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Abstract—The open and distributed nature of the IEEE 802.11
based wireless networks provides selfish users the opportunity to
to gain an unfair share of the network throughput by manipu-
lating the protocol parameters, say, using a smaller contention
window. In this paper, we propose an adaptive approach for
real-time detection of such selfish misbehavior. An adaptive
detector is necessary in practice, as it needs to deal with different
misbehaving scenarios where the number of selfish users and the
contention windows exploited by each selfish user are different.
In this paper, we first design a basic misbehavior detector based
on the non-parametric cumulative sum (CUSUM) test. While
the basic detector can be modeled with a Markov chain, we
further resort to the Markov decision process (MDP) technique
to enhance the basic detector to an adaptive design. In particular,
we develop a novel reward function based on which the optimal
policy of the MDP can be determined. The optimal policy
indicates how the adaptive detector should operate at each state.
Another important feature of our detector is that it enables an
effective iterative method to detect multiple misbehaving nodes.
We present thorough simulation results to confirm the accuracy
of our analysis, and demonstrate the efficiency of the adaptive
detector compared to a static solution.

I. INTRODUCTION

The IEEE 802.11 based wireless networks are widely de-
ployed to provide wireless Internet access. The IEEE 802.11
protocol relies on the carrier sense multiple access/collision
avoidance (CSMA/CA) based distributed cooperation func-
tion (DCF) for a distributed medium access control (MAC).
According to the DCF MAC, all the users will fairly share
the network throughput if everyone follows the standard in a
cooperative manner [1], [2]. However, due to the lack of a
central controller, a selfish user can simply manipulate proto-
col parameters, e.g., choosing a smaller minimum contention
window size, to gain unfair access to the wireless channel.
Such misbehavior not only gives advantages to the selfish user,
but also results in a much less share of the network throughput
or even denial of service to other normal users who play by
the rule. In this paper, we propose an adaptive approach for
real-time detection of such selfish misbehavior in 802.11 based
wireless networks.

We adopt the non-parametric cumulative sum (CUSUM) test
[3] to design a basic misbehavior detector. Our detector takes
observation measures each time a successful transmission is
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observed over the channel, and updates its value based on a
rule of fairly sharing the channel among the contending nodes.
When monitoring a normal node, the detector value remains
around zero; when monitoring a selfish misbehaving node, the
detector value will quickly accumulate into a high positive
value and further raise an alarm upon hitting a threshold. An
adaptive detector is necessary in practice, as it needs to deal
with different misbehaving scenarios where the number of self-
ish users and the contention windows exploited by each selfish
user are different. In particular, upon an observation sample,
the detector needs to determine an action of whether more
aggressively increase or decrease the value of the detector. At
a state, if the observed node could be a misbehaving one with
a high probability, aggressively increasing the detector value
can lead to a smaller detection delay while does not impact
the false alarm rate much. On the other hand, if the observed
node is inferred to be a normal one with a high probability,
aggressively decreasing the detector value can mitigate the
false alarm rate without impacting the detection delay much.

Regarding the adaptive detector, a proper decision on the
action at each state is crucial for improving the detection
performance, as bad decisions may degrade the system per-
formance. We will indicate that our CUSUM based detector
can be modeled as a discrete time Markov chain. Thus, we
can further resort to the Markov decision process (MDP) (Ch.
4 of [4]) technique to guide the adaptive design. In a MDP
formulation, the optimal action for each detection state will be
obtained by solving an optimization problem to maximize a
reward function. This paper develops a novel reward function
which will generate a positive reward for a correct decision
and a negative penalty for a wrong decision (for example,
aggressively increasing the detector value when monitoring
a normal node). The Markovian model also enables us to
theoretically analyze the detection performance in terms of
false positive (or false alarm) rate, average detection delay, and
missed detection ratio. Efficiency of the MDP based adaptive
design is demonstrated with comparison to the performance
of the basic static detector. To the best of our knowledge,
this paper is the first work applying the MDP to improve the
performance of the CUSUM-based detector.

We would like to emphasize that a particular advantage of
our detector is its capability to detect multiple misbehaving
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nodes in a network. In such a scenario of multiple misbehaving
nodes, it is difficult to detect all misbehaving nodes by just
analyzing the fairness in accessing the channel. Both the
normal nodes and the selfish nodes with lower misbehaving
intensity will be overwhelmed by those selfish nodes with
higher misbehaving intensity. Our detector design is equipped
with the capability to readily shield the detector operation from
the impact of the traffic associated with any specified node.
Such a capability enables an iterative method to effectively
detect multiple misbehaving nodes. After detecting the node
with the most intense misbehavior, the detector can discard the
packets from that node and continue the detection among the
leftover nodes. Thus, the misbehaving nodes will be detected
one by one.

The contributions of this paper can be summarized in five
aspects. 1) We present a CUSUM based misbehavior detector,
and further enhance it with an adaptive design. 2) We develop a
MDP based model to guide the design of the adaptive detector.
3) We develop a novel reward function for formulating the
MDP problem. 4) An iterative algorithm is presented for
detecting multiple misbehaving nodes. 4) Both theoretical
analysis and simulation results are provided to demonstrate
the performance of our detector.

The rest of the paper is organized as follow. Section II
reviews more related work. Section III describes the detector
design. Section IV develops the MDP based modeling and
analysis. Section V presents the theoretical performance anal-
ysis based on the Markovian model, and Section VI presents
the simulation results. Section VII concludes the paper.

II. RELATED WORK

The problem of detecting selfish misbehavior over 802.11
networks has been studied in various scenarios and under
several mathematical frameworks in the literature. The ap-
proaches in [9]–[11] focus on developing protocols based on
the game-theoretic techniques. The goal is to encourage all the
nodes to reach a Nash equilibrium. As a result, a misbehaving
node is not able to gain an unfair share over well-behaved
nodes and thus discouraged from misbehaving. However, this
category of approaches assume that all the nodes are willing
to deviate from the protocol when necessary, and performance
of the network may converge to a suboptimal operation point.
Moreover, modifications to the standard protocols are required.

The studies [12], [13] present a modification to the 802.11
protocol for misbehavior detection, where the receiver assigns
a backoff timer for the sender. If the number of idle slots
between consecutive transmissions from the sender does not
comply with the assigned timer, the receiver will consider that
the sender potentially deviates from the protocol. Continuous
deviations will let the receiver label the sender as a selfish
node. Modifications to the 802.11 protocol and reliance on
the receiver are the main limitations of the work. A heuristic
sequence of conditions are proposed in [14], [15] to test
multiple misbehavior options in the 802.11 protocol based on
simple numerical comparisons. The detection algorithm esti-
mates the average values of the option parameters and raises

alarms when the cumulative effect of the misbehavior exceeds
a threshold. This approach, named DOMINO, preserves its
advantage of simplicity and easiness of implementation. How-
ever, the heuristic nature of the approach limits its applications
to specific protocols.

The authors in [16], [17] utilize the Kolmogorov-Smirnov
(K-S) test for misbehavior detection. This test is able to
make decisions by measuring the distribution of the idle time
between consecutive successful transmissions from a tagged
node and comparing it to the normal backoff behavior. The de-
tection method requires estimation of the collision probability
of a packet transmitted. However, an inaccurate simplification
there is to consider that packets from the misbehaving node
and those from the normal nodes have the same collision
probability. Such inaccuracy impacts both the performance of
false positive rate and detection delay. Also, as a batch test
method, the K-S test needs fixed-size data samples to perform
detection, which makes real-time detection difficult.

In [5], we adopt the non-parametric CUSUM test for
misbehavior detection. The detector there counts the number
of successful transmissions from a tagged node within an
observation window to get a sample. Although such a sampling
method is easy to implement, the observation window needs to
linearly increase with the number of nodes in the network to
fairly count transmissions from each node, which as a result
will increase the detection delay. In this paper, the detector
takes every successful transmission over the network as a
sample to trigger its state change. Such a sampling method is
independent of the network size and turns out to achieve good
performance in both false positive rate and detection delay.

III. DETECTOR DESIGN

A. Basic Detector

In this paper, we consider a single-hop IEEE 802.11 based
wireless local area network (WLAN). The access point (AP)
will run a separate misbehavior detector to monitor each node.
We consider the saturated model that every node always has
data for transmission. Note that in practice a node may be
unsaturate, but when one or more selfish misbehaving nodes
exist, their aggressive transmissions will drive the network to
the saturated point.

In our detection system, the observation measure is an in-
dicator of whether a successful transmission over the network
belongs to a tagged node, denoted as I . Let {In, n = 0, 1, ....}
be the sequence of sample values of I , observed each time a
successful transmission appears on the channel. Let N denote
the number of nodes existing in the network, which is readily
known to the AP. For our basic detector, suppose its initial
value Xn to be 0. When the current successful transmission
over the network is from the tagged node, i.e., In = 1, we
increase Xn by N − 1; otherwise, when the transmission is
from any non-tagged node, i.e., In = 0, we decrease Xn by
1 until it reaches 0. The intuition of this design is as follows:
In the normal situation where every node follows the 802.11
DCF model, each node roughly takes turns to transmit; the
increase of Xn caused by one successful transmission from
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the tagged node can then be equally offset by the successful
transmissions from other N − 1 non-tagged nodes. Thus in
the normal situation, the detector Xn will fluctuate around a
low value close to zero. On the other hand, when the tagged
node turns to misbehave and obtain more chances to transmit,
we can see that Xn is going to quickly accumulate to a large
positive value.

The behavior of the basic detector can be mathematically
described as

Xn+1 = (Xn + (NIn − 1))+

X0 = 0 (1)

where (x)+ = x if x ≥ 0 or 0 otherwise. And it can be
seen that (1) follows the form of a non-parametric CUSUM
detector.

Let ℎ be the detection threshold, then the decision rule of
the detector in step n is

±n =

{
1 if Xn ≥ ℎ

0 if Xn < ℎ
(2)

where ±n is also an indicator function of whether the detection
event happens or not. The detector Xn will be reset to 0 once
it exceeds ℎ and the detection procedure will start over again.

Note that the performance of the basic detector is fully
analyzed in our work [18] under varying network size, against
the short-term unfairness, and in the situation when both UDP
and TCP traffic exists. In this paper, we consider the new issue
of enhancing the basic detector with an adaptive design.

B. Adaptive Detector

The basic detector (1) can be conveniently enhanced to in-
corporate adaptive operations. The basic idea is that at a certain
state, that if the tagged node is inferred to be misbehaving,
the detector can increase its value more aggressively for a
shorter detection delay; otherwise, the detector can decrease
more aggressively to mitigate false positives. Let Xn denote
the state of the detector at time n (i.e., the state after processing
n observation samples). We use un to denote the adaptive
actions associated with the state Xn. In this paper, un can
take the value of a positive integer, a negative integer, or 0.
How to properly determine the action for each state will be
discussed in the following section. With the adaptive actions,
the behavior of the adaptive detector can be mathematically
described as

Xn+1 = (Xn + (NIn + un − 1))+

X0 = 0. (3)

Also, the adaptive detector has the same decision rule as (2).
And similarly, the detector value will be reset to 0 once a
detection event happens.

IV. MARKOV DECISION PROCESS BASED MODELING

Consider the sequence of the adaptive detector value {Xn}
as a discrete random process, which takes values from a finite
set A = {0, 1, 2, ..., ℎ}. The process is said to be in state i at

time n if Xn = i. We can see that both the basic detector (1)
and the adaptive detector (3) have the Markov property, that is,
given the current state Xn, the next state Xn+1 is independent
of previous states. We have applied Markov chain analysis to
study the basic detector in [18]. We here apply the Markov
decision process to study the adaptive detector.

Given an action un = u associated with the state Xn, the
transition probability can be expressed as

Pij(u) = P{Xn+1 = j∣Xn = i, un = u}. (4)

A MDP is a 4-tuple: (A,U , Pij(u), Rij(u)).

∙ A is a finite set of states. In this paper, the detector value
Xn is defined as the state and takes values from the set
A = {0, 1, 2, ..., ℎ}.

∙ U is a finite set of actions. The action is the value of
the adjustment un chosen at the state Xn. Given positive
integer umax, we consider the action set consisting of the
integers in the range [−umax, umax]. How to select the
action un according to the state Xn is called a policy.

∙ Pij(u) is the transition probability given that action u is
taken at state Xn.

∙ Rij(u) is the reward received with the transition from
state i to state j under the action u.

In the following, we will discuss how to determine the tran-
sition probability Pij(u), design the reward function Rij(u),
as well as decide the optimal policy.

A. Transition Probability

The transition probability is the critical element for analyz-
ing a Markov model. In our detection system, a state transition
happens when a successful transmission over the network is
observed, which can either be from the tagged node, i.e., our
observation measure In = 1, or from any other node, i.e.,
In = 0. Then if we use qs to denote the probability that a
successful transmission over the network is from the tagged
node, the probability distribution of In is given by

P{In = k} =

{
qs if k = 1,

1− qs if k = 0.
(5)

In a normal situation that every node uses the same contention
window size and follows the 802.11 DCF, it can be seen that
qs = 1

N under the independent channel access assumption
and fair channel sharing, given N nodes in the network. If
the tagged node is a selfish node taking a smaller contention
window, it will achieve a qs larger than 1

N and thus a larger
portion of the network throughput. In Section IV-B, we will
present how to calculate qs given the contention window size.

Using the distribution of In, and also taking into account
the value of the detection threshold ℎ and the action u, we can
then calculate the transition probability Pij(u). Based on the
operation of the adaptive detector, the calculation of Pij(u) is
divided into four distinct cases.
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Case 1 consists of Pij(u) for i ∈ [0, ℎ− 1] and j ∈ {0, ℎ},
with values

Pij(u) =

⎧
⎨
⎩

1 if j = 0 and i+N + u− 1 ≤ 0,
P{In = 0} if j = 0, i+ u− 1 ≤ 0 and

i+N + u− 1 > 0,
P{In = 1} if j = ℎ, i+ u− 1 < ℎ and

i+N + u− 1 ≥ ℎ,
1 if j = ℎ and i+ u− 1 ≥ ℎ,
0 otherwise.

(6)

This case is related to transitions from any state other than state
ℎ to state 0 or ℎ. According to the state transition equation
(3), the detector variable Xn can only jump from the current
state i to two other states, i.e., a larger value i +N + u − 1
when In = 1 and a smaller value i+u−1 when In = 0. Thus,
if the larger value i+N+u−1 ≤ 0, Xn will for sure jump to
0; if the smaller value i+u−1 ≥ ℎ, Xn will for sure jump to
ℎ. Note that the state ℎ in fact incorporates all possible states
Xn ≥ ℎ, as the detector will raise an alarm when the state hits
ℎ. Further, if i+u−1 ≤ 0 and i+N+u−1 > 0, Xn can only
jump from i to 0 when In = 0. Also, if i+N+u−1 ≥ ℎ and
i+ u− 1 < ℎ, Xn can only jump from i to ℎ when In = 1.

Case 2 consists of Pij(u) for i ∈ [0, ℎ−1] and j ∈ [1, ℎ−1],
with values

Pij(u) =

⎧
⎨
⎩

P{In = 0} if j = i+ u− 1 and
i+ u− 1 > 0,

P{In = 1} if j = i+N + u− 1 and
i+N + u− 1 < ℎ,

0 otherwise.

(7)

This case is related to the typical behavior of the detector,
describing the transitions from any state other than state ℎ to
any state other than 0 and ℎ. The state can transit to state
i+u−1 when In = 0 or to state i+N +u−1 when In = 1,
according to the state transition equation (3).

Case 3 consists of Pij(u) for i = ℎ and j ∈ {0, ℎ}, with
values

Pℎj(u) =

⎧
⎨
⎩

1 if j = 0 and N + u− 1 ≤ 0,
P{In = 0} if j = 0, u− 1 ≤ 0 and

N + u− 1 > 0,
P{In = 1} if j = ℎ, u− 1 < ℎ and

N + u− 1 ≥ ℎ,
1 if j = ℎ and u− 1 ≥ ℎ,
0 otherwise.

(8)

Case 4 consists of Pij(u) for i = ℎ and j ∈ [1, ℎ−1], with
values

Pℎj(u) =

⎧
⎨
⎩

P{In = 0} if j = u− 1 and
u− 1 > 0,

P{In = 1} if j = N + u− 1 and
N + u− 1 < ℎ,

0 otherwise.

(9)

Cases 3 and 4 are related to transitions from state ℎ. Such
transitions are singled out as state ℎ is special. According to

the detector operation, we reset the detector value Xn to 0 right
after it reaches ℎ. This transition from ℎ to 0 is not triggered
by any successful transmission over the network and the two
values happen in the same sampling period. This state has the
value of ℎ when it is entered and the value of 0 when it is
left. Therefore, the transition probabilities as shown in Cases
3 and 4 are in fact equivalent to those associated with state
0 contained in Cases 1 and 2, respectively. Note that the the
policy at state ℎ will also be the same as that at state 0. The
reason we still maintain the state ℎ is that it is the state to
trigger the alarm of a misbehavior detected.

B. Reward Function

With a MDP formulation, the optimal policy at each state
will be solved from an optimization problem that maximizes
a reward function. Thus, the reward function needs to be
properly designed. It should have the property that a positive
reward will be collected for a right action that can improve
the performance, while a negative penalty will be given to
an improper action that degrades the performance. Regarding
our problem of misbehavior detection, the evaluation of an
action will depend on the analysis of the node behavior. We
use P{M ∣Xn = i} to denote the probability that the tagged
node is misbehaving, given the current detector state Xn = i.
We propose to define a reward function for an action u in state
i as

R{i, u} = −(1− P{M ∣Xn = i})u+ P{M ∣Xn = i}u.
(10)

We can see that the reward function will encourages choosing
a positive value for the action u when the tagged node is
misbehaving, represented by the positive reward P{M ∣Xn =
i}u, where the positive u represents an aggressive increase
towards fast detection. On the other hand, the reward function
stimulates the selection of a negative value for u when the
tagged node is a normal one, represented by the positive
reward −(1 − P{M ∣Xn = i})u, where the reward is for an
aggressive decrease to mitigate the false positives. The reward
function is represented as a probabilistic average, considering
the randomness in practice. It is not a trivial issue to calculate
the probability P{M ∣Xn = i} though.

We consider a general multiple attacker scenario for the
analysis. Specifically, we assume that each node in a network
of N nodes could be a misbehaving one independently with
a probability of Q, i.e., P{M} = Q. With good majority,
normally Q < 50%. We further assume that when a node is
misbehaving, it randomly chooses the value of its minimum
contention window CWmin from a set W , with a uniform
probability of 1

∣W∣ , where ∣W∣ is the cardinality of the set
W . The CWmin defined in the IEEE DCF standard is 32,
and all the elements W are less than 32. According to the
contention windows selected, the nodes in the network can be
divided into S classes. All the nodes in the same class use
the same CWmin. Specifically, we denote that a class i node
uses CWmin = Wi with Wi ∈ {W, 32}. If each class has
Ni (≥ 0) nodes, we have

∑S
i=1 Ni = N .
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With our model, we are to calculate the probability P{Xn =
i}, which is the steady state probability that the detector
Xn stays in state i when monitoring a node, averaging all
possible misbehaving cases in the network. We will also
calculate the probability P{Xn = i∣M}, which is the steady
state probability that the detector Xn stays in state i, given
that a misbehaving node is monitored. Note that the two
probabilities will be calculated with u = 0, which represents
the performance if no extra adaptive action is taken and
serves as the standpoint for the optimal policy design. The
probabilities will allow us to determine the reward function
through calculating the probability

P{M ∣Xn = i} =
P{Xn = i∣M}P{M}

P{Xn = i} . (11)

According to the classic modeling approach for the 802.11
DCF [1], we consider that each node independently accesses
an idle channel for transmission. Let pit denote the probability
that a class i node transmits at a random time slot and pic
denote the collision probability of a given transmission from
a class i node. We further let m denote the maximum backoff
stage. Given the number of nodes in each class N1, ⋅ ⋅ ⋅ , NS

and the CWmin taken by each class W1, ⋅ ⋅ ⋅ ,WS , according
to [1], we have the following equations:

⎧
⎨
⎩

p1t =
2(1− 2p1c)

(1− 2p1c)(W1 + 1) + p1cW1(1− (2p1c)
m)

...

pSt =
2(1− 2pSc )

(1− 2pSc )(WS + 1) + pSc WS(1− (2pSc )
m)

p1c = 1− (1− p1t )
N1−1

S∏

i=2

(1− pit)
Ni

...

pSc = 1− (1− pSt )
NS−1

S−1∏

i=1

(1− pit)
Ni

(12)

from which the parameters pit, p
i
c of each class i node can be

solved.
Note that a node can get a successful transmission under

the circumstance that there is no collision while the node
transmits. Thus from the solutions of (12), we can obtain
the probability that a node gets a successful transmission at a
random time slot:

p1s = p1t (1− p1c), (13)
...

pSs = pSt (1− pSc ). (14)

Suppose that the tagged node belongs to class v. We can then
calculate the probability qvs that a successful transmission over
the network is from the tagged node with CWmin = Wv as

qvs =
pvs∑S

i=1 Nipis
. (15)

Note that qvs is a conditional probability given a specific
configuration of CWmin and number of nodes in each class,
i.e.,

qvs (⋅) = f(W1, ⋅ ⋅ ⋅ ,WS , N1, ⋅ ⋅ ⋅ , NS). (16)

We can further analyze other conditional and unconditional
successful transmission probability resorting to our misbehav-
ing model. Recall that in our model every node misbehaves
with a probability Q and the node who misbehaves randomly
chooses its CWmin from the set W . Let P (Wi) denote the
probability that a node sets its CWmin as Wi (∈ W). We then
have

P (Wi) =

⎧
⎨
⎩

Q

∣W∣ if Wi ∈ W
1−Q if Wi = 32

. (17)

Let q̄s(Wv) denote the conditional probability that a successful
transmission is from the tagged node, given that the tagged
node has a CWmin size of Wv . Let q̄s denote the unconditional
probability that a successful transmission is from the tagged
node, averaging over all the possible network scenarios. We
can see that

q̄s(Wv) =

∑

Wi∈W:
i ∕=v and

Wi ∕=Wj for i ∕=j

∑

(N1,⋅⋅⋅ ,NS):
Nv≥1 and∑

i Ni=N

qvs (⋅)P (Wv)
(Nv−1)

S∏

i=1,i∕=v

P (Wi)
Ni

(18)

and further

q̄s =
Q

∣W∣
∑

Wv∈W
q̄s(Wv) + (1−Q)q̄s(32). (19)

In (18) and (19), we consider the different combinations of
the CWmin taken by each class and the number of nodes in
each class.

Applying q̄s to (5), we can obtain the probability distribution
of our observation measure In for a tagged node. We can
then calculate P{Xn = i} with u = 0 as mentioned above.
By using the In distribution in (6)−(9), we can compute
the transition probabilities Pij(0). Let (¼0, ..., ¼ℎ) denote the
steady state probabilities when u = 0, which can be solved
from the equations

¼j =

ℎ∑

i=0

¼iPij(0), j ∈ {0, ..., ℎ}, (20)

ℎ∑

j=0

¼j = 1. (21)

We can then get P{Xn = i} = ¼i from (20) and (21).
Similarly, if we apply q̄s(Wv) obtained in (18) to (5) and

further compute the transition probabilities and then solve the
equations (20) and (21) based on such transition probabil-
ities, we will obtain the steady state probability P{Xn =
i∣CWmin = Wv}, which is the distribution of the detector
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state given that the tagged node takes a CWmin of Wv . Then
as the tagged node may chooses its CWmin uniformly from
W when it is misbehaving, we can calculate P{Xn = i∣M}
as

P{Xn = i∣M} =
P{Xn = i,M}

P{M}
=

1

∣W∣
∑

Wv∈W
P{Xn = i∣CWmin = Wv}.

(22)

With the probabilities P{Xn = i∣M} and P{Xn = i}, we
can calculate the probability P{M ∣Xn = i} according to (11)
and then obtain the reward function by (10).

C. Optimization Problem Formulation

Our goal is to determine the optimal policy, i.e., how to
choose the action at a certain state, to achieve the maximum
benefit based on reward function developed above. In partic-
ular, we will find the steady-state probability ¼iu of being in
state i and choosing action u when the optimal policy is used.
Hence, given that the state space is determined by a certain
detection threshold ℎ, i.e., i, j ∈ [0, ℎ], the problem can be
formulated as

max
∑

i

∑
u

¼iuR(i, u)

subject to
∑

i

∑
u

¼iu = 1,

∑
u

¼ju =
∑

i

∑
u

¼iuPij(u) for all j,

¼ju ≥ 0 for all i, u. (23)

This is in fact a linear programming problem. Solving (23)
using the simplex method, we can obtain the set of ¼∗

iu max-
imizing the overall reward, which also indicates the optimal
policy of how to choose an action u at state i. We also find
that for each i, ¼∗

iu is zero for all but one value of u, which is
due the property of the linear programming problem (Section
4.10 of [4]). Thus there is only one action, i.e., u∗, to be
taken for a state in the optimal policy, which indicates how
our adaptive detector will operate under a certain detection
threshold ℎ. Then we compare the total reward of various
detection thresholds and select an ℎ with the largest reward
to be our detection threshold. As an example, for a network
with N = 8 nodes, each of which tends to misbehave with a
probability of Q = 0.25, we determine a detection threshold
of ℎ = 20 which achieves the largest reward, and also obtain
the optimal configuration u∗ associated with the ℎ.

V. THEORETICAL PERFORMANCE ANALYSIS

In this section, we conduct theoretical performance analysis
of the adaptive detector whose operation is characterized by
the optimal policy obtained from last section, in terms of
three fundamental metrics: average false positive rate, average
detection delay, and missed detection ratio under a detection
delay bound. In fact, with the optimal policy for each state

is obtained, the MDP will reduce to a Markov chain. When
we analyze this Markov chain in a specific scenario, we
can numerically evaluate the performance of the adaptive
detector in that case. In this section, we will also compare
the performance of the adaptive detector to that of the basic
detector.

A. Average False Positive Rate

The average false positive rate Pfp is the rate that the
detector Xn hits state ℎ given the fact that no node in the
network is misbehaving. Such a rate is equal to the steady-
state probability, denoted by ¼∗

ℎ, that the adaptive detector
stays at ℎ in the normal condition.

In the normal condition with a fair share of the channel
access, we have qs =

1
N for a tagged node. We can calculate

the distribution of In according to (5). And further, using the
optimal u∗ for each state obtained from (23), we calculate
the transition probabilities Pij(u

∗) according to (6)−(9). Then
using (20) and (21), we can get ¼∗

ℎ and subsequently the
average false positive rate as

Pfp = ¼∗
ℎ. (24)

With a detection threshold ℎ = 20, we obtain Pfp as 0.0013.

B. Average Detection Delay

The average detection delay E[TD] is the average number
of samples observed from the moment that the tagged node
starts to misbehave until the misbehavior is detected. With
the transition probabilities under the abnormal condition, i.e.,
P̂ij(u

∗), E[TD] can be computed as the expected number of
transitions required for the detector Xn to hit state ℎ, starting
from the moment when the misbehavior starts. To carry out
the analysis, we need to find P̂ij(u

∗) and determine the initial
state of Xn when the misbehavior starts.

1) Transition Probabilities under Misbehavior: Given the
number of nodes and the minimum contention window size
CWmin of each misbehaving node, we can calculate the
probability that a successful transmission is from a tagged mis-
behaving node through (12)−(15). Given the optimal policy u∗

for each state, we can further obtain the transition probabilities
P̂ij(u

∗) according to (6)−(9).
2) Initial States: Before a selfish node starts to misbehave,

it can behave like a normal node and still affect Xn. Thus Xn

can be initially at any state following the normal transition
probabilities Pij(u

∗) except for state ℎ, as we do not consider
an already “alarmed” state as an initial state.

We can calculate the steady state probabilities under the nor-
mal condition through (20) and (21). Since we are interested
in detection starting from an unalarmed state, under such a
constraint the conditional initial state probabilities should be

¼′∗
i =

¼∗
i∑ℎ−1

j=0 ¼∗
j

for i ∈ {0, ..., ℎ− 1}. (25)
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3) Average Detection Delay: As we have various initial
states, the average detection delay E[TD] should be calculated
as the weighted average of the expected numbers of transitions
from every initial state to state ℎ based on the transition
probabilities P̂ij(u

∗).
Let ¹iℎ, i ∈ [0, ℎ − 1], denote the expected number of

transitions for state i to state ℎ. According to [6], the values
of ¹iℎ can be solved from the equations

¹iℎ = 1 +
∑

r ∕=ℎ

P̂ir(u
∗)¹rℎ, i ∈ {0, ..., ℎ− 1} (26)

Based on the solutions of (25) and (26), we can obtain the
average detection delay E[TD] as

E[TD] =

ℎ−1∑

i=0

¼′∗
i ¹iℎ. (27)

TABLE I
AVERAGE DETECTION DELAY OF THE ADAPTIVE DETECTOR WITH

Pfp = 0.0013, ℎ = 20

W2 = 2 W2 = 4 W2 = 8 W2 = 16

W1 = 2 12.8151 4.321 4.096 4.0168

W1 = 4 1.98∗104 16.2949 7.3324 6.1042

W1 = 8 7.11∗105 270.0457 31.1042 17.4963

W1 = 16 1.59∗107 5.61∗103 307.9787 111.3373

As an example, we consider a network with N = 8 nodes;
among them there are two nodes, denoted as node 1 and
node 2, misbehaving. We use the same optimal parameter
configuration as in the example in Section V-A. We treat node
1 as the tagged node and compute E[TD] for detecting the
node. Varying the CWmin of both of the misbehaving nodes,
the delays for detecting node 1 are shown in Table I. Here W1

denotes the CWmin of node 1 and W2 denotes the CWmin

of node 2. From the table, as expected, we can see that more
intense misbehavior of node 1, i.e., a smaller W1, leads to
a shorter detection delay for node 1; however, more intense
misbehavior of node 2 leads to a longer detection delay for
node 1. Note that when W1 = W2, the two misbehaving nodes
are “fairly” competing with each other to transmit. But once
W2 becomes larger than W1, the detection delay for node 1
incurs a drastic decline, as node 1 starts to gain advantages
over node 2 and gets more opportunities to transmit. Moreover,
we see that for the cases where W1 > W2, the detection
delays for node 1 become very large since node 2 is gaining
advantages over node 1. Such long detection delays do not
make much practical sense. We will discuss our method for
dealing with the multiple misbehaving nodes scenarios in
Section V-D. And later in our simulation results, we will
demonstrate the effectiveness of the method.

We then compare the detection performance of the adaptive
detector to the basic detector with u = 0 in each state, to
examine whether the adaptive detector has indeed achieved
better performance. Here we still consider the same network
setting where there are 2 misbehaving nodes in a network with
N = 8 nodes.

TABLE II
AVERAGE DETECTION DELAY OF THE BASIC DETECTOR WITH

Pfp = 0.0013, ℎ = 70

W2 = 2 W2 = 4 W2 = 8 W2 = 16

W1 = 2 22.4527 9.9944 9.5412 9.3783

W1 = 4 2.90 ∗ 107 26.1878 15.2037 13.2251

W1 = 8 5.67∗1012 174.044 38.721 27.3762

W1 = 16 3.18∗105 198.6957 85.3163

Table II shows the detection delays of the basic detector
for detecting node 1, giving the same false positive constraint
of Pfp = 0.0013. To achieve this false positive rate, the
basic detector needs to set its detection threshold as ℎ = 70.
Comparing the results in Table II to Table I, we can see that
for most cases of W1 ≤ W2, the adaptive detector can achieve
much quicker detection delay than the basic detector. The
reason for this better performance is that when the detector
is in smaller states, the optimal policy mostly instructs it to
choose a negative u; whereas in larger states, the optimal
policy mostly instructs the detector to choose a positive u.
As a result, it is more difficult for the detector to increase its
value in the normal condition since initially the detector value
Xn is small and there are relatively few transmissions from the
tagged node to increase Xn. However, when the tagged node
starts to misbehave, consecutive transmissions from the node
trigger Xn to become large, and the optimal policy at this time
make the increase even greater, resulting in quicker detection
delay. Overall, the adaptive detector is able to achieve better
performance in both false positive and detection delay. Note
that we do not show the result for the case of W1 = 16
and W2 = 2, as the number is too large to be considered
as practically detectable.

C. Missed Detection Ratio

According to (3) and (2), our detector only stops when the
misbehavior is detected. Thus we need to examine the missed
detection ratio Pmd under a given detection delay constraint
D, which is an important performance measure regarding the
real-time detection.

The detection event happens only when Xn hits state ℎ.
Thus the missed detection ratio Pmd under the delay constraint
D is the summation of the probabilities of Xn staying at a state
other than ℎ at time D. Let P̂∗ denote the transition probability
matrix of P̂ij(u

∗). With P̂∗, Pmd can be computed in an iter-
ative manner. Let the row vector P⃗ (j) = [P0(j), ⋅ ⋅ ⋅ , Pℎ(j)]
denote the probabilities of the state variable at step j with
0 ≤ j ≤ D. The computation starts from the initial states
given in (25), setting

Pi(0) = ¼′∗
i for i ∈ {0, ..., ℎ− 1}, (28)

Pℎ(0) = 0. (29)

At each transition step j ∈ [0, D − 1], the state probabilities
are updated as

P⃗ (j) = P⃗ (j − 1) ⋅ P̂∗, (30)
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Fig. 1. Missed detection ratio for 1 node with CWmin = 16.

Pℎ(j) = 0. (31)

At each step, Pℎ(j) is set to 0 for next step computation
because we are interested in the missed detection cases. The
missed detection ratio under the delay bound constraint D can
then be obtained as

Pmd =

ℎ−1∑

i=0

Pi(D). (32)

Fig. 1 demonstrates the missed detection ratio Pmd of
detecting 1 of 2 misbehaving nodes both with CWmin = 16,
in a network of 8 nodes. As shown in the figure, to detect
such moderate misbehavior, we can set D = 330 to obtain a
Pmd less than 0.05.

D. Multiple Misbehaving Nodes Scenario

In cases where multiple misbehaving nodes exist in a
wireless network, our detector can detect the misbehaving
nodes one by one. We monitor the transmissions from every
node using a separate detector. As the node with the most
intense misbehavior has the most opportunities to transmit,
we will be able to quickly detect it with our detector. After
that, we will discard packets from that node and continue the
detection among the leftover nodes. Clearly, the node with the
second most intense misbehavior will be detected at this time.
We will continue such detection iteratively to identify every
misbehaving node. The effectiveness of this approach will be
demonstrated in Section VI-B.

What needs to be noted here is that we are not assuming
eliminating the wireless channel access of those nodes with
more intense misbehavior after they are detected, as practically
it is not easy to achieve such elimination, and the detected mis-
behaving nodes can continue transmitting packets to keep on
impacting contentions in the network. The specifics of how to
eliminate misbehaving nodes, however, are out of the scope of
this paper. In our scheme, whether to eliminate the nodes from
the network or not is not a problem for continuing detecting
other nodes with less intense misbehavior. The detector can
just drop the packets from those nodes already detected so that
the detector is shielded from the impact of those nodes. This is
an special advantage of our detector over existing misbehavior
detectors [16], [17] in detecting multiple misbehaving nodes.

The observation measures of those detectors have to include
information from the whole network, and thus transmissions
from any node in the network will always have impact on
the detection of a tagged misbehaving node. The “shielding”
option is not available to those detection methods.

VI. SIMULATION RESULTS

A. Comparison with Analytical Results
We first establish an 802.11 DCF based wireless network

consisting of 8 competing nodes (N = 8) and an AP through
ns-2 simulation [7]. The network works under the saturated
condition and every node transmits packets over the User
Datagram Protocol (UDP) towards the AP. The AP also acts
as the detection agent which monitors the transmissions from
every competing node with a separate detector. The nodes are
located close enough to sense the transmissions from each
other and thus avoid the hidden terminal problem. There are 2
misbehaving nodes, marked as node 1 and node 2, among the 8
competing nodes, the same as in the theoretical analysis. The 2
misbehaving nodes can manipulate their minimum contention
window to a value from {2, 4, 8, 16, 32}.

TABLE III
AVERAGE DETECTION DELAY OF THE ADAPTIVE DETECTOR FOR

W1 ≤ W2 WITH ℎ = 20

W2 = 2 W2 = 4 W2 = 8 W2 = 16

W1 = 2 8.3378 5.518 5.5385 5.6583

W1 = 4 9.9695 5.6956 5.5825

W1 = 8 20.2828 12.655

W1 = 16 79.2084

Through simulation, we obtain average detection delays of
the adaptive detector, and the results for detecting node 1 are
shown in Table III. Note that we do not include the cases of
W1 > W2 in this table, as most of them are not practically
detectable in the first place. We will discuss this issue in next
subsection.

Given the same detection threshold of ℎ = 20, we compare
the simulation results in Table III to the analytical results in
Table I. Even though the two sets of results are close, generally
the simulation results are smaller than the analytical results.
The reason is that our analysis is based on the assumption of
independent channel access; however, in a practical 802.11
network, a node that has just accomplished a successful
transmission will have advantages in grabbing the channel
for next transmission in a short period [8], which implies
correlations among the channel accesses. As a result, a selfish
misbehaving node can obtain even more channel accesses in
addition to those resulting from the misbehavior. Therefore,
the average detection delays obtained from simulations are
shorter. However, the analytical results still provide a con-
servative estimation for the detector’s performance, which is
meaningful for us to guide the detection system configuration.

B. Multiple Misbehaving Nodes Scenario
In the cases of W1 > W2, the misbehaving node 1 is

practically not detectable simultaneously with node 2 as its
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TABLE IV
AVERAGE DETECTION DELAY OF THE ADAPTIVE DETECTOR FOR

W1 > W2 WITH ℎ = 20

W2 = 2 W2 = 4 W2 = 8 W2 = 16

W1 = 2

W1 = 4 38.3886

W1 = 8 70.3503 66.9261

W1 = 16 243.7508 197.8860 131.2686
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Fig. 2. Average detection delay in multiple misbehaving nodes scenarios.

channel accesses are much less than node 2. However, as node
2 can be detected quickly in these cases, after the detection
of node 2, we can simply discard the transmissions from node
2 and only continuing our detection among the remaining 7
nodes to detect node 1. As we monitor the transmissions from
every competing node with a separate detector, this approach
is very easy to implement. Table IV shows the results obtained
from the approach. The detection delays are the original delays
to detect node 2 plus the additional delays to detect node 1
after transmissions from node 2 are discarded. As we can
see, the results are significantly smaller than the analytical
results from Table I, which makes the detection of multiple
misbehaving nodes much more feasible.

Then to be more general, we consider a network of 20 nodes
with 4 nodes misbehaving, one of which is the tagged node.
The tagged node varies its minimum contention window size
W1 from 2 to 16, while the other 3 misbehaving nodes set their
windows as W2, W3 and W4 respectively to represent a wide
range of misbehavior. Fig. 2(a) shows the average delays for
detecting the tagged node when W2 = 4, W3 = 8 and W4 =
16, representing a more moderate misbehaving environment;
Fig. 2(b) shows the results when W2 = 2, W3 = 4 and W4 =
8, representing a more intense misbehaving environment. The
sudden increases of delays in the figures, e.g., when W1 = 5
and 9 in Fig. 2(a), are due to the reason that starting from
these window values, there will be one more misbehaving node
detected before the tagged node, which obviously increases the
delay. Overall, we can see that the adaptive detector is faster
than the basic detector in all the misbehaving cases. Also as
expected, more intense misbehavior from other nodes makes
it longer to detect the tagged node.

VII. CONCLUSION

In this paper, we propose an adaptive approach to address
real-time selfish misbehavior detection in IEEE 802.11 based
wireless networks. By enhancing a basic detector based on the
non-parametric CUSUM test, we design an adaptive detector
where actions are added to control how the detector value is
updated. Further, we model the adaptive detector using the
Markov decision process, which enables us to find an optimal
policy to determine the proper action to be taken in each
state of the adaptive detector. The optimal policy characterizes
the operation of the adaptive detector, which also enables
us to theoretically analyze the detection performance. The
simulation results confirm the accuracy of our analysis, and
also demonstrate the detector’s ability to address the cases
of multiple misbehaving nodes. In our future work, we plan
to extend the work to the detection of selfish misbehavior in
multi-hop wireless networks.
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