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Abstract—In this paper, we give a global perspective of
multicast capacity and delay analysis in Mobile Ad-hoc Networks
(MANETs). Specifically, we consider two node mobility models:
(1) two-dimensional i.i.d. mobility, (2) one-dimensional i.i.d. mo-
bility. Two mobility time-scales are included in this paper: (i) Fast
mobility where node mobility is at the same time-scale as data
transmissions; (ii) Slow mobility where node mobility is assumed
to occur at a much slower time-scale than data transmissions.
Given a delay constraint D, we first characterize the optimal
multicast capacity for each of the four mobility models, and
then we develop a scheme that can achieve a capacity-delay
tradeoff close to the upper bound up to a logarithmic factor.
Our study can be further extended to two-dimensional/one-
dimensional hybrid random walk fast/slow mobility models and
heterogeneous networks.

I. INTRODUCTION

Since the seminal paper by Gupta and Kumar [1], where a
maximum per-node throughput of O(1/

√
n) was established

in a static network with n nodes, there has been tremendous
interest in the networking research community to understand
the fundamental achievable capacity in wireless ad-hoc net-
works. How to improve the network performance, in terms of
the capacity and delay, has been a central issue.

Many works have been done to investigate the improvement
by introducing different kinds of mobility into the network, [2],
[3], [4], [5], [6], [7]. Other works attempt to improve capacity
by introducing base stations as infrastructure support, [8], [9],
[10].

All the above works studied the unicast traffic. As the
demand of information sharing increases rapidly, multicast
flows are expected to be predominant in many of the emerging
applications, such as the order delivery in battlefield networks
and wireless video conferences. Related works are [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], including static,
mobile and hybrid networks.

Introducing mobility into the multicast traffic pattern, Hu
et al. [14] studied a motioncast model. Fast mobility was
assumed. Capacity and delay were calculated under two par-
ticular algorithms, and the tradeoff derived from them was
λ = O( D

nk log k ), where k was the number of destinations
per source. In their network, Θ(n) cell-partitioning [3] was
used, which fixed the transmission range as O( 1n ). Zhou and
Ying [15] also studied the fast mobility model and provided
an optimal tradeoff under their network assumptions. Specifi-

cally, they considered a network that consists of ns multicast
sessions, each of which had one source and p destinations.
They showed that given delay constraint D, the capacity per
multicast session was O

(
min

{
1, (log p)(log(nsp))

√
D
ns

})
.

Then a joint coding/scheduling algorithm was proposed to
achieve a throughput of O

(
min

{
1,
√

D
ns

})
. In their network,

each multicast session had no intersection with others and the
total number of mobile nodes was n = ns(p+ 1).

Heterogeneous networks with multicast traffic pattern were
studied by Li et al. [16] and Mao et al. [17]. Wired base
stations are used and their transmission range can cover the
whole network. Li et al. [20] studied a dense network with
fixed unit area. The helping nodes in their work are wireless,
but have higher power and only act as relays instead of sources
or destinations. [16], [17] and [20] all study static networks.

In this paper, we give a general analysis on the optimal
multicast capacity-delay tradeoffs in homogeneous MANETs.
Our results will be used in our future work to study heteroge-
neous MANETs. We assume a mobile wireless network that
consists of n nodes, among which ns = ns nodes are selected
as sources and nd = nα destined nodes are chosen for each.
Thus, ns multicast sessions are formed.

We summarize our main results here:

(1) Two-dimensional i.i.d. mobility models:
(i) Under the fast mobility assumption, it is shown that

the maximum throughput per multicast session is
O
(

n
nsnd

√
D
n nd

)
under a delay constraint D. A cell-

partitioned scheme is presented to achieve a close
capacity when D = o( n

nd
) and nsnd ≥ n.

(ii) Under the slow mobility assumption, it is shown that
the maximum throughput per multicast session is
O
(

n
nsnd

3

√
D
n nd

)
under a delay constraint D. A cell-

partitioned scheme is presented to achieve a close
capacity when D = o( n

nd
) and nsnd ≥ n.

(2) One-dimensional i.i.d. mobility models:
(i) Under the fast mobility assumption, it is shown that

the maximum throughput per multicast session is
O
(

n
nsnd

3

√
D2

n n2
d

)
under a delay constraint D. A

cell-partitioned scheme is presented to achieve a
close capacity when D = o(

√
n

nd
), nd = O(

√
n) and
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nsnd ≥ n.
(ii) Under the slow mobility assumption, it is shown

that the maximum throughput per multicast session
is O

(
n

nsnd

4

√
D2

n n2
d

)
under a delay constraint D.

A cell-partitioned scheme is presented to achieve a
close capacity when D = o(

√
n

nd
), nd = O(

√
n) and

nsnd ≥ n.
The rest of the paper is organized as follows. In section

II, we outline the system models. Four mobility models are
discussed in section III to section VI respectively. Section VII
offers some discussion on our results. Then we conclude.

II. SYSTEM MODELS

Multicast Traffic Pattern: We consider a mobile ad-hoc
network where n nodes move within a unit square. Among
them, ns nodes are selected as sources, and each has nd

distinct destination nodes. We group each source and its nd

destinations as a multicast session. Note that a particular node
may be included by different multicast sessions as either
source or destination.

Protocol Model: We assume the following Protocol Model
from [1] that governs direct radio transmissions between
nodes. Let W be the bandwidth of the system. Let Xi denote
the position of node i, i = 1, . . . , n. Let |Xi − Xj | be
the Euclidean distance between nodes i and j. Node i can
communicate directly with another node j at W bits per
second if and only if the following interference constraint is
satisfied for every other node k ̸= i, j that is simultaneously
transmitting, [1]. Here, ∆ is some positive number.

|Xj −Xk| ≥ (1 + ∆)|Xi −Xj |

Definition of Capacity: We assume the same packet arrival
rate per time-slot for each source, say λ. The network is said
stable if and only if there exists a certain scheduling scheme
which can guarantee the finite length of queue in each node
as time goes to infinity. Then the capacity, which is short for
per-session capacity, is defined as the maximum arrival rate λ
that the stable network can support.

Definition of Delay: We define the survival time for a certain
packet as the time interval counting from the moment it enters
the network and ending until one of its copies reaches the last
destination. Note that we consider the expectation value over
all possible network configurations. Then the delay, which is
short for per-session delay, is defined as the average survival
time over all packets during an enough long term. Also note
that we do not consider the queueing delays in the network.

Notations: Given non-negative functions f(n) and g(n):
(1) f(n) = O(g(n)) means there exist positive constants c

and m such that f(n) ≤ cg(n) for all n ≥ m.
(2) f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0.
(3) f(n) = Ω(g(n)) means there exist positive constants c

and m such that f(n) ≥ cg(n) for all n ≥ m.
(4) f(n) = ω(g(n)) means that limn→∞ g(n)/f(n) = 0.
(5) f(n) = Θ(g(n)) means that both f(n) = O(g(n)) and

f(n) = Ω(g(n)) hold.

Mobile ad hoc network model: Consider a pure ad hoc
network where n wireless mobile nodes are positioned in a unit
square. The unit square is assumed to be a torus, where the left
and right edges are connected, and top and bottom edges are
also connected. We will study the following mobility models,
similar to [5], in this paper.
(1) Two-dimensional i.i.d. mobility model: Our two-

dimensional i.i.d. mobility model is defined as follows:
(i) At the beginning of each time slot, the nodes are

uniformly, randomly positioned in the unit square.
(ii) The node positions are independent of each other,

and independent from time slot to time slot.
(2) One-dimensional i.i.d. mobility model: Our one-

dimensional i.i.d. mobility model is defined as follows:
(i) Reasonably, we assume the number of mobile nodes

n and source nodes ns are both even numbers.
Among the mobile nodes, n/2 nodes (including ns/2
source nodes), named H-nodes, move horizontally;
and the other n/2 nodes (including the other ns/2
source nodes), named V-nodes, move vertically.

(ii) Let (xi, yi) denote the position of node i. If node i
is an H-node, yi is fixed and xi is a value randomly
uniformly chosen from [0, 1]. We also assume that
H-nodes are evenly distributed vertically, so yi takes
values 2/n, 4/n, . . . , 1. V-nodes have similar prop-
erties.

(iii) Assume that source and destinations in the same
multicast session are the same type of nodes. Also
assume that node i is an H-node if i is odd, and a
V-node if i is even.

(iv) The orbit distance of two H(V)-nodes is defined to
be the vertical (horizontal) distance of the two nodes.

We further assume that at each time slot, at most W bits
can be transmitted in a successful transmission.

Mobility time scales: Two time scales of mobility are
considered in this paper:

• Fast mobility: The mobility of nodes is at the same time
scale as the transmission of packets, i.e., in each time-
slot, only one-hop transmission is allowed.

• Slow mobility: The mobility of nodes is much slower
than the transmission of packets, i.e., multi-hop trans-
missions may happen within a single time-slot.

Scheduling Policies: We assume that there exists a sched-
uler that has all the information about the current and past
status of the network, and can schedule any radio transmission
in the current and future time slots, [4]. We say a packet p
is successfully multicast if and only if all destinations within
the multicast session have received the packet. In each time
slot, for each packet p that has not been successfully multicast
and each of its unreached destination k, the scheduler needs
to perform the following two functions:

• Capture: The scheduler needs to decide whether to
deliver packet p to destination k in the current time slot.
If yes, the scheduler then needs to choose one relay node
(possibly the source node itself) that has a copy of the
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packet p at the beginning of the time-slot, and schedule
radio transmissions to forward this packet to destination
k within the same time-slot, using possibly multi-hop
transmissions. When this happens successfully, we say
that the chosen relay node has successfully captured the
destination k of packet p. We call this chosen relay node
the last mobile relay for packet p and destination k. And
we call the distance between the last mobile relay and
the destination as the capture range.

• Duplication: For a packet p that has not been success-
fully multicast, the scheduler needs to decide whether to
duplicate packet p to other nodes that do not have the
packet at the beginning of the time-slot. The scheduler
also needs to decide which nodes to relay from and relay
to, and how.

III. TWO DIMENSIONAL I.I.D. FAST MOBILITY MODEL

In this section, we present the upper bound on multicast
capacity-delay tradeoff under the two-dimensional i.i.d. fast
mobility model, and then propose a scheme to achieve a
capacity close to the upper bound up to logarithmic factors.

A. Upper Bound

Consider packet p and one of its destinations k, let Lp,k

denote the capture range for packet p and destination k, Lp

denote the capture range for packet p and its last reached
destination. Let Dp,k denote the number of time slots it takes
to reach destination k, Dp denote the number of time slots
it takes to reach the last destination of packet p. And let Rp

denote the number of mobile relays holding packet p when the
packet reaches its last destination. Then we have the following
lemma.

Lemma 1: Under two-dimensional i.i.d. mobility model and
concerning successful encounter, the following inequality
holds for any causal scheduling policy (c1 is some positive
constant).

c1 log nE[Dp] ≥
1(

E[Lp] +
1
n2

)2E[Rp]
(1)

Proof: The detailed proof follows similar procedures to
Proposition 1 in [4]. We give some intuitive explanation here.
Consider a simpler scenario, in which Rp and Lp are constants
in different time slots and for different destinations. Then 1−
(1 − Lp

2)Rp is the probability that any one out of the Rp

nodes can capture destination k in one time slot. It is easy to
show that, the average number of time slots needed to capture
destination k, is

E[Dp,k] =
1

1− (1− Lp
2)Rp

≥ 1

Lp
2Rp

Consider a large enough time interval T . The total number
of packets communicated among all sessions is λnsT . Then
we have the following lemma,

Lemma 2: Under fast mobility model and concerning net-
work radio resources consumption, the following inequality

holds for any causal scheduling policy (c2 is some positive
constant).
λnsT∑
p=1

∆2

4

E[Rp]− nd

n
+

λnsT∑
p=1

nd∑
k=1

π∆2

4
E[L2

p,k] ≤ c2WT log n

(2)

Proof: Consider the Protocol Model, [1]. By the interfer-
ence constraint, if nodes i and j directly transmit to nodes k
and l respectively, at the same time, we have

|Xi −Xj | ≥
∆

2
(|Xi −Xk|+ |Xj −Xl|)

That is, disks of radius ∆
2 times the transmission range

centered at the transmitter are disjoint from each other. This
property motivates us to measure the radio resources each
transmission consumes by the areas of these disjoint disks,
[1]. Next we will calculate the radio resources consumption
during Duplication and Capture, respectively.

• Capture: For each packet p and each of its destination
k, the one-hop capture1 consumes area of π∆2

4 (Lp,k)
2.

Hence, the lower bound on the expected area con-
sumed by all nd successful captures of packet p is∑nd

k=1
π∆2

4 E[L2
p,k].

• Duplication: If the radius of transmission range is s,
then w.h.p., there are πs2n nodes which can receive the
broadcast packets, and a disk of area π∆2

4 s2 centered at
the transmitter will be disjoint from others. Therefore, we
can use ∆2

4
E[Rp]−nd

n as a lower bound on the expected
area consumed by producing Rp−nd copies of the packet
to other nodes before any of them or the source itself
successfully forwards the packet to the last destination.
Note that since we use cooperative mode [14], where
destinations can also act as relays, the copies produced
in Duplication should not only exclude the source node
but also exclude the nd − 1 destinations which receive
the copies in Capture procedure.

Theorem 1: Under two-dimensional i.i.d. fast mobility
model, let D be the mean delay averaged over all packets,
and let λ be the capacity per multicast session. The following
upper bound holds for any causal scheduling policy,

λ ≤ min

{
Θ(1),Θ

( n

nsnd

)
,Θ

(
n

nsnd

√
ndD

n

)}
(3)

Proof: Since we assume that no node can transmit and re-
ceive over the same frequency at the same time, the following
property can be shown as in [1]

WT

2
n ≥

λnsT∑
p=1

nd∑
k=1

1 = λnsTnd

Hence, λ ≤ Wn
2nsnd

= Θ( n
nsnd

). In addition, each source can
send out at most W size of packet per time-slot, i.e., λ ≤

1Concerning the multi-hop capture, consumption area is summed up by
each hop transmission.
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W = Θ(1). These first two factors are obvious, and we will
neglect them in later results.

By Lemma 1 and Lemma 2, using Jensen’s Inequality and
Cauchy-Schwartz Inequality, we have

4c2WT log n

∆2
≥ 1

c1n log n

(λnsT )
3

D
(∑λnsT

p=1

(
E[Lp] +

1
n2

))2
+

πnd

λnsT

( λnsT∑
p=1

E[Lp]

)2

− λT
nsnd

n

There are two cases we need to consider.
Case 1: If

∑λnsT
p=1 E[Lp] ≤ λnsT

n2 then,

4c2WT log n

∆2
≥ 1

4c1 log n

λTnsn
3

D
− λT

nsnd

n

When D = o( n
nd

), the first term dominates when n is large.
Hence, for n large enough,

λ ≤ 32c1c2W

∆2

D log2 n

nsn3
(4)

Case 2: If
∑λnsT

p=1 E[Lp] ≥ λnsT
n2 then,

4c2WT log n

∆2
≥ λT

nsnd

n

√
πn

c1ndD log n
− λT

nsnd

n

Since D = o
(

n
nd log n

)
, the first term dominates when n is

large, i.e.,

λ ≤
√

64c1c22W
2

π∆4

n

nsnd

√
D log3 n

n
nd (5)

Finally, we compare the two inequalities we have obtained,
i.e., (4) and (5). Since D = o

(
n
nd

)
inequality (5) will

eventually be the loosest for large n. Hence, the optimal
capacity-delay tradeoff is upper bounded by

λ ≤ Θ

(
n

nsnd

√
D log3 n

n
nd

)

B. Achievable Lower Bound

In this subsection, we will show how the study of the upper
bound also helps us in developing a new scheme that can
achieve a capacity-delay tradeoff that is close to the upper
bound.

Choosing Optimal Values of Key Parameters:
From Theorem 1, we have

λ = Θ

(
n

nsnd

√
ndD log3 n

n

)
= Θ(n− 2s+α−1−d

2 log
3
2 n)

In order to achieve the maximum capacity on the right hand
side, all inequalities in the proof of Theorem 1 should hold

with equality. By studying the conditions under which these
inequalities are tight, we are able to identify the optimal
choices of various key parameters of the scheduling policy.
We can infer that the parameters (such as E[Dp,k], E[Lp,k])
of each packet p and each destination node k should be
the same and concentrate on their respective average values.
This implies that the scheduling policy should use the same
parameters for all packets and all destinations. We further
assume that ns = ns, 0 ≤ s ≤ 1; nd = nα, 0 ≤ α ≤ 1
and D = nd, 0 ≤ d < 1− α. In addition, we limit the mobile
nodes n ≤ nsnd. The results are summarized in Table I.

TABLE I
THE ORDER OF THE OPTIMAL VALUES OF THE PARAMETERS IN

TWO-DIMENSIONAL FAST I.I.D. MOBILITY MODEL. (ns = ns MULTICAST
SESSIONS ARE INCLUDED, EACH OF WHICH HAS nd = nα DESTINATIONS.

DELAY IS BOUNDED BY D = nd .)

L: Capture Range Θ(n− 1+α+d
4 / log

1
4 n)

R: # of Duplicates Θ(n
1+α−d

2 / log
1
2 n)

Capacity Achieving Scheme I:
We propose a more flexible cell-partitioning scheme, [4],

to achieve a capacity that is close to the upper bound, using
broadcasting and time division. Cell-partitioning schemes, like
[3] and [4], divide the network into several non-overlapping
and independent cells and only allow transmissions within the
same cell. As Lemma 2 in [20] shows, each cell in the network
can transmit at a rate of c3W , where c3 is a deterministic
positive constant.

We group every D time-slots into a super-slot.
(1) At each odd super-slot, we schedule transmissions from

the sources to the relays in every time-slot. We divide the
unit square into Cd = Θ

(
n(1−α+d)/2

log n

)
cells. Each cell is

a square of area 1/Cd. We refer to each cell in the odd
super-slot as a duplication cell. By Lemma 6 in [4], each
cell can be active for 1/c4 amount of time, where c4 is
some constant. When a cell is scheduled to be active, each
source node in the cell broadcasts a new packet to all other
nodes in the same cell for Θ

(
n−(2s+α−1−d)/2

log2 n

)
amount of

time. These other nodes then serve as mobile relays for
the packet. The nodes within the same duplication cell
coordinate themselves to broadcast sequentially.

(2) At each even super-slot, we schedule transmissions from
the mobile relays to the destination nodes in every time-
slot. We divide the unit square into Cc = Θ

(
n(1+α+d)/2

)
cells. Each cell is a square of area 1/Cc. We refer to each
cell in the even super-slot as the capture cell. In each time-
slot, for each destination node D and each of its source
node S, pick a node YSD that is in the same capture
cell with node D in current time-slot and in the same
duplication cell with node S some time-slot in previous
super-slot and hold a copy of the packet source node S
generated in that very time-slot. If there are multiple relay
nodes, just pick one, which we call a representative relay,
and transmit the destined packet to D. At the end of each
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even super-slot, clear all the buffers of mobile nodes, and
prepare for a new turn of duplication and capture.

We can show that as n → ∞, with high probability
(w.h.p.), all packets generated in odd duplication super-slot
will complete nd transmissions within the following even
capture super-slot.

Proposition 1: With probability approaching one, as n →
∞, the above scheme allows each source to send D packets
of size λ = Θ

(
n−(2s+α−1−d)/2

log2 n

)
to their respective destinations

within 2D time-slots.

Proof: Similar but simpler proof of Proposition 2.
Remarks: Our scheme uses different cell-partitioning in the
odd super-slot that that in the even super-slot. The size of the
duplication cell is chosen such that the average number of
nodes in each cell, n/Cd, is close to the optimal value of R.
The size of the capture cell is chosen such that its area, 1/Cc
is close to the optimal value of L2.

IV. TWO DIMENSIONAL I.I.D. SLOW MOBILITY MODEL

In this section, we present the upper bound on multicast
capacity-delay tradeoff under the two-dimensional i.i.d. slow
mobility model, and then propose a scheme to achieve a
capacity close to the upper bound up to logarithmic factors.

A. Upper Bound

Under slow mobility model, once a successful capture with
respect to packet p and one of its destination k occurs, the last
mobile relay will start transmitting packet p to destination k
within a single time slot, using possibly other nodes as relays.
Let hp,k denote the number of hops packet p takes from the last
mobile relay to destination k. And let Sh

p,k, h = 1, 2, . . . , hp,k

denote the length of each hop. Hence, similar to Lemma 2, the
following lemma holds,

Lemma 3: Under slow mobility model and concerning net-
work radio resources consumption, the following inequality
holds for any causal scheduling policy (c4 is some positive
constant).

λnsT∑
p=1

∆2

4

E[Rp]− nd

n
+

λnsT∑
p=1

nd∑
k=1

hp,k∑
h=1

π∆2

4
E
[
(Sh

p,k)
2
]

≤ c5WT logn, (6)

where the sum of the hop’s lengths of the hp,i hops must be
no smaller than the straight-line distance-capture radius:

hp,k∑
h=1

Sh
p,k ≥ Lp,k (7)

Theorem 2: Under two-dimensional i.i.d. slow mobility
model, let D be the mean delay averaged over all packets,
and let λ be the capacity per multicast session. The following
upper bound holds for any causal scheduling policy,

λ = O

(
n

nsnd

3

√
ndD

n

)
(8)

Proof: By Lemma 3, using Jensen’s Inequality and
Cauchy-Schwartz Inequality, we have

4c5WT log n

∆2

≥ 1

c1n logn

(λnsT )
3

D
(∑λnsT

p=1

(
E[Lp] +

1
n2

))2
+

2πn2
d

WTn

( λnsT∑
p=1

E[Lp]

)2

− λT
nsnd

n

Case 1: If
∑λnsT

p=1 E[Lp] ≤ λnsT
n2 then,

4c5WT log n

∆2

≥ 1

4c1 log n

λTnsn
3

D
− λT

nsnd

n

When D = o( n
nd

), the first term dominates when n is large.
Hence, for n large enough,

λ ≤ 32c1c5W

∆2

D log2 n

nsn3
(9)

Case 2: If
∑λnsT

p=1 E[Lp] ≥ λnsT
n2 then,

4c5WT log n

∆2

≥ λT
nsnd

n

√
2πλns

c1WD log n
− λT

nsnd

n

Therefore, since D = o( n
nd

), either

λ ≤ c1W

2π

D log n

ns
(10)

Or if λ = ω(D log n
ns

),

λ ≤ 3

√
32c1c25W

3

∆4

n

nsnd

3

√
D log3 n

n
nd (11)

Finally, we compare the three inequalities we have obtained,
i.e., (9), (10) and (11). Since D = o

(
n
nd

)
inequality (11)

will eventually be the loosest for large n. Hence, the optimal
capacity-delay tradeoff is upper bounded by

λ ≤ Θ

(
n

nsnd

3

√
D log3 n

n
nd

)
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TABLE II
THE ORDER OF THE OPTIMAL VALUES OF THE PARAMETERS IN

TWO-DIMENSIONAL SLOW I.I.D. MOBILITY MODEL. (ns = ns MULTICAST
SESSIONS ARE INCLUDED, EACH OF WHICH HAS nd = nα DESTINATIONS.

DELAY IS BOUNDED BY D = nd .)

L: Capture Range Θ(n− 1+2α+2d
6 / log

1
2 n)

R: # of Duplicates Θ(n
1+2α−d

3 )

H: # of Hops Θ(n
1−α−d

3 / logn)

S: Hop Length Θ(
√

logn/n)

B. Achievable Lower Bound

Choosing Optimal Values of Key Parameters:
From Theorem 2, we have

λ = Θ

(
n

nsnd

3

√
ndD log3 n

n

)
= Θ(n− 3s+2α−2−d

3 log n)

The idea is similar, as is presented in Section III-B. We
summarize the optimal values in Table II.

Capacity Achieving Scheme II: We group every D time-
slots into a super-slot. Scheme II is similar to Capacity
Achieving Scheme I presented in Section III-B, and we only
introduce the differences here.
(1) At each odd super-slot, we schedule transmissions from

the sources to the relays in every time-slot. We divide
the unit square into Cd = Θ

(
n(2−2α+d)/3

log n

)
cells. When

a cell is scheduled to be active, each node in the cell
broadcasts a new packet to all other nodes in the same
cell for Θ

(
n−(3s+2α−2−d)/3

log2 n

)
amount of time.

(2) At each even super-slot, we schedule transmissions from
the mobile relays to the destination nodes in every time-
slot. We divide the unit square into Cc = Θ

(
n(1+2α+2d)/3

)
cells. After picking out a representative relay, we then
schedule multi-hop transmissions in the following fashion
to forward each packet from the representative relay to
its destination in the same capture cell. We further divide
each capture cell into Ch = Θ

(
n(2−2α−2d)/3

logn

)
hop-cells

(in
√
Ch rows and

√
Ch columns). Each hop-cell is a

square of area 1/(CcCh). By Lemma 6 in [4], there exists
a scheduling scheme where each hop-cell can be active
for 1/c4 amount of time. When each hop-cell is active, it
forwards a packet to another node in the neighboring hop-
cell. If the destination of the packet is in the neighboring
cell, the packet is forwarded directly to the destination
node. The packets from each representative relay are first
forwarded towards neighboring cells along the X-axis,
then to their destination nodes along the Y-axis. At the
end of each even super-slot, clear all the buffers of mobile
nodes, and prepare for a new turn of duplication and
capture.

Proposition 2: With probability approaching one, as n →
∞, the above scheme allows each source to send D packets of
size λ = Θ

(
n−(3s+2α−2−d)/3

log2 n

)
to their respective destinations

within 2D time-slots.

Proof: See Appendix A.
Remarks: In our scheme, the size of the hop-cell is chosen
such that each hop to the neighboring hop-cell is of length
1/

√
CcCh, which is close to the optimal value of S.

V. ONE DIMENSIONAL I.I.D. FAST MOBILITY MODEL

In this section, we study the one-dimensional i.i.d. fast
mobility model.

A. Upper Bound

Lemma 4: Under one-dimensional i.i.d. mobility model and
concerning successful encounter, the following inequality
holds for any causal scheduling policy (c6 is some positive
constant).

c6 log nE[Dp] ≥
1(

E[Lp] +
1
n

)
E[Rp]

(12)

Proof: Let ρp denote the distance from any one mobile
node of packet p to one of its destinations in a particular
time-slot. Under one-dimensional i.i.d. mobility model, when
the orbits of two nodes are vertical to each other, ρp ≤ L
holds only if they are in a square with side length 2L as in
Figure 1.

2L

Fig. 1. Vertical and parallel orbits.

In this scenario, we have

Pr(ρp ≤ L) ≤ 4L2

When the orbits of these two nodes are parallel to each
other, then

Pr(ρp ≤ L) ≤ 2L

By Lemma 2 and Lemma 4, we have the following theorem.
Theorem 3: Under one-dimensional i.i.d. fast mobility

model, let D be the mean delay averaged over all packets, and
let λ be the capacity per multicast session. When D = o

(√n
nd

)
,

the following upper bound holds for any causal scheduling
policy,

λ = O

(
n

nsnd

3

√
n2
dD

2

n

)
(13)
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B. Achievable Lower Bound

We first present the optimal values of key parameters in
one-dimensional i.i.d. fast mobility model in Table III.

TABLE III
THE ORDER OF THE OPTIMAL VALUES OF THE PARAMETERS IN

ONE-DIMENSIONAL FAST I.I.D. MOBILITY MODEL. (ns = ns MULTICAST
SESSIONS ARE INCLUDED, EACH OF WHICH HAS nd = nα DESTINATIONS.

DELAY IS BOUNDED BY D = nd .)

L: Capture Range Θ(n− 1+α+d
3 / log

1
3 n)

R: # of Duplicates Θ(n
1+α−2d

3 / log
2
3 n)

Capacity Achieving Scheme III:
We propose a flexible rectangle-partition scheme, similar

to [5], to achieve a capacity-delay tradeoff that is close to the
upper bound. Rectangle-partition model divides the unit square
into multiple horizontal rectangles, named as H-rectangles;
and multiple vertical rectangles, named as V-rectangles as in
Figure 2. A packet is said to be destined to a rectangle if the
orbit of one of its destinations is contained in the rectangle.
Each H-rectangle and V-rectangle cross to form a cell, and
transmissions only happen in the same crossing cell. The
transmission of a packet in the H(V) multicast session will go
through H(V)-V(H) duplication, V(H)-H(V) duplication and
H(V)-H(V) capture, three procedures, sequentially (see Figure
2).

H
-r

e
ct

an
gl

e

V-rectangle

S(1)

D(1,2)

H-V Duplication

H Capture

V-H Duplication

Crossing cell

Fig. 2. One-dimensional transmissions in scheme III.

We group every D time-slots into a super-slot, and let z
denote any non-negative integer.
(1) At each 3z+1 super-slot, we schedule transmissions from

the H(V)-sources to the V(H)-relays in every time-slot.
We divide the unit square into Rd H-rectangles and Rd

V-rectangles, i.e., R2
d = Θ

(
n(2−α+2d)/3

log n

)
crossing cells.

Each cell is a square of area 1/R2
d. We refer to each cell

in the 3z + 1 super-slot as a duplication cell. By Lemma
6 in [4], each cell can be active for 1/c4 amount of time,
where c4 is some constant. When a cell is scheduled to
be active, each H(V)-source node in the cell broadcasts a
new packet to all other V(H)-nodes in the same cell for

Θ
(
n−(3s+α−2−2d)/3

log2 n

)
amount of time. These other V(H)-

nodes then serve as mobile V(H)-relays for the packet to
complete the V(H)-H(V) duplications in the next super-
slot. The source nodes within the same duplication cell
coordinate themselves to broadcast sequentially.

(2) At each 3z+2 super-slot, we schedule transmissions from
the V(H)-relay nodes to the H(V)-relay nodes in every
time-slot. We use the same partition method as the one
used in 3z + 1 super-slot. When a cell is scheduled to
be active, search for V(H)-relay nodes holding the packet,
which is destined to the H(V)-rectangle containing this
crossing cell and has not been V(H)-H(V) duplicated yet.
If there are multiple satisfied V(H)-nodes for one packet,
randomly choose one and broadcast the packet to all other
H(V)-nodes in the same cell. We can easily prove that
with R V(H)-relay nodes for each packet p, which are
generated in H(V)-V(H) duplication of former 3z+1 super-
slot, w.h.p., there must be a time-slot within this 3z + 2
super-slot that at least one of them reaches the destined
H(V)-rectangle of packet p. And under proper scheduling,
the throughput in this period cannot be smaller than that
in 3z + 1 super-slot.

(3) At each 3z+3 super-slot, we schedule transmissions from
the mobile H(V)-relays to the H(V)-destination nodes in
every time-slot. We divide the unit square into Rc =
Θ
(
n(1+α+d)/3

)
H-rectangles and Rc V-rectangles, i.e.,

R2
c crossing cells. Each cell is a square of area 1/R2

c . We
refer to each cell in the 3z + 3 super-slot as the capture
cell. In each time-slot, for each H(V)-destination node D
and each of its destined packet p, search for H(V)-relay
nodes in the same capture cell holding packet p. If there
are multiple ones, randomly pick one, which we call a
representative H(V)-relay, and transmit the destined packet
p to D. In the end of each 3z + 3 super-slot, clear all the
buffers of mobile nodes, and prepare for a new turn of
duplications and capture.

Following the proof of Proposition 2, we have
Proposition 3: With probability approaching one, as n →

∞, the above scheme allows each source to send D packets of
size λ = Θ

(
n−(3s+α−2−2d)/3

log2 n

)
to their respective destinations

within 3D time-slots.

VI. ONE DIMENSIONAL I.I.D. SLOW MOBILITY MODEL

In this section, we study the one-dimensional i.i.d. slow
mobility model.

A. Upper Bound

By Lemma 3 and Lemma 4, we have the following theorem.
Theorem 4: Under one-dimensional i.i.d. slow mobility

model, let D be the mean delay averaged over all packets, and
let λ be the capacity per multicast session. When D = o

(√n
nd

)
,

the following upper bound holds for any causal scheduling
policy,

λ = O

(
n

nsnd

4

√
n2
dD

2

n

)
(14)
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B. Achievable Lower Bound

We first present the optimal values of key parameters in
one-dimensional i.i.d. slow mobility model in Table IV.

TABLE IV
THE ORDER OF THE OPTIMAL VALUES OF THE PARAMETERS IN

ONE-DIMENSIONAL SLOW I.I.D. MOBILITY MODEL. (ns = ns MULTICAST
SESSIONS ARE INCLUDED, EACH OF WHICH HAS nd = nα DESTINATIONS.

DELAY IS BOUNDED BY D = nd .)

L: Capture Range Θ(n− 1+2α+2d
4 / log

3
4 n)

R: # of Duplicates Θ(n
1+2α−2d

4 / log
1
4 n)

H: # of Hops Θ(n
1−2α−2d

4 / log
5
4 n)

S: Hop Length Θ(
√

logn/n)

Capacity Achieving Scheme IV: We group every D time-
slots into a super-slot, and let z denote any non-negative
integer. Scheme IV is similar to Capacity Achieving Scheme
III, presented in Section V-B, and we only introduce the
differences here.
(1) At each 3z+1 super-slot, we schedule transmissions from

the H(V)-sources to the V(H)-relays in every time-slot.
We divide the unit square into Rd H-rectangles and Rd

V-rectangles, i.e., R2
d = Θ

(
n(3−2α+2d)/4

log n

)
crossing cells.

When a cell is scheduled to be active, each H(V)-source
node in the cell broadcasts a new packet to all other V(H)-
nodes in the same cell for Θ

(
n−(4s+2α−3−2d)/4

log2 n

)
amount of

time.
(2) The same as Capacity Achieving Scheme III (2).
(3) At each 3z+3 super-slot, we schedule transmissions from

the mobile H(V)-relays to the H(V)-destination nodes in
every time-slot. We divide the unit square into Rc =
Θ
(
n(1+2α+2d)/4

)
H-rectangles and Rc V-rectangles, i.e.,

R2
c crossing cells. After picking out a representative H(V)-

relay, we then schedule multi-hop transmissions in the
following fashion to forward this destined packet p from
the representative H(V)-relay to D. We further divide each
capture cell into Rh = Θ

(
n(1−2α−2d)/4

√
log n

)
H-rectangles and

Rh V-rectangles, i.e., R2
h crossing hop-cells. Each hop-

cell is a square of side length 1/(RcRh). By Lemma
6 in [4], there exists a scheduling scheme where each
hop-cell can be active for 1/c4 amount of time. When
each hop-cell is active, it forwards a packet to another
H(V)-node in the neighboring hop-cell. If the H(V)-
destination node of the packet is in the neighboring cell,
the packet is forwarded directly to the H(V)-destination
node. The packets from each representative H(V)-relay
are first forwarded towards neighboring cells along the
X-axis, then to their destination nodes along the Y-axis.
At the end of each 3z+3 super-slot, clear all the buffers of
mobile nodes, and prepare for a new turn of duplications
and capture.

Proposition 4: With probability approaching one, as n →
∞, the above scheme allows each source to send D packets of
size λ = Θ

(
n−(4s+2α−3−2d)/4

log2 n

)
to their respective destinations

within 3D time-slots.

VII. RESULTS DISCUSSIONS

Our results of optimal multicast capacity-delay tradeoffs
in mobile ad-hoc networks give a global perspective for the
following reasons:

• It generalizes the optimal delay-throughput tradeoffs in
unicast traffic pattern in [5], when taking ns = n and
nd = 1.

• It generalizes the multicast capacity result O(
√
D/ns)

under delay constraint in [15], which is better than [14],
when considering the two-dimensional i.i.d. fast mobility
model and taking nsnd = n.

We summarize our results in Table V. Setting ns = n and
nd = 1, our results are shown in the second column. Setting
ns = n and nd = k, our results are shown in the third column.

TABLE V
OPTIMAL MULTICAST CAPACITY AND DELAY TRADEOFFS IN MANETS: A

GLOBAL PERSPECTIVE

λ (i.i.d.) unicast multicast

2D fast mobility O

(√
D
n

)
O

(
1
k

√
D
n
k

)
2D slow mobility O

(
3
√

D
n

)
O

(
1
k

3
√

D
n
k

)
1D fast mobility O

(
3
√

D2

n

)
O

(
1
k

3
√

D2

n
k2

)
1D slow mobility O

(
4
√

D2

n

)
O

(
1
k

4
√

D2

n
k2

)

We would like to mention that, similar to the unicast case,
[5], our one-dimensional mobility models achieve a larger
capacity than two-dimensional models under the multicast
traffic pattern. The advantage of lower dimensional mobility
lies in the fact that it is simple and easily predictable, thus
increasing the inter contact rate. Though nodes are limited to
only moving horizontally or vertically, the mobility range on
their orbit lines is not restricted. Moreover, for H(V) multicast
sessions, the V(H)-relay nodes are used to compensate for the
lack of vertical(horizontal) mobility. Given the above analysis,
the one-dimensional mobility model in our paper is actually
a hybrid dimensional model, where one-dimensional mobile
nodes transmit packets in two-dimensional space. We plan to
study the capacity improvement brought about by this hybrid
dimensional model in the future.

VIII. CONCLUSION

In this paper, we have studied the multicast capacity-delay
tradeoffs in MANETs. Specifically, we established the upper
bound on the optimal multicast capacity-delay tradeoffs un-
der two-dimensional/one-dimensional i.i.d. fast/slow mobility
models and proposed capacity achieving schemes to achieve
capacity close to the upper bound. In addition, we find that
though the one-dimensional mobility models constrain the
direction of nodes’ mobility, they achieve larger capacity than
two-dimensional models. Our result is a vivid generalization of
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some early works in the area of unicast and multicast capacity,
and will be further used to study hybrid random walk mobility
models and the aggregate input capacity of heterogeneous
networks in the future.
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APPENDIX A – PROOF OF Proposition 2

We will focus on the case where the mean delay is
bounded by a constant, i.e., D = 1. Let ⌊x⌋ be the largest
integer smaller than or equal to x. We use the following
values2: Cd = ⌊(n

(2−2α)/3

8 log n )
1
2 ⌋2, Cc = ⌊(n(1+2α)/3)

1
2 ⌋2, Ch =

⌊(n
(2−2α)/3

4 log n )
1
2 ⌋2. We will show that our scheme can obtain a

capacity of W
32n(3s+2α−2)/3 log n

w.h.p. under multicast traffic
pattern.

Lemma 5: Consider an experiment where we randomly
throw n balls into m ≤ n independent urns. The success
probability for each ball to enter any one of the urns is p ≤ 1.
Let Bi, i = 1, . . . ,m be the number of balls in urn i after n
balls are thrown. Then the expectation of Bi is E[Bi] =

np
m .

And as n → ∞, we have
(a) If np

m ≥ c log n, and c ≥ 8, then

P[Bi ≥ 2
np

m
for any i] ≤ 1

n

(b) If np
m ≥ cnα, where c > 0 and α > 0, then

P[Bi ≥ 2
np

m
for any i] = O(

1

n
)

(c) If np
m ≥ c log n and c ≥ 4, then

P[Bi = 0 for any i] = O(
1

n
)

Analysis of Duplication
We consider the experiment in which we throw ns balls into

Cd urns with p = 1.

16n(3s+2α−2)/3 log n ≥ ns

Cd
≥ 8n(3s+2α−2)/3 log n

Let Nd(i) denote the number of source nodes in duplication
cell i. Since n ≤ nsnd, i.e., s + α ≥ 1, by Lemma 5 (a), we
have

P[Nd(i) ≥ 32n(3s+2α−2)/3 log n for any i]

≤ P[Nd(i) ≥ 2
ns

Cd
for any i] ≤ 1

n

Hence, w.h.p., there are no more than 32n(3s+2α−2)/3 log n
source nodes within the same duplication cell. Then using
time division, we can make each source broadcast a packet
for 1

32n(3s+2α−2)/3 logn
amount of time in sequence.

Analysis of Capture is similar.

2To ensure the positive values, we assume α < 1.
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