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Abstract—As wireless networks are gaining increasing pop-
ularity, the network energy efficiency has become a critical
issue. In this paper, we focus on energy-efficient networking in
a generic multi-radio multi-channel (MR-MC) wireless network
where transmission scheduling, transmit power control, radio and
channel assignment are coupled together in a multi-dimensional
resource space, thus requiring joint optimization and low com-
plexity algorithms. We propose a novel Decomposed Approach
For energy-efficient (DAFEE) networking in MR-MC networks,
with the objective to minimize network energy consumption
while guaranteeing a certain level of performance. In particular,
we leverage a multi-dimensional tuple-link based model and a
concept of resource allocation pattern to transform the complex
optimization problem into a linear programming (LP) problem.
The LP problem however has a very large solution space due to
the exponentially many possible resource allocation patterns. We
then exploit delay column generation and distributed learning
techniques to decompose the problem and solve it with an itera-
tive process. Furthermore, we propose a sub-optimal algorithm
to speed up the iteration with constant-bounded performance.
Simulation results are presented to demonstrate the effectiveness
of the proposed algorithm.

Index Terms—Multi-radio multi-channel networks, optimiza-
tion, resource allocation, energy efficiency

I. INTRODUCTION

Wireless network energy efficiency is a compound of both

network performance (e.g., throughput) and energy consump-

tion. Since performance and energy consumption are usual-

ly conflicting objectives, a common modeling approach for

energy-efficient networking is minimizing energy consumption

while guaranteeing a certain level of performance requirement

[1]–[3], which is to be adopted in this paper.

We study energy-efficient networking in a generic multi-

radio multi-channel (MR-MC) network. The problem is to al-

locate transmissions wisely such that network traffic demands

are satisfied with least amount of energy consumption. Since

an MR-MC network consists of nodes equipped with multiple

radio interfaces operating on different channels, a transmission

decision can be viewed as a resource allocation strategy

in a multi-dimension resource space involving selection of

transmitters and receivers for establishing transmission links,

radio and channel assignment, transmit power control and

link scheduling. On one hand, the multi-dimensional resource

space in MR-MC networks provides a broad range of resource

allocation choices to improve network performance [4]–[6].

On the other hand, the large scale of resource space incurs

significant complexity in finding an optimal solution, which

thus motivates us to explore a Decomposed Approach For

Energy-Efficient networking (DAFEE) in MR-MC networks.

Energy-efficient networking in MR-MC networks requires

joint optimization solution over coupled resource allocation

issues including link scheduling, radio/channel assignment and

power control. The existing studies have addressed resource

allocation issues in MR-MC networks over different dimen-

sions, but a generic joint optimization solution over the whole

multi-dimensional space (especially when power control is

involved) is still not available, to the best of our knowledge.

Radio/channel assignment and transmission scheduling in MR-

MC networks have been well studied with the objective to

maximize network capacity [7]–[10]. Specifically, the protocol

interference model is widely adopted to characterize the link

conflict relationships within the network into a conflict graph,

over which independent set based scheduling is then used to

facilitate a linear programming (LP) based formulation [11],

[12]. However, such a model simplifies transmission links into

an on-off manner with fixed transmit power, which can neither

model dynamic power assignment nor accurately reflect the

practical interference magnitude. The signal-to-interference-

plus-noise ratio (SINR) based physical interference model

is more realistic and models transmissions under the power

control. Link scheduling for capacity optimization under the

physical interference model has been studied in [13]–[15],

but limited to single-channel scenarios. How to incorporate

physical interference model based power assignment into MR-

MC networks for energy-efficient resource allocation remains

a challenging issue to be addressed.

In this paper, we adopt the multi-dimensional tuple-link

model, proposed in [9], to develop the DAFEE approach in

MR-MC networks under the physical interference model. With

tuple-link based modeling, joint resource allocation solution

can be reduced into scheduling and power assignment over

tuple-links, where radio/channel assignments are implicitly

achieved by the activation of channel/radio dimensions as-

sociated with the scheduled multi-dimensional tuple-links.
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To further decouple the issue of scheduling and power as-

signment, we propose a new concept of resource allocation
pattern (RAP) which is defined as a vector of transmit

power assignment over all of the tuple-links in the network.

Under an RAP, the receiver of each tuple-link will achieve

a certain SINR and the transmission capacity of a tuple-

link is then determined according to the Shannon-Hartley

equation. By considering discretized transmit power levels,

the joint scheduling and power assignment problem is finally

transformed into a scheduling problem over a finite number of

RAPs, which facilitates an LP formulation, in a similar manner

as independent set based scheduling [6], [9].

The RAP based scheduling however suffers from the com-

plexity issue due to exponentially many RAPs. We then

leverage delay column generation (DCG) to decompose the

optimization problem, by starting with an initial subset of

RAPs and then iteratively adding new RAPs for improved

objective. The key challenge in DCG based solution lies in the

sub-problem of searching for a new entering column, which in

our case is a new RAP. We demonstrate that the sub-problem

is equivalent to a utility based optimization problem which

can be solved by distributed learning algorithm. Moreover,

we propose a sub-optimal algorithm to speed up the iteration,

and conduct theoretical analysis of the performance of this

algorithm.

The main contributions of this paper is the development of

the DAFEE framework with the following techniques

1) We formulate an optimization framework over multi-

dimensional resource space for energy-efficient network-

ing over multi-dimensional tuple-links, which can jointly

solve the resource allocation issues of radio/channel

assignment, power control and transmission scheduling.

2) We propose a new concept of RAP that enables translat-

ing the original optimization problem into an RAP based

scheduling problem, which is an LP optimization.

3) To effectively solve the RAP-based scheduling problem,

we develop DCG based decomposition techniques and

exploit distributed learning algorithm in searching new

RAPs. We propose a sub-optimal algorithm to speed up

the iterative process, which approximates the optimal

solution with constant performance bound.

4) We present numerical results to demonstrate the per-

formance of DAFEE approach in improving energy

efficiency.

The remainder of this paper is organized as follows. Section

II reviews more related work. Section III describes the system

model. Section IV and V present the problem formulation

and decomposition algorithms of the DAFEE framework,

respectively. The DAFEE algorithm and related theoretical

analysis are developed in Section VI with convergence and

optimality analysis. Performance evaluations are presented in

Section VII. Section VIII gives the conclusion.

II. RELATED WORK

Energy-efficient networking has gained increasing inter-

est in recent research, especially for networks with multi-

dimensional resource space such as cognitive radio networks

[16]–[18] and device-to-device communications [19], [20].

Resource allocation for heterogeneous cognitive radio network

is studied in [16], where a Stackelberg game approach is

adopted with gradient based iteration algorithm as solution.

Channel assignment and power control is investigated in [17]

to maximize energy efficiency for cognitive radio network-

s, where problem is solved by mapping it to a maximum

matching problem. Similarly, a joint solution of channel and

power allocation is proposed in [18], with the objective of

maximizing overall throughput. Physical interference model

is applied and the problem is solved by bargaining based

cooperative game. An energy efficiency maximization problem

is formulated in [19] as a non-convex problem. The prob-

lem is transformed into a convex optimization problem with

nonlinear fractional programming and solved with iterative

optimization algorithm. The authors of [20] propose a joint

radio resources and power allocation scheme with energy

efficiency as objective, which is formulated and solved with

auction game. The above works target on specific network

scenarios or configurations, which could not be applied to

generic MR-MC networks. Furthermore, as most of them focus

on channel and power allocation, link scheduling problem is

not considered.

Energy efficiency in generic MR-MC network is discussed

in [21] that an optimization problem is formulated to derive

radio/channel assignment and scheduling solutions to opti-

mize energy efficiency under full network capacity. A similar

approach is adopted in [1] to minimize energy consumption

with guaranteed capacity requirement. The problem is solved

with a decomposed approach due to the large scale solution

space. While these work take protocol interference model to

simplify the scheduling problem, the more realistic physical

interference model is applied in [22] for a joint scheduling

and radio configuration problem. However, they all use fixed

transmit power in the formulation, which cannot lead to the

most energy-efficient solution. In existing literature, a joint

solution over the whole multi-dimensional resource space

including link scheduling, radio/channel assignment as well

as power allocation has not been fully investigated, which is

to be studied in this paper.

III. PROBLEM FORMULATION

A. System Model

Consider a generic MR-MC network with node set N . Each

node v ∈ N is equipped with one or multiple radios which

are denoted as radio set Rv . Define the set of all radios in the

network as R which is the union set of all {Rv|v ∈ N}. We

assume that the transmit power of each radio can take value

only from a discrete set of power levels which is denoted as

P = {0, 1, 2, . . . , |P|}. Suppose the maximum transmit power

of a radio is denoted as pmax, then the transmit power can take

values from {0, pmax/(|P|−1), 2pmax/(|P|−1), . . . , pmax}. The

set of non-overlapping channels in the network is denoted as

C. For each radio, all the other radios within its maximum

transmission range but not locating on the same node are
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defined as its neighbors. For a non-isolated node, there are

directional physical links from it (as the transmitter) to its

neighbors (as the receivers). Denote L as the set of all

such physical links. For simplicity, we focus on single-hop

transmissions and suppose that the traffic demand information

for each physical link l (i.e., the amount of data required to

be transmitted through a link) is known, and is denoted as

bl, ∀l ∈ L. Such a model is also used in [22].

The objective is to minimize the total energy consumption

in the network under the above traffic demand constraint by

jointly addressing: link scheduling, radio and channel assign-

ments, and transmit power control. In this optimization, the

scheduling problem is to select transmission links and decide

the transmission time for them. It can be seen that the joint

optimization problem involves both continuous and discrete

decision variables, making it a mixed-integer problem which

is known of high complexity. In what follows, we present a

tuple-link based framework to remodel the network, which

facilitates an LP formulation and problem decomposition.

A tuple-link is defined as a combined resource allocation

for a transmission indicating the transmitter radio, the receiver

radio1 and the operating channel. Denote T as the set of all the

tuple-links in the network. Tuple-link only exists when there

exists a corresponding physical link; a physical link l can be

mapped to multiple tuple-links, denoted as set Tl. Accordingly,

the traffic demand of l is to be fulfilled by the tuple-links in Tl.
Figure 1 gives examples of tuple-links with 2 channels in the

network. As shown by the dash lines, the physical link between

the two nodes is mapped to 8 tuple-links. With this tuple based

Fig. 1. Tuple-link example.

framework, the above optimization problem becomes to jointly

solve scheduling and power control of the tuple-links.

In a wireless network, interference between two concurrent

transmissions will degrade the transmission quality of both

links. In this paper, we consider physical interference model,

in which the transmission quality over a tuple-link is charac-

terized by the SINR at the receiver. For a tuple-link t ∈ T ,

1Tuple-link is directional since the transmitter and receiver are specified.

the received SINR is defined as

γt =
htpt

It + σ2
=

htpt∑
t′∈T \t

ht′tpt′ + σ2
(1)

where ht, pt, It, σ
2 denote the channel gain, transmit power,

received interference and the noise power, respectively. Partic-

ularly, ht′t stands for the interference channel gain from t′’s
transmitter to t’s receiver. If t′ and t are in different channel,

ht′t = 0 which indicates t′ will not generate interference to

t. Then the achievable transmission rate of tuple-link t can be

expressed as

at = Bt log2(1 + γt) (2)

where Bt is the corresponding channel bandwidth of tuple-link

t.

B. Optimization Problem Formulation

Generally, a tuple-link may use different transmit power at

different time such that the mutual interference can be dynam-

ically coordinated and the transmission rate can be adjusted.

At a time instance, the transmit power levels of all the tuple-

links form a resource allocation pattern (RAP). Based on (2)

and definition of tuple-links, an RAP implies the transmission

state of all the links in the network, including which radios and

channels are being used as well as the corresponding transmit

power. Therefore, the scheduling problem is to select the RAPs

and decide transmission time for them.

Since the sets of tuple-links and transmit power levels are

finite, the total number of possible allocation patterns is finite.

In each RAP, if a tuple-link is assigned a non-zero transmit

power level, the tuple-link is considered to be active. Let A be

the set of all RAPs in the network. Denote the transmission

time assigned to pattern α as xα. The power level and the

achieved data rate of tuple-link t in pattern α are pt,α and

at,α, respectively. Since each RAP defines the transmit power

levels of all tuple-links, at,α can be expressed as a function

of pt,α as at,α = Bt log2(1 +
htpt,α∑

t′∈α\t ht′tpt′,α+σ2 ). Thus, the

energy-efficient resource allocation problem can be formulated

as an RAP based scheduling to minimize energy consumption

and satisfy traffic demand:

Problem 1:

min
{xα}

E =
∑
α∈A

∑
t∈T

pt,αxα (3)

s.t.
∑
t∈Tl

∑
α∈A

at,αxα ≥ bl, ∀l ∈ L (4)

xα ≥ 0, ∀α ∈ A (5)

The optimization variables are transmission time xα’s to be

assigned to RAPs. The objective function in (3) stands for

the total energy consumption which is the summation of

energy consumption over all the tuple-links in all RAPs. The

constraints in (4) indicate that for each physical link l, the total

traffic over all l’s corresponding tuple-links should satisfy l’s
traffic demand bl.
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It can be seen that Problem 1 is an LP problem; however,

since the allocation patterns can be significantly many, search-

ing the optimal scheduling of the patterns across such a large

solution space is difficult, which motivated us to develop a

decomposition method to find the optimal solution.

IV. DAFEE FRAMEWORK

The complexity of Problem 1 is mainly determined by the

size of RAP set A. For example, consider that if all nodes

have the same number of radios |Rv| and radio conflict (see

Section IV-B1) is ignored, the size of A can be expressed as

|A| = |P|(|L|·|Rv|2·|C|), which will be significantly large.

Our experiments in tuple-link scheduling indicate that only

a subset of A (called the critical set) will be scheduled.

Therefore, we apply the delayed column generation (DCG)

technique to iteratively find such a critical subset [23].

A. DCG-Based Decomposition

Starting from an initial feasible solution obtained based on

a small subset of A, the DCG method iteratively searches

for new columns or RAPs that are promising in improving the

objective. Let A(k) denote the subset of RAPs already found at

the beginning of iteration k. In this iteration, first, the optimal

solution based on A(k) is obtained as follows.

Master Problem

min E(k) =
∑

α∈A(k)

(∑
t∈T

pt,α

)
xα, (6)

s.t .
∑

α∈A(k)

(∑
t∈Tl

at,α

)
xα ≥ bl, ∀l ∈ L, (7)

xα ≥ 0, ∀α ∈ A(k) (8)

The above master problem can be easily solved if the

subset A(k) is of moderate size. The solution of the master

problem provides the scheduling time xα,k for each pattern

α in A(k) along with the dual variable w
(k)
l associated with

each of the constraint in (7). For any other pattern α /∈ A(k),

whether it can be added to the Master Problem for deciding its

transmission time is evaluated based on the following reduced

cost (improvement to objective):∑
l∈L

∑
t∈Tl

at,αw
(k)
l −

∑
t∈T

pt,α

=
∑
t∈T

(
at,αw

(k)
t − pt,α

)
, (9)

where w
(k)
t = w

(k)
l if t ∈ Tl and w

(k)
t = 0 if otherwise. In

the above equation, we have used the fact that each tuple-

link belongs to only one physical link. A new pattern will be

added to A(k) if it maximizes the reduced cost, i.e., it solves

the following optimization problem:

Sub-Problem (Problem 2):

max
α∈A\A(k)

∑
t∈T

(
at,αw

(k)
t − pt,α

)
(10)

In the objective function of the sub-problem, the term

at,αw
(k)
t − pt,α can be viewed as the utility of tuple-link t in

pattern α which consists of the profit in satisfying the traffic

demand (i.e., at,αw
(k)
t , since w

(k)
t is the dual of (7)) and the

power cost; the objective function is thus the total utility of

all tuple-links (system utility) of a pattern. Hence, the sub-

problem is indeed to search for an RAP with maximal utility.

The new RAP, if found, is then added to current subset to

form A(k+1). The master problem is then updated and solved

to provide a new set of solutions. The process is repeated

until no new RAP with positive utility can be found in the

sub-problem.

Remark 1. The physical meaning of the solving process can
be explained as follows. Each time solving the master problem
will provide an updated evaluation on all the tuple-links re-
garding to their capabilities in satisfying traffic demand based
on their performance in existing RAPs, and such evaluation
are conveyed through dual variables w

(k)
t . Then according to

this evaluation, a new RAP that can maximize the system utility
is searched and fed back to the master problem. With this new
information, all the tuple-links will be re-evaluated by solving
the updated master problem.

Theorem 1. The optimal solution of the decomposed problem
is also optimal for the original problem (Problem 1), which is
achieved when no new RAP of positive utility can be found in
the sub-problem.

Proof: When the sub-problem cannot find any allocation

pattern with positive utility
∑

t∈T (wtat − pt), it means the

value of the objective function in the master problem cannot

be further reduced, in other words the master problem achieves

the optimal solution. Since the number of allocation patterns

is finite, this solution also optimizes the original problem

(Problem 1).

B. Learning Based Algorithm for Solving the Sub-Problem

In this subsection we focus on solving the sub-problem,

which is to find an RAP that maximizes the system utility.

First of all, to form valid RAPs, we need to deal with radio

constraints.

1) radio constraint: In an RAP, there are three types of

radio constraints:

• transmitters of different tuple-links cannot use the same

radio

• receivers of different tuple-links cannot use the same

radio

• transmitter and receiver from different tuple-links cannot

use the same radio

The first constraint can be resolved by applying a require-

ment that each radio can assign positive power level to at

most one of its outgoing tuple-links. In the following we will

introduce an algorithm where radios act as players to make

transmission decisions so that this requirement can be easily

incorporated in the design of player strategy set.
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For the second and the third constraints, we formulate a

relaxed version of the sub-problem where these two types of

constraints are ignored. Then the solution from the relaxed

problem is further processed to satisfy radio constraints and

make it a feasible solution. Hereafter, we denote the relaxed

problem as Problem 3.

2) distributed learning: Based on our tuple-link based

network model, each radio is associated with a number of

incoming and outgoing tuple-links. Therefore, solving the

relaxed problem is to let each radio select exactly one outgoing

tuple-link and assign a power level (the other out-going tuple-

links are assigned zero power level). The decision is made

towards maximizing the system utility as indicated in Problem

2. The sub-problem is still of large searching space. In order

to further decompose the problem, we exploit utility based

distributed learning algorithm [24] to solve the sub-problem.

Consider the radios in the network as players, denoted

as R = {1, . . . , |R|}. sj denotes a strategy of player j,

which indicates the outgoing tuple-link that is chosen with an

associated power level. The strategy set of player j is denoted

as Sj . The strategies of all players, denoted as s, if satisfying

the radio constraints, provide power assignments for all tuple-

links and therefore form an RAP. Since for each player, there

can be at most one tuple-link scheduled for transmission, the

utility of a player is the same as the utility of the chosen tuple-

link. Then the system utility can be expressed as the sum of

player utilities

U(s) =
∑
j∈R

Uj(s) (11)

where, the utility of each player can be obtained by

uj = Uj(s) = wjaj − pj (12)

with wj , aj and pj the corresponding dual value, rate and

power level of the selected tuple-link of radio j, respectively.

The basic idea of the learning algorithm is to recursively

update the players’ strategies based on their moods, where the

mood of player j, denoted as mj , takes two types – content

(C) and discontent (D). In the following, define (sj , uj ,mj)
as the state of player j. The learning algorithm is then run

iteratively where each player updates its strategy and mood as

follows: Suppose the current state of player j is (s̄j , ūj , m̄j).
Update strategy:
If the current mood m̄j is content, choose a new strategy

sj from Sj with probability

Pr(sj) =

{
1− εq for sj = s̄j

εq

|Sj |−1 for sj �= s̄j
(13)

where ε > 0 is the experimentation rate and q is a constant

larger than the number of players |R|. If the current mood m̄j

is discontent, randomly choose a strategy from Sj , i.e.,

Pr(sj) =
1

|Sj |
, ∀sj ∈ Sj (14)

After a new strategy sj is chosen, calculate the new utility uj

based on (12) and then update the mood.

Update mood:
If the mood is content and the new state is the same as

the current one, then mj remains content. Otherwise, if the

new state is different from current one or the current mood is

discontent, set mood to content with probability ε1−uj and to

discontent with probability 1− ε1−uj , respectively.
The updating processes are summarized as follows:

Algorithm 1: State Updating of Player j

Input: current state (s̄j , ūj , m̄j);
//Update strategy

if m̄j = C then
Update strategy sj according to Eq. (13);

else
Update strategy sj according to Eq. (14);

end
Calculate utility uj using sj ;

//Update mood

if m̄j = C and (sj , uj) = (s̄j , ūj) then
mj = C;

else
mj = C with probability ε1−uj and

mj = D with probability 1− ε1−uj ;

end
Output: new state (sj , uj ,mj).

Definition 1 (Interdependence [24]). An |R|-player game
G(R, {Sj}j∈R, {Uj}j∈R) is interdependent if for every strat-
egy sj ∈ Sj , (j ∈ R) and every subset of players Rb ⊂ R,
there exists a player n /∈ Rb and strategies {s′r}r∈Rb

∈
{Sr}r∈Rb

such that

Un({s′r}r∈Rb
, {sj}j∈R/Rb

) �= Un({sr}r∈Rb
, {sj}j∈R/Rb

)
(15)

Lemma 1. G(R, {Sj}j∈R, {Uj}j∈R) is an interdependent
|R|-player game on a finite strategy space.

Proof: For a connected network and any radio subset

Rb ⊂ R, we can always find a radio n, n /∈ Rb such that

n is the neighbor of some radio (radios) in Rb or n belongs

to a node which has radios in Rb. In other words, we can

always find a radio outside Rb that will be affected by radios

inside Rb. Suppose radio n is affected by r, which is either

a neighbor of n or locates at the same node with n. With the

current strategy, if n and r are working on the same channel,

then r can change the power level in its strategy which changes

n’s utility. If not, r can switch to the same channel as n that

will change n’s utility. In either case, (15) holds.
As can be seen, Algorithm 1 runs at each radio in a distribut-

ed manner. According to Theorem 1 in [24], the stochastically

stable state of an interdependent game maximizes the system

utility. Then, one can easily prove the following theorem,

which shows that this distributed algorithm converges.

Theorem 2. The distributed learning can converge to the
optimal solution of Problem 3 with probability 1 if the
experiment rate ε is sufficiently small.
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3) post-processing: The previous learning algorithm pro-

vides solution for the relaxed Problem 3 which allows a radio

being used by multiple tuple-links. In order to satisfy all the

radio constraints, we need to deactivate (set power level to

zero) some of the active tuple-links in the solution such that

each radio is used by at most one tuple-link.

Consider a graph V where the vertices correspond to radios

in the network. An edge2 exists between two vertices if there

is an active tuple-link connecting them, with a weight equal to

the tuple-link’s utility. Then the radio constraint becomes that a

vertex in V cannot be incident to more than one edge, which is

to find a matching in V . Therefore the problem of deactivating

tuple-links to maximize remained utilities is equivalent to find-

ing the maximum weighted matching of graph V . Algorithms

of finding the maximum weighted matching of a graph can

be found in many literatures such as [25], [26], which can

be applied to the deactivation procedure. After processing the

solution of Problem 3, we can obtain a solution to the sub-

problem (Problem 2).

Remark 2. In some network scenarios, the second or the
third radio constraint may not apply. When a receiver ap-
plies multiplexing techniques such as CDMA, receiving from
multiple transmitters is allowed. A full-duplex radio can allow
transmitting and receiving at the same time. In these scenarios,
the deactivation post-processing may not be necessary.

After the deactivation procedure, since there may be less

transmissions in the network, the utilities of the remaining

active tuple-links are updated. Then, the power levels of all

tuple-links, which form a new RAP, is fed back to the master

problem.

V. DAFEE ALGORITHM AND PERFORMANCE ANALYSIS

In the master stage, the master problem is solved by a

central agent who can collect the transmission strategy of each

radio in the network to form an RAP. Based on the obtained

patterns, the central agent can perform RAP based scheduling

and obtain an optimal solution of the master problem. The

solution also comes with dual values, which will be distributed

to the tuple-links in the network.

In the sub-problem stage, each radio can distributedly

update its strategy and utility, where the latter is calculated

based on the received interference of the selected tuple-link.

At the end of the sub-problem stage, radios will report their

strategies to the central agent and the latter will perform the

maximum matching algorithm to deactivate tuple-links and

remove radio conflict, if needed. The new RAP is then added

to central agent’s constraint matrix for next iteration.

When solving the sub-problem with learning algorithm, it

may take a long time to converge to the optimal solution. In

fact it may not be necessary to wait for the optimal solution

in sub-problem, any pattern with positive utility can improve

the objective of master problem, which can update scheduling

2In this problem the edge is used to imply radio conflict relationship which
is nondirectional.

solution and dual values (as more accurate evaluations of

tuple-links). With this consideration, we propose the DAFEE

algorithm as follows.

A. Algorithm Design

Define a short period of time TL1 and a longer period of

time TL2. Each time when starting sub-problem stage, the

learning process runs only for TL1 time, followed by the

matching process (if necessary). Then the current utility is

calculated; if the utility is larger than a predefined value β, the

sub-problem stage stops and the current tuple-link strategies

are returned to the master problem as a new RAP. Otherwise,

the learning process continues to run for another TL1 of time

and checks the utility again. Every time when a utility exceeds

a certain threshold β, the sub-problem stage stops. If after

TL2 there is no utility exceeding β, the entire algorithm stops,

outputting the current solution as the final result. The entire

algorithm is summarized in Algorithm 2.

Algorithm 2: DAFEE Algorithm

Initial allocation pattern sets A(0)

(e.g. randomly assign non-zero power to all tuple-links);

//Master stage

Formulate Master Problem with RAPs A(k);

Solve for schedule x(k), energy E(k) and dual variables

w(k);

Distribute dual variables to corresponding radios;

//Sub-problem stage

reset timer1 and timer2;

while timer2 < TL2 do
while timer1 < TL1 do

Initialize with random strategy;

for radio j = 1, . . . , |R| do
Update state according to Algorithm 1 ;

end
end
Collect strategies and utilities of radios;

Deactivation procedure with maximum weighted

matching algorithm, if needed;

Form a new RAP and calculate the sum utility;

if sum utility > β then
Add the new RAP to form A(k+1);

Go to master stage;

end
Reset timer1;

end

B. Performance Analysis

For ease of exposition, we rewrite Problem 1 into standard

matrix form:

min
x

c′x

s.t. Ax ≥ b

x ≥ 0
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where c,x,b are the vector forms of {∑
t∈T

pt,α}, {xα} and

bl}, respectively. A denotes the |L| by |A| constraint matrix

with elements
∑
t∈Tl

at,α.

Suppose the optimal objective of Problem 1 is E∗ and

the result obtained from DAFEE is EDAFEE , we have the

following performance bound:

Theorem 3. The approximation ratio of DAFEE algorithm is
bounded as

EDAFEE

E∗ ≤ (|P| − 1)(|R|+ β/pmax) (16)

where |P| is the number of power levels, |R| is the number
of radios and β is the parameter in Algorithm 2.

Proof: Suppose x∗ and w∗ are the optimal solutions

of the original problem (Problem 1) and its dual problem,

respectively, where the dual problem is

Problem 4:

max w′b

s.t . w′A ≤ c′

w ≥ 0.

Suppose the final solution of the DAFEE algorithm is x̂,

and the corresponding dual variable is ŵ. When the algorithm

ends, there may be columns whose utilities are positive but

less than β (according to the definition of utility below (10)).

Define Δ as the index set of such columns. Therefore

0 < ŵ′Aα − cα ≤ β, ∀α ∈ Δ (17)

ŵ′Aα − cα ≤ 0, ∀α ∈ A \Δ (18)

where Aα is the α’th column of A and cα is the α’th element

of c. Denote the sub-matrix constructed with A’s columns in

Δ as AΔ. Suppose HΔ is the left inverse of AΔ such that

HΔAΔ = I where I is identity matrix. Expand HΔ to size

|L| × |A| by adding all-zero rows. Denote β as an |A| × 1
vector whose elements are equal to β if located at Δ, and 0

otherwise. Hence, combining (17) and (18) we will have

ŵ′A− c′ ≤ β′

=⇒ (ŵ′ − β′H)A ≤ c′

When β is small enough, ŵ′−β′H will be nonnegative and

therefore a feasible solution of Problem 4. Hence,

w∗′b ≥ (ŵ′ − β′H)b = ŵ′b− β′Hb

Since ŵ′b = c′x̂,

w∗′b ≥ c′x̂− β′Hb

We may ignore the columns corresponding to negative ele-

ments in Hb since it can only make β′Hb even smaller

and decrease the gap between solution and optimum. For

the other columns, we have HAx∗ ≥ Hb ≥ 0. Then

β′Hb ≤β′HAx∗ =β′x∗.

According to weak duality,

c′x∗ ≥ w∗′b ≥ c′x̂− β′x∗

=⇒ c′x̂ ≤ (c′ + β′)x∗

Finally,

EDAFEE

E∗ =
c′x̂

c′x∗

≤
∑

α∈A(cα + β)x∗
α∑

α∈A cαx∗
α

≤ (|P| − 1)(|R|+ β/pmax)

The last inequality holds since cα cannot be larger than

|R|pmax (where all radios are transmitting with maximum

power) or smaller than pmax/(|P| − 1) (where only one radio

is transmitting with minimum non-zero power level). The

bound can be interpreted as the extra energy consumption

introduced by approximation is no larger than adding β to

the consumption of each scheduled RAP.

VI. NUMERICAL RESULTS

The simulation is performed in a connected MR-MC net-

work environment with 30 nodes which are randomly deployed

in a 1000 × 1000 m2 area. Each node is equipped with

two radio interfaces, with 5 or 8 channels available for

transmissions. pmax is set to one and the transmit power can

take values on {0, 1/(|P| − 1), 2/(|P| − 1), . . . , 1}.

We will use energy efficiency of the network as the per-

formance metric, which is defined as the ratio of sum traffic

demands (
∑
l∈L

bl) and total energy consumption (the objective

function of Problem 1). In order to demonstrate the effect

on energy efficiency from including power assignment into

joint allocation, we vary the power strategy size (number

of available power levels) and compare the achieved energy

efficiency. Notice that when |P| = 2, transmit power can only

take values of zero or maximum transmit power, which can

be viewed as the solution without power control.

The energy efficiency corresponding to different power

strategy sizes |P| is shown in Fig. 2, where we fix all the

other network parameters and take records at the same number

of master iteration for all cases. As can be seen from this

figure, the lowest energy efficiency is achieved when no

power allocation is used. It is because that whenever a tuple-

link is scheduled for transmission, the maximum power is

used, which will cause extensive interference that degrades

the transmission efficiency. A more delicate power strategy

can increase the possible patterns of power allocation in the

network, as well as better allocate co-channel transmissions to

reduce mutual interference. Therefore involving power control

into joint resource allocation and increasing number of power

levels can improve the achieved performance.

We further evaluate the performance of joint resource

allocation under different network configurations in terms

of variable numbers of channel, traffic demands and traffic

densities. The total link demand in the network depends on the

number of links with positive demands and the traffic demand
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Fig. 2. Energy efficiency with different power strategy size.

for each link. To simulate a higher traffic demand, the traffic

demands in each link increases but the number of links with

positive demand is unchanged. For a higher traffic density, the

number of links with positive demand increases but the total

demands keeps unchanged. The energy efficiency comparison

is shown in Fig. (3) and (4), along with the iteration process.

Iteration in x-axis counts for the master problem. Denote a

case with power strategy size n as PSS-n.

In Fig. 3 and 4, we compare the energy efficiency under dif-

ferent power strategy size (PSS). It is observed that PSS-8 can

outperform PSS-5 and PSS-2 in all scenarios. As mentioned

previously, more choices of power levels can provide more

allocation and solution patterns, which gives higher probability

in finding a better solution at each round. This can also be

supported by the observation that the performance of PSS-8

improves faster than others.

As traffic demand or traffic density increases, the energy

efficiency will be lower than that of light traffic, since more

traffic may lead to more intensive interference which impacts

energy efficiency. Another observation is that the case with

a higher traffic density has more dynamic increase in the

solution compared with the other cases. This is because a

higher density indicates the strategy of a tuple-link may have

a higher chance to affect others’ utilities and cause a larger

change in the objective. Therefore the curve will stay in flat

in a relatively shorter period and gradually evolve soon.

The choice of β also has an influence on the convergence

speed. As shown in Fig. 5, a larger β will drive up performance

quickly since a larger β means each round in the master

problem is only triggered by a larger improvement. However, a

large β also indicates that after several rounds the sub-problem

is less likely to find any further improvement exceeding β
and probably miss possible small improvement. Therefore the

case with a larger β tends to stop earlier, while the case with

a smaller β is still able to improve the solution gradually.

In practice, we can first use a larger β to run the algorithm

such that the result can be improved rapidly. Then switch to

a smaller β to check for further improvement.

VII. CONCLUSION

In this paper we have investigated energy-efficient resource

allocation in MR-MC networks. We have formulated an op-
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Fig. 5. Effect of β

timization problem to minimize energy consumption in the

network while satisfying the traffic demand requirements.

The large scale problem has been solved by decomposition

algorithm based on DCG and distributed learning methods.

The solution of this problem provides a joint allocation of

radio, channel, and transmit power. We have proposed an

efficient algorithm to speed up the solution process and shown

the performance bound. Numerical results demonstrated that

the proposed algorithm can improve energy efficiency of MR-

MC networks.
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