.g., using ma-

chine learning methods. We assume that the server has

access to a time series forecasting model which can

provide the estimates of pn(t) in the next W slots, say

{pn(t), pn(t+ 1), . . . , pn(t+W − 1)}, for each user.

In what follows, we will develop scheduling policies for

these two request models, respectively.

III. SCHEDULING POLICY FOR STATIC SCENARIO

Generally, problem (3) can be formulated as a Markov

Decision Process (MDP) with infinite horizon and countably

infinite state space. Nevertheless, due to the curse of dimen-

sionality, it is computationally prohibitive to derive the optimal

policy by solving the MDP directly. In this section, we first

formulate the scheduling problem in the static scenario as

an RMAB problem. Following that, we develop the Whittle’s

index policy for that problem.

A. RMAB-based Problem Formulation

Applying the RMAB methodology to develop control pol-

icy requires formal definitions of state space, action space,

transition and objective of the model. In the scheduling

problem, users are considered as the arms in RMAB. The

system state can be fully represented by the AoI of users,

say h(t) = [h1(t), h2(t), . . . , hN (t)], h(t) ∈ N
N . The

server, as the player, selects K out of N users and update

their information. The action space can be characterized by

a(t) = [a1(t), a2(t), . . . , aN (t)].
As the generalization to the classic multi-armed bandit

(MAB), RMAB allows the arm to change its state even when

it is not being operated. In general, the Markovian rule that

the passive arms follow is different from that of the active

arms. Take user n as an example, when not selected, the state

transition is deterministic, i.e.,

Pr(hn(t+ 1) = hn(t) + 1|hn(t)) = 1 (4)

If selected, the state transition probability with respect to user

n is described as

Pr(hn(t+ 1) = 1|hn(t)) = qn

Pr(hn(t+ 1) = hn(t) + 1|hn(t)) = 1− qn (5)

The objective of the RMAB problem is the same as (3), i.e.,

minimizing the expected time-average EAoI.

One important feature of the RMAB problem is that the

arms are weakly coupled through the capacity constraint, i.e.,

only K users can be selected in each slot. The state transition

of one arm has no impact on that of other arms. Such property

facilitates the development of decomposable index policy,

which has remarkably low computational complexity.

B. Whittle’s Index Policy

The Whittle’s index policy is derived from the optimal

solution to the relaxation of the RMAB problem, in which

the capacity constraint is relaxed to long-term average version.

The relaxed RMAB can be decomposed into N single-armed

bandit processes, a.k.a., decoupled model. In the decoupled

model, a constant cost, denoted by C, will be incurred to

the arms that are selected at each slot. Those single-armed

bandit processes are investigated separately and, at each slot,

an index value can be calculated for each arm. The K

arms with the highest indices will be selected by the player.

With mild conditions, the Whittle’s index policy is proven

to be asymptotically optimal [28]. Near-optimal performances

achieved by this approach have also been demonstrated in a

variety of applications [29], [30].

In the decoupled model, the state space, action space and

state transition probability are the same as the original RMAB.

Regarding the objective function, the constant cost C is

included. Since the N single-armed problem can be treated

separately, we can focus on one of those N subproblems.

Thereafter in this subsection, we omit the user index. The

objective function with a policy φ can be written as

Ĵ(φ) = lim sup
T→∞

1

T
E

[

T
∑

t=1

(g(t) + Ca(t))

]

(6)

By verifying the conditions in [31], it can be shown that a

deterministic and stationary optimal policy φ∗ exists for the

above single-armed problem.

In order to apply the Whittle’s index policy, the arms of the

RMAB must satisfy an indexability condition. Given the cost

111

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

C, let U(C) denote the set of states in which the user will not

be selected by policy φ∗.

Definition 1. (Indexability) The arm associated with a user is

indexable if U(C) increases monotonically from ∅ to N as C

increases from 0 to ∞.

To demonstrate the indexability of the scheduling problem,

we derive an optimal policy φ∗ by solving the Bellman

equations associated with the single-armed bandit problem,

which are expressed as

f(h) + µ = min{f(h+ 1) + ph;

C + q(f(1) + p) + (1− q)(f(h+ 1) + p(h+ 1))} (7)

where f(·) is the differential cost-to-go function and we

prescribe f(1) = 0. µ is the optimal value of Ĵ(φ). The

Bellman equations capture the conditions an optimal policy is

supposed to satisfy. On the right hand side (RHS) of Eq. (7),

the upper part is the expected outcome of idling, i.e., a = 0
while the lower part corresponds to the expected outcome

when an update is scheduled. At each slot, the action that

results in the outcome with the minimum expected value will

be taken, with tie-breaking arbitrarily. For the convenience of

analysis, we break ties in favor of updating the information.

Remark. It is worth noting that the Whittle’s index policy

is also derived under a similar scenario in [19], the objec-

tive of which is time-average AoI minimization. Besides the

involvement of the request probability, the major difference

between our formulation in (7) and its counterpart in [19]

is the immediate cost. More precisely, regardless of the extra

cost C, both actions result in the same immediate cost in [19].

Since proactive serving is considered in our formulation, the

immediate costs incurred by two actions are different and the

relation between these two values is equivocal, determined by

the values of p, q, and h.

Lemma 1. Given the cost C, there exists a threshold-type

policy which is optimal solution to the single-armed bandit

problem. That is, there exists a threshold H and it is optimal

for the server to update user’s information when h ≥ H while

keeping idle when 1 ≤ h < H . Specifically, the threshold is

given by

H =

⌈

1

2
−

1

q
+

√

(
1

q
+

1

2
)2 +

2C

pq

⌉

(8)

Proof: The proof of Lemma 1 is constructive. By applying

the proof technique in [19], we demonstrate that the threshold-

type policy with the threshold value in (8) is the solution to

the Bellman equations. See Appendix for details.

With the optimal threshold H , we are ready to establish the

indexability of the RMAB problem and derive the closed form

of the Whittle’s Index.

Theorem 1. The arms of the RMAB problem formulated in

section III-A are indexable.

Proof: Under the threshold-type policy, U(C) = {h : 1 ≤
h < H}. Since the threshold H is monotonically increasing

with C, U(C) is also monotonically increasing with C. In

addition, U(C) increases to N as C → ∞. When C = 0, H =
1, which implies that U(0) = ∅. According to the definition

of indexability, we conclude the proof.

Let I(h) denote the Whittle’s index in state h. The value of

I(h) is defined as the infimum cost C that makes both actions

equally attractive in state h.

Theorem 2. The Whittle’s index of the single-armed bandit

problem is given by

I(h) =
1

2
p(qh+ 2)(h− 1) (9)

Proof: Since the U(C) is monotonically increasing with

C, there exists a unique cost C that makes both actions equally

beneficial in state h. Consider that the tie is broken in favor

of updating the information, we have

h =
1

2
−

1

q
+

√

(
1

q
+

1

2
)2 +

2C

pq
(10)

In this way, the update will be activated at this moment since

h = H . On the other hand, a larger C yields H = h +
1, in which case idling is more desirable. With appropriate

manipulation, we obtain the value of Whittle’s index described

in (9) and conclude the proof.

Under the Whittle’s index policy, the top K users in terms

of their index value In(hn(t)) will be selected by the server,

with ties breaking arbitrarily. It can be seen that the Whittle’s

index policy reduces to the age-greedy policy under symmetric

setting, in which pn = p and qn = q, ∀n. Additionally, when

users’ request pattern are homogeneous, say pn = p, ∀n, the

Whittle index policy reduces to a request-aware policy which

in some sense coincides with the results in [19].

IV. SCHEDULING POLICY FOR DYNAMIC SCENARIO

In the dynamic scenario, we consider that the near-term

prediction about future request arrivals is available to the

server for decision-making, where finite-horizon optimization

arises naturally. In this section, we employ the principle of

RHC to develop a dynamic scheduling policy. To this end, we

formulate a WCDP problem as the finite-horizon surrogate

of problem (3). Afterward, we seek for a computationally

appealing heuristic to enable the RHC.

A. RHC-based Policy

Recall that a time series forecasting model is assumed in

the dynamic request model. Usually, the forecasting model

is characterized by an intricate function, e.g., support vector

machine (SVM) and artificial neural network (ANN), which

maps past observations to possible future outcomes. In this

way, the forecasting model will adjust its predictions based on

the recent observations at the end of each slot. Due to its great

adaptability to parametric changes, the RHC framework offers

a promising methodology to address the scheduling problem.

Basically, an RHC-based policy involves repeatedly solving

a constrained optimization problem over a moving prediction

112

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

window and commits only the first step in the resulting optimal

control sequence.

For ease of presentation, let h(0) and h(W) denote the

AoI status of all users at the beginning of current slot and

at the end of the next W -th slot, respectively. Correspond-

ingly, let {p(0),p(1), . . . ,p(W − 1)} denote the predictions

generated by the forecasting model. Given h(0), the finite-

horizon optimization problem regarding EAoI minimization

can be described as

minimize E

[

W−1
∑

t=0

N
∑

n=1

gn(t) + β‖h(W)− 1‖2

]

(11)

s.t.

N
∑

n=1

an(t) = K, ∀t

The term β‖h(W) − 1‖2 in the objective function of prob-

lem (11) represents the terminal cost, which in some sense

regulates the AoI status at the end of the horizon.

Problem (11) is a WCDP problem, which can be considered

as analogous to the RMAB problem formulated in section

III-A. More precisely, these two problems are associated with

the same action space and transition dynamics. In contrast

to the RMAB, problem (11) involves finite state space. Let

Hn(t) denote the state space associated with user n at slot

t, Hn(t) = {1, 2, . . . , t} ∪ {hn(0) + t}. Although finite, the

state space of the whole problem grows exponentially with

N . To address this issue, in the next subsection, we employ

the dual decomposition technique to develop a low-complexity

heuristic for the scheduling problem.

B. Lagrangian Heuristic

Prior to applying the decomposition technique, we relax

the constraints in (11) to constraints in form of expectation,

say E[
∑N

n=1 an(t)] = K. Let λ = [λ0, λ1, . . . , λW−1],
λ ∈ R

W , be the Lagrange multiplier vector corresponding

to those relaxed constraints. The Lagrangian associated with

the relaxed problem can be expressed as

L(π,λ) = E

[

W−1
∑

t=0

N
∑

n=1

gn(t) + β‖h(W)− 1‖2

]

+

W−1
∑

t=0

λt(E[

N
∑

n=1

an(t)]−K)

=
N
∑

n=1

E

[

W−1
∑

t=0

(gn(t) + λtan(t)) + β(hn(W)− 1)2

]

−K

W−1
∑

t=0

λt (12)

And the Lagrange dual function can be written as

D(λ) = inf
π

L(π,λ) (13)

According to duality theory [32], D(λ) is concave and pro-

vides a lower bound on the optimal value of the original

problem. Moreover, λ∗ = argmaxλ D(λ) plays an important

role in the development of Lagrangian heuristic. Since D(λ)

is piecewise linear in λ, λ
∗ can be calculated by using a

subgradient method [33], i.e., updating λ iteratively by

λ
(k+1)
t = λ

(k)
t + α(k)(

N
∑

n=1

E[a(k)n (t)]−K), ∀t (14)

where αk is the step size and
∑N

n=1 E[a
(k)
n (t)] is determined

by the policy π(k) = argminπ L(π,λ
(k)). In the following,

we show that E[a
(k)
n (t)] can be evaluated efficiently.

For a given λ
(k), L(π,λ(k)) is separable. Therefore, π(k)

is characterized by a collection of policies {π
(k)
n }, where π

(k)
n

is the solution to the following problem

minimize E

[

W−1
∑

t=0

(gn(t) + λ
(k)
t an(t)) + β(hn(W)− 1)2

]

(15)

By the abuse of notation, we represent π
(k)
n as a table that

contains {a
(k)
n (h, t)}, h ∈ Hn(t), where a

(k)
n (h, t) denote the

decision in state h at slot t. Problem (15) can be considered as

a finite-horizon MDP, which can be solved through backward

induction [34], i.e.,

Fn(h, t) = min{Fn(h+ 1, t+ 1) + pn(t)h;

λ
(k)
t + qn(Fn(1, t+ 1) + pn(t))

+ (1− qn)(Fn(h+ 1, t+ 1) + pn(t)(h+ 1))} (16)

and Fn(h,W) = β(h − 1)2, where Fn(·, ·) is the cost-to-go

function.

Let w
(k)
n (h, t) denote the probability that hn(t) = h under

π
(k)
n . We can employ forward induction to calculate all the

w
(k)
n (h, t), i.e., w

(k)
n (h, 0) = 1 and, for h > 1, t > 0,

w(k)
n (h, t) =

⎧

⎪

⎨

⎪

⎩

(1− qn)w
(k)
n (h− 1, t− 1)

if a
(k)
n (h− 1, t− 1) = 1;

w
(k)
n (h− 1, t− 1) otherwise

(17)

and w
(k)
n (1, t) = 1−

∑

h∈Hn(t)\1
w

(k)
n (h, t). With {a

(k)
n (h, t)}

and {w
(k)
n (h, t)}, E[a

(k)
n (t)] is given by

E[a(k)n (t)] =
∑

h∈Hn(t)

w(k)
n (h, t)a(k)n (h, t) (18)

The complexity for calculating E[a
(k)
n (t)] is O(W 2) and the

evaluation of this value for different user can be parallelized.

Recall that only the first step is committed by the RHC-

based policy, let F ∗
n(hn(0) + 1, 1) and F ∗

n(1, 1) respectively

denote the value of cost-to-go function when λ = λ
∗.

Fn(hn(0), 0) under a scheduling policy can be written as

Fn(hn(0), 0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F ∗
n(hn(0) + 1, 1) + pn(0)hn(0)

if an(0) = 0;

λ∗
0 + qn(F

∗
n(1, 1) + pn(0))

+(1− qn)(F
∗
n(hn(0) + 1, 1))

+(1− qn)(pn(0)(hn(0) + 1))

otherwise

(19)

113

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

Our heuristic is a greedy policy with respect to

Fn(hn(0), 0). That is, the action in {{an(0)} :
∑N

n=1 an(0) =

K} that result in minimum
∑N

n=1 Fn(hn(0), 0) will be taken,

which yields an index policy with

In = qn [F
∗
n(hn(0) + 1, 1) + pn(0)hn(0)− F ∗

n(1, 1)]− pn(0)
(20)

With the heuristic above, the K users with the largest In will

be selected. It’s worth noting that the value of In also equals to

the minimum λ0 that makes actions an(0) = 1 and an(0) = 0
equally beneficial, which can be interpreted as the price that

the server would be willing to pay to update the information

of user n. The Lagrangian heuristic is summarized in Alg. 1.

Algorithm 1 RHC-based Heuristic

1: Input: h(0), {p(0),p(1), . . . ,p(W − 1)}
2: Output: scheduling decisions a(0)
3: compute λ

∗ via subgradient update (14)

4: update the tabular cost-to-go functions {Fn(h, t)} w.r.t.

problem (15) with λ
∗

5: calculate the index of each user In according to (20)

6: set an(0) = 1 if user n is among the K users with the

largest In (break ties arbitrarily); otherwise, set an(0) = 0

V. NUMERICAL RESULTS

In this section, simulations are conducted to evaluate the

performance of the proactive scheduling policies in static

scenario and dynamic scenario, respectively.

A. Static Scenario

In this scenario, we compare the performance in terms of

time-average EAoI achieved by the request-aware Whittle’s

index policy with following two baseline solutions.

• Whittle’s index policy in [19]: This policy leverages

the knowledge of qn and hn(t) in making scheduling

decisions and can achieve near-optimal performance in

terms of time-average AoI. To distinguish this policy

with our request-aware policy, we call it request-oblivious

policy in our numerical results.

• Myopic policy: This policy utilizes the knowledge of

qn, pn, and hn(t) to make scheduling decisions. More

precisely, under such policy, the update schedule that

achieves the minimum immediate cost would be chosen

by the server at each slot.

For each user’s information, the probability of successful

update qn is randomly generated from a uniform distribution

in the interval [0.1, 1]. To explore the impact of request pattern

on the system performance, the request probability pn is

generated via three probabilistic models.

• Uniform distribution. In this case, pn follows a uniform

distribution in [0.1, 1].
• Unimodal beta distribution. In this case, pn of different

users concentrate on a specific value, which in some sense

represents the case of homogeneous user requests.

• Bimodal beta distribution. This model represents the case

that there are two types of users. The first type of users

request their information aggressively while the second

type of users request their information infrequently.

Consider a system with N = 500, the time-average EAoI

achieved by three scheduling policies with different values of

K are illustrated in Fig. 2. The distributions of the values

of pn are also presented. As shown in Fig. 2, the Whittle’s

index policy always achieves better performance than the

other two algorithms under all the three probabilistic models

of pn. Compared to the myopic policy, the Whittle’s index

policy can, on average, reduce the time-average EAoI by 13%,

11%, and 15% under those three probabilistic models of pn,

respectively. Consider that the bimodal beta distribution model

captures the case in which two types of users with the highest

disparity, this outcome indicates that the advantage of the

Whittle’s index policy over the myopic policy increases as the

heterogeneity with respect to users’ request patterns increases.

Among those three scheduling policies, the request-oblivious

algorithm suffers from such heterogeneity the most. In the

case of uniform distribution model, the performance it can

achieve is commensurate with that of the myopic policy while

it provides slightly worse time-average EAoI compared to the

Whittle’s index policy under the unimodal beta distribution

model. However, under the bimodal beta distribution model,

its performance is far worse than that of the myopic policy.

Furthermore, we explore the performance of Whittle’s index

policy in systems with different scale. To this end, we run the

scheduling algorithms with different numbers of users while

the ratio κ = N
K

is fixed in each simulation. The corresponding

simulation results are presented in Fig. 3. We can observe

from Fig. 3 that, given the probabilistic model of pn, the

time-average EAoI achieved by the Whittle’s index policy is

mainly determined by κ. Specifically, the performance of the

algorithm degrades as κ increases. On the other hand, with a

fixed κ, the performance experiences slight fluctuation as the

numbers of users increases from 200 to 550.

B. Dynamic Scenario

In this subsection, Markov model is used to characterize

the time series forecasting model involved in the evaluations

of the RHC-based policy. Roughly speaking, we assume that a

user’s request pattern satisfies the Markov property, given the

request history in several previous slots. Specifically, in the

simulations, an 8-state Markov model is generated for each

user to capture the request pattern and a state is represented

by the last three observations with respect to the arrivals of

the requests. For example, let (111) denote the state of three

consecutive requests observed. It will transition to either (111)
or (110) based on the arrival of the request in the next slot,

which is controlled by the transition probability. With the

transition matrix of the Markov model, the estimates of the

future arrivals can be readily calculated. The forecasting model

updates these estimates at the beginning of every slot once the

recent observation is obtained.

114

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

(a) uniform distribution (b) unimodal beta distribution (c) bimodal beta distribution

Fig. 2. Performance of different policies under three probabilistic models of pn

200 250 300 350 400 450 500 550

N

10

15

20

25

30

35

40

45

T
im

e-
A
ve
ra
ge

E
A
oI

κ=30

κ=50

κ=70

(a) uniform distribution

200 250 300 350 400 450 500 550

N

10

15

20

25

30

35

40

45

T
im

e-
A
ve
ra
ge

E
A
oI

κ=30

κ=50

κ=70

(b) unimodal beta distribution

200 250 300 350 400 450 500 550

N

10

15

20

25

30

35

40

45

T
im

e-
A
ve
ra
ge

E
A
oI

κ=30

κ=50

κ=70

(c) bimodal beta distribution

Fig. 3. Performance of the Whittle’s index policy in systems with different scale

We build a system with 100 users to evaluate the RHC-based

policy. Recall that the WCDP problem is formulated as a finite-

horizon surrogate of the original problem (3), a comprehensive

empirical study is conducted to tune the hyperparameter β. For

comparison, we also run the Whittle’s index policy and the

myopic policy in the dynamic scenario, where the estimates

of the next step are considered as the request probability

in the static scenario. Fig. 4 shows the traces of the time-

average EAoI controlled by different policies. The length of

the prediction window is set to 4 and the value of β used in

the RHC-based policy is 0.023. As shown in Fig. 4, the RHC-

based policy demonstrates better adaptability to the dynamic

arrivals of the requests and achieves lower time-average EAoI.

Fig. 4. Traces of time-average EAoI

The performances of these three policies under different

values of K are illustrated in Fig. 5. Numerical results in

Fig. 5 show that the RHC-based policy outperforms other two

policies in reducing the time-average EAoI, achieving 12%
average reduction compared to the Whittle’s index policy.

Fig. 5. Performance of the policies with different values of K

VI. RELATED WORK

Among various research fields with respect to AoI mini-

mization, the topic of link scheduling optimization is most

related to our focus in this paper. In [15], the AoI minimization

problem for scheduling a finite number of packets from multi-

ple sources was proven to be NP-hard. Structural results of the

optimal policy in special cases were also discussed. In [16],

an age-based scheduler was proposed for applications that the

115

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

status updates from different sources are synchronized. The

work in [17] utilized MDP methods to address the scheduling

problem with stochastic source updates in broadcast wireless

networks while a round-robin policy with one-packet buffers

policy (RR-ONE) was proven to achieve asymptotically opti-

mal performance in terms of AoI in wireless uplink scheduling

[18]. Consider periodic updates, the work in [19] proposed a

series of scheduling policies for minimizing AoI in broadcast

networks. Among them, the greedy policy was proven to be

optimal for symmetric network settings while a Whittles index

policy was shown to be sub-optimal in general cases. These

results were further generalized in [20], where throughput

constraint is considered. By modeling the scheduling problem

with stochastic updates as an RMAB, Whittles index policies

were respectively developed in [21] and [22]. The former fo-

cused on the system without buffer while the latter considered

general buffering strategy. In addition, a decentralized index-

prioritized random access policy was proposed in [22].

Different from the existing studies on AoI minimization,

we introduce a novel concept EAoI in this paper, which

characterizes the value of information freshness from the user’s

perspective. The work in [35] is the closest related work to the

idea of EAoI minimization, which proposed a request replica-

tion scheme for a user to improve the EAoI of a single query.

In contrast, this work focuses on the update management

scheme of the server that aims to improve the time-average

EAoI with respect to multiple users. Compared to the existing

work, our model captures both proactive information update

and timely information delivery. Based on that, our methods

leverage users’ request pattern in the design of scheduling

policies, which is neglected by the existing solutions.

VII. CONCLUSION

In this paper, we have introduced the idea of EAoI and

proposed a generic request-response model for studying the

EAoI minimization problem. With the estimate of users’ future

requests, the server updates users’ information proactively,

attempting to deliver as fresh as possible information to

users. For static request model, we have formulated the EAoI

minimization problem as an RMAB and derived the Whittle’s

index policy. In addition, by casting the EAoI minimization

problem as a WCDP, we have developed a computationally

tractable RHC-based heuristic for the dynamic scenario. Ex-

tensive simulations have been conducted to demonstrate the

advantages of the proposed approaches.

APPENDIX

PROOF OF LEMMA 1

We assume that an optimal policy for the single-armed

bandit is threshold-type with the threshold H . The server will

initialize the update when h ≥ H while keeping idle when

1 ≤ h < H . Combine the Bellman equations associated with

this problem and f(1) = 0, we obtain

f(h)+µ = min{f(h+ 1) + ph;

C + qp+ (1− q)(f(h+ 1) + p(h+ 1))} (21)

In the case of h ≥ H , the optimality condition of the

Bellman equations requires that initializing the update incurs

lower cost, i.e.,

f(h+ 1) ≥
C + p− qph

q
, ∀h ≥ H. (22)

In addition, the Bellman equations in this case reduce to

f(h) = −µ+ C + p+ (1− q)f(h+ 1) + (1− q)ph (23)

With Eq. (23), f(h), ∀h ≥ H can be solved recursively with

the condition limm→∞(1− q)mf(h+m) = 0, i.e.,

f(h) =
−µ+ C + p

q
+

(1− q)2p

q2
+

p(1− q)h

q
(24)

According to Eq. (24), f(h) increases linearly with h when

h ≥ H . Therefore, the condition used in the recursion is valid.

Furthermore, since the RHS of condition (22) decreases with

the rise of h, to check the consistency of the results with (22),

it is sufficient to show

f(H + 1) ≥
C + p− qpH

q
(25)

Substituting (24) into (25) yields

−µ+ pH ≥
(2q − 1)p

q
− p (26)

Likewise, in the case of 1 ≤ h < H , the solution of

the Bellman equations are supposed to satisfy the following

condition,

f(h+ 1) <
C + p− qph

q
, ∀1 ≤ h < H. (27)

And the Bellman equations in this case reduce to

f(h) = −µ+ f(h+ 1) + ph (28)

For condition (27), consider the boundary case h = H − 1,

we obtain

f(H) <
C + p− qp(H − 1)

q
(29)

which further yields

−µ+ pH <
(2q − 1)p

q
(30)

If condition (30) holds, according to Eq. (28), we have

f(h+ 1)− f(h) = µ− ph ≥ µ− p(H − 1)

>
(1− 2q)p

q
+ p =

(1− q)p

q
≥ 0 (31)

Thus, f(h+ 1) is monotonically increasing with h when 1 ≤
h < H if condition (30) holds. Note that the RHS of condition

(27) is monotonically decreasing with h, condition (30) is the

sufficient condition of condition (27).

Given conditions (26) and (30), we introduce an auxiliary

parameter γ ∈ (0, 1] such that

−µ+ pH =
(2q − 1)p

q
− pγ (32)

116

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

Solving Eq. (28) recursively yields

f(H −m) = f(H)−mµ+
mp(2H −m− 1)

2
(33)

Let m = H − 1, we obtain

f(H)− (H − 1)

[

µ− pH +
pH

2

]

= 0 (34)

Substituting f(H) from Eq. (24) into Eq. (34) and using Eq.

(32) to eliminate µ, we have

p

2
H2 − (

3

2
− γ −

1

q
)pH +

pγ − 2p− C

q
+ p− pγ = 0 (35)

which gives the unique positive root

H(γ) =
3

2
− γ −

1

q
+

√

γ(γ − 1) + (
1

q
+

1

2
)2 +

2C

pq
(36)

The threshold H is monotonically decreasing over γ ∈ (0, 1]
since its first derivative is negative. Moreover, it can be easily

checked that

lim
γ→0

H(γ) = H(1) + 1 (37)

which implies the existence of a unique threshold H∗, within

the range [H(1), H(1)+1), whose value is an integer. Specif-

ically, such threshold can be expressed as

H∗ = �H(1)
 =

⌈

1

2
−

1

q
+

√

(
1

q
+

1

2
)2 +

2C

pq

⌉

(38)

Since the γ∗ that is associated with H∗ falls in the inter-

val (0, 1], conditions (26) and (30) hold. The threshold-type

scheduling policy is consistent with the Bellman equations,

which implies its optimality.

ACKNOWLEDGMENT

This work was supported in part by the NSF of USA

under Grant CNS-1816908, ECCS-1610874, ECCS-1554576,

and the National Natural Science Foundation of China un-

der Grants 61628107, 91638204, 61861136003, 61871254,

61571265, 61621091.

REFERENCES

[1] A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A new
concept, metric, and tool,” Foundations and Trends R© in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[2] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. of IEEE SECON, 2011,
pp. 350–358.

[3] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. of IEEE INFOCOM, 2012, pp. 2731–2735.

[4] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Proc. of IEEE ISIT, 2012, pp. 2666–2670.

[5] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. of IEEE ISIT, 2015, pp. 1681–1685.

[6] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. of IEEE ISIT, 2015, pp. 3008–3012.

[7] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” in Proc. of IEEE

INFOCOM, 2016, pp. 1–9.
[8] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with

packet management,” in Proc. of IEEE ISIT, 2014, pp. 1583–1587.

[9] B. Li, A. Eryilmaz, and R. Srikant, “On the universality of age-based
scheduling in wireless networks,” in Proc. of IEEE INFOCOM, 2015,
pp. 1302–1310.

[10] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” arXiv preprint arXiv:1608.08622, 2016.

[11] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
Proc. of IEEE ISIT, 2016, pp. 2569–2573.

[12] ——, “Age-optimal information updates in multihop networks,” in Proc.

of IEEE ISIT, 2017, pp. 576–580.
[13] R. D. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri, “Timely cloud

gaming,” in Proc. of IEEE INFOCOM, 2017, pp. 1–9.
[14] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of

multiple information flows,” arXiv preprint arXiv:1801.02394, 2018.
[15] Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age

minimization in wireless systems,” IEEE Transactions on Information

Theory, 2017.
[16] C. Joo and A. Eryilmaz, “Wireless scheduling for information freshness

and synchrony: Drift-based design and heavy-traffic analysis,” in Proc.

of IEEE WiOpt, 2017, pp. 1–8.
[17] Y.-P. Hsu, E. Modiano, and L. Duan, “Age of information: Design and

analysis of optimal scheduling algorithms,” in Proc. of IEEE ISIT, 2017,
pp. 561–565.

[18] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely
status update in massive iot systems: Decentralized scheduling for
wireless uplinks,” arXiv preprint arXiv:1801.03975, 2018.

[19] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” arXiv preprint arXiv:1801.01803, 2018.

[20] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in Proc. of IEEE

INFOCOM, 2018.
[21] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic

arrivals,” arXiv preprint arXiv:1801.03422, 2018.
[22] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Can decentralized

status update achieve universally near-optimal age-of-information in
wireless multiaccess channels?” arXiv preprint arXiv:1803.08189, 2018.

[23] K. Chen and L. Huang, “Timely-throughput optimal scheduling with
prediction,” in Proc. of IEEE INFOCOM, 2018.

[24] B. Yin, Y. Cheng, L. X. Cai, and X. Cao, “Online SLA-aware multi-
resource allocation for deadline sensitive jobs in edge-clouds,” in Proc.

of IEEE GLOBECOM, 2017, pp. 1–6.
[25] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning meets

wireless network optimization: Identify critical links,” accepted to IEEE

Transactions on Network Science and Engineering, to appear.
[26] X. Cao, R. Ma, L. Liu, H. Shi, Y. Cheng, and C. Sun, “A machine

learning based algorithm for joint scheduling and power control in
wireless networks,” accepted to IEEE Internet of Things Journal, to
appear.

[27] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of applied probability, vol. 25, no. A, pp. 287–298, 1988.

[28] R. R. Weber and G. Weiss, “On an index policy for restless bandits,”
Journal of Applied Probability, vol. 27, no. 3, pp. 637–648, 1990.

[29] K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE

Transactions on Information Theory, vol. 56, no. 11, pp. 5547–5567,
2010.

[30] Z. Yu, Y. Xu, and L. Tong, “Deadline scheduling as restless bandits,”
IEEE Transactions on Automatic Control, 2018.

[31] L. I. Sennott, “Average cost optimal stationary policies in infinite state
markov decision processes with unbounded costs,” Operations Research,
vol. 37, no. 4, pp. 626–633, 1989.

[32] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[33] J. T. Hawkins, “A langrangian decomposition approach to weakly
coupled dynamic optimization problems and its applications,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2003.

[34] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.
[35] Y. Sang, B. Li, and B. Ji, “The power of waiting for more than

one response in minimizing the age-of-information,” in Proc. of IEEE

GLOBECOM, 2017, pp. 1–6.

117

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 01,2020 at 02:24:34 UTC from IEEE Xplore. Restrictions apply.

