
Accurate and Efficient Traffic Monitoring Using
Adaptive Non-linear Sampling Method

Chengchen Hu, Sheng Wang, Jia Tian, Bin Liu
Tsinghua University

Beijing, China, 100084
{hucc03,wangs04,tianj04}@mails.tsinghua.edu.cn

liub@tsinghua.edu.cn

Yu Cheng
Illinois Institute of Technology

Chicago, IL USA, 60616
cheng@iit.edu

Yan Chen
Northwestern University
Evanston, IL USA, 60208
ychen@northwestern.edu

Abstract—Sampling technology has been widely deployed in
measurement systems to control memory consumption and pro-
cessing overhead. However, most of the existing sampling methods
suffer from large estimation errors in analyzing small-size flows.
To address the problem, we propose a novel adaptive non-linear
sampling (ANLS) method for passive measurement. Instead
of statically configuring the sampling rate, ANLS dynamically
adjusts the sampling rate for a flow depending on the number of
packets having been counted. We provide the generic principles
guiding the selection of sampling function for sampling rate ad-
justment. Moreover, we derive the unbiased flow size estimation,
the bound of the relative error, and the bound of required counter
size for ANLS. The performance of ANLS is thoroughly studied
through theoretic analysis and experiments under synthetic/real
network data traces, with comparison to several related sampling
methods. The results demonstrate that the proposed ANLS
can significantly improve the estimation accuracy, particularly
for small-size flows, while maintain a memory and processing
overhead comparable to existing methods.

I. INTRODUCTION

The Internet has been evolving into a common communica-
tion infrastructure supporting a variety of applications, which
at the same time requires dedicated network management to
necessary quality of service provision. Passive traffic measure-
ment is very important to network management, which can
provide various network status information including traffic
matrix, packet length distributions, traffic volumes, session
durations, etc., to be exploited for charging, engineering,
managing, and securing the communication networks [1] [2].
With the continuous increasing of line speed and number of
flows, per-flow passive measurement has become a challenging
task due to the demanding requirements on both memory
size and memory bandwidth. Off-the-shelf memory is either
high speed or high capacity. Large capacity DRAM can hold
more flow records but its low speed limits the sampling
rate. Fast SRAM supports high speed sampling but is sus-
ceptible to overflow due to limited memory capacity. Thus,
it is necessary to develop an efficient sampling method for

This work is partly supported by NSFC (60573121, 60625201), China
973 program(2007CB310702),the Cultivation Fund of the Key Scientific and
Technical Innovation Project, MoE, China (705003), the Specialized Research
Fund for the Doctoral Program of Higher Education of China (20060003058),
Tsinghua Basic Research Foundation(JCpy2005054).

compromising the above contradiction [3] [4] [5] [6]. There
are two generic sampling approaches for passive measurement:
packet sampling and flow sampling. The former samples each
packet independently with a certain probability, while the latter
samples packets at the granularity of flows (i.e., packets in
different flows are sampled with different sampling rates). The
passive measurement system/infrastructure typically consists
of three components. A monitoring component tapped into
the network link uses a sampling strategy to select packets
and forwards them to a reporting component. The reporting
component aggregates the packet information into flow records
and exports them to a remote data center and analysis system
component. The data center is equipped with high-density data
storage, which makes the measurement results available to the
analysis system for different applications. In this paper, we
focus on the sampling strategy for the monitoring component
and study how to design an efficient sampling scheme that
enables precise estimations with a reasonable cost.

An efficient sampling method is expected to be applicable
to different types of applications, where different sizes of
flows may be of importance. For example, flow-level usage
accounting is essential for management applications [4] [5]
[7], e.g., usage-based charging/pricing, network planning, and
traffic engineering. For usage accounting, the main target is
to catch the elephant flows (i.e., the flows of large size). For
network security applications, the flow-level traffic patterns
often help reveal anomalies [8] [9] [10]. A typical scenario,
a sharp increase of 40 bytes TCP flows with only one packet
is probably caused by SYN flooding attacks or flash crowds.
Unlike the usage accounting, network security applications
require accurate estimation on mice flows (i.e., the flows of
small size). It is the diverse application requirements that
motivate us to develop a new sampling method, which should
bound the estimation error for both small and large flows.

The existing static sampling (SS) methods (as adopted by
[3] [11] [12] [13]) selects packets with the same sampling
rate/probability p. It can be proved that the unbiased estimation
value of the flow size n is c/p and the relative error of this
estimation is

√
(1/p − 1)/n, where p is the static sampling rate,

c is the counter value for a sampled flow and n is the flow size
in terms of number of packets (See the proof in Appendix).
From the results, we can see that the major problem of

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE

employing the static sampling method is its intolerably high
relative error for small flows. For instance, the relative error
will be 300% with p = 0.1 and n = 1. Using a larger p

can mitigate the relative error but lead to higher memory
consumption, which conflicts with the purpose of sampling.

In this paper, we propose an adaptive non-linear sampling
(ANLS) method for passive measurement. Instead of statically
configuring the sampling rate, ANLS dynamically tunes the
sampling rate for a flow depending on the number of packets
having been samples, which is maintained by a counter. The
intuition of ANLS is to use a large sampling rate for small
flows and a small sampling rate for large flows. Specifically,
this paper contributes in the following three aspects:

1) We provide the general principles guiding the selection
of sampling function for sampling rate adjustment. The
sampling rate is adjusted according to the counter value.
There is no need to predict or estimate the flow size
distribution.

2) We derive the unbiased flow size estimation, the bound of
the relative error, and the bound of the required counter
size for ANLS.

3) The performance of ANLS is thoroughly investigated
through theoretic analysis and experiments under syn-
thetic/real network data traces, with comparison to several
related sampling methods. The results demonstrate that
the proposed ANLS significantly improve the estimation
accuracy, particularly for small-size flows, while main-
taining a memory and processing overhead comparable
to those of existing methods. Furthermore, flow size dis-
tribution has almost no impact on the estimation accuracy.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the proposed
ANLS method. Section IV demonstrates the properties of
ANLS. Section V evaluates the performance of ANLS. Section
VI gives the concluding remarks.

II. RELATED WORK

A pioneering work on statistical traffic sampling was pub-
lished in [3], which uses static sampling to estimate the packet
size distribution in a backbone network. The primary flow-
level measurement tool used by network operators nowadays
is NetFlow [14], which resorts to packet sampling (known as
sampled NetFlow [13]), to handle the large traffic volume and
diversity in high speed links. Considering the multi-hop feature
of most flows, the work [11] [12] deployed the sampling
system in a distributed manner for the purpose of passive
measurement. The “sample and hold” method was introduced
in [7], which uses a small and fast memory to process every
packet in a real-time manner. This method is used to capture
large flows but not for small flows. CATE was proposed in
[15] which estimates the proportion of each flow by making
multiple comparisons for each arrival and counting the number
of coincidences. This method is accurate for media-size and
large-size flows but is not accurate for small-size flows.

In the context of adaptive sampling, several mechanisms are
introduced for different purposes. Better NetFlow (BNF) was

TABLE I
TABLE OF NOTATIONS

Notations Descriptions
c the counter value
ct the counter value in time t
p the static sampling rate
P (c) the sampling rate when the counter value is c, using ANLS
f(c) the sampling function which is used to calculate P (c)
b the parameter of ANLS defined in f(c)
n the actual flow size
n̂ the estimation of flow size
Qi(n) the probability that c = i when actual flow size is n
k the parameter of CATE method
pf the final sampling rate of BNF
u the parameter of the sampling function defined in Section IV

proposed in [6] to improve memory utilization by an adaptive
linear sampling method. A relatively large sampling rate is
configured at the beginning of the measurement interval and
will adaptively decrease when possible memory overflow is
detected. A size-dependent sampling (SDS) mechanism was
presented in [5]. A flow whose size is larger than z is always
selected, while the flow with size x < z is sampled with
probability x/z. The authors in [16] provided an important
theorem specifying the minimum number of packet samples
required to be sampled to guarantee the expected relative error,
and they also proposed an adaptive random sampling (ARS)
method. However, to utilize their theorem, it is required to first
estimate the total packet amount using a linear auto-regressive
(AR) prediction model. The accuracy and the implementation
complexity of ARS are greatly restricted by the determination
of the AR model parameters. All the above methods optimize
on either the memory size or accuracy for medium to large
flows, while the relative error in estimating small flows is
considerably large.

Many previous works estimated the original flow size dis-
tribution from sampled flow statistics [4] [17] [18], or using
a data stream algorithm with “lossy data structure” [19]. The
flow size distribution is one of the most fundamental statistics
from which we can deduce many other statistics, such as the
total number of flows and the average flow size. However,
the flow size distribution can not indicate flow-specific prop-
erties, e.g., accurate size estimation for a particular flow or a
subpopulation, which is to be addressed in this paper.

III. ADAPTIVE NON-LINEAR SAMPLING METHOD

For convenience, we summarize the main notations used
in this paper in Table I, where the counter value and flow
size are in terms of number of packets. With static sampling
method of rate p, the counter value ct will be refreshed upon an
packet arrival after time interval t′, according to the following
expression

ct+t′ =

{
ct + 1 with probability p;

ct with probability 1 − p.
(1)

The ANLS is proposed to replace the static sampling rate p in
(1) with a function P (c) over the counter value c. It is expected
that P (c) diminishes with the increasing of c. Specifically, P (c)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

0 200 400 600 800 1000
0

0.5

1

c

P
(c

)

0 200 400 600 800 1000
0

2000

4000

f(
c)

f(c)P(c)

Fig. 1. An example of f(c) and P (c).

for the proposed ANLS is calculated as

P (c) = 1/[f(c + 1) − f(c)], (2)

where f(c) is a sampling function to be selected according to
the following general principles.

Definition 1: Sampling function f(c), c ≥ 0, is defined as a
function satisfying the following conditions:

1) a real increasing convex function;
2) f(0) = 0 and f(1) = 1;
3) f(c) < f(c + 1) ≤ bf(c) + 1 with b > 1 and c > 0.

Now, given a pre-defined f(c), c ≥ 0, we could adaptively
tune the sampling rate depending on the counter value. With
the convexity, it is not difficult to check that c ↑→ [f(c +

1) − f(c)] ↑→ P (c) ↓. Namely, the sampling rate decreases
as the counter value (as well as the flow size) increases. A
nice feature of ANLS compared to existing work is that the
sampling rate is adjusted according to the counter value and
there is no need to predict or estimate the flow size distribution.
In Fig. 1, we illustrate an example of f(c) and P (c).

IV. PROPERTIES OF ANLS

In this section, we theoretically investigate the properties
of adaptive non-linear sampling from the perspectives of
accuracy, memory consumption and processing overhead, with
sampling function selected according to Definition 1.

A. Accuracy

The accuracy in estimating the flow size can be examined
through two aspects: unbiased estimation and bounded relative
error.

1) Unbiased estimation:
Theorem 1: Under the ANLS method, n̂(c) = f(c) is an

unbiased estimation of the flow size n.
Proof: Let Qi(n) denote the probability that counter value

c equals i when current actual flow size is n. We have,

Qi(n) =

i−1∏
j=0

P (j)
∑

α0+...+αi=n−i

(1 − P (0))α0 ...(1 − P (i))αi

(3)

Qi(n) = Qi−1(n − 1)P (i − 1) + Qi(n − 1)(1 − P (i)). (4)

where αj , j = 0, · · · , i−1 represents the number of unsampled
packets between the jth and the (j+1)th sampled packets, and
αi represents the number of unsampled packets after the ith

sample until the end of the flow. Moreover, it is not difficult
to see that Q1(1) = 1 and Q0(n) = Qn(n − 1) = 0.

Let F (n) denote the expectation of n̂(c) when the actual
flow size is n, we have

F (n) = E[n̂(c)] =

n∑
i=0

f(i)Qi(n) (5)

Based on (4) and (5), we can further have

F (n) − F (n − 1) =
n∑

i=1

f(i)[Qi−1(n − 1)P (i − 1) + Qi(n − 1)(1 − P (i))]

−
n−1∑
i=1

f(i)Qi(n − 1)[P (i) + (1 − P (i))]

=
n∑

i=2

f(i)Qi−1(n − 1)P (i − 1) −
n−1∑
i=1

f(i)Qi(n − 1)P (i)

=

n−1∑
i=1

f(i + 1)Qi(n − 1)P (i) −
n−1∑
i=1

f(i)Qi(n − 1)P (i)

=

n−1∑
i=1

[f(i + 1) − f(i)]Qi(n − 1)P (i).

According to (2), f(i + 1) − f(i) = 1/P (i). Thus,

F (n) − F (n − 1) =

n−1∑
i=1

Qi(n − 1) = 1. (6)

F (n) =
n∑

i=1

[F (i) − F (i − 1)] + F (0) = n. (7)

That is,
E[n̂(c)] = E[f(c)] = F (n) = n. (8)

which represents an unbiased estimation of the flow size.
2) Bounded relative error:
Theorem 2: Using n̂(c) = f(c) as the unbiased estimation,

the relative error is upbounded by
√

b−1
2 − b−1

2n .
Proof: Let H(n) denote the expectation of f2(c) when

the flow size is n. We have

H(n) = E[f2(c)] =

n∑
i=0

f2(i)Qi(n). (9)

Thus, from (4) and (9), we get,

H(n) − H(n − 1) (10)

=

n∑
i=1

(f2(i))[Qi−1(n − 1)P (i − 1) + Qi(n − 1)(1 − P (i))]

−
n−1∑
i=1

(f2(i))Qi(n − 1)[P (i) + (1 − P (i))]

=

n∑
i=2

(f2(i))Qi−1(n − 1)P (i − 1) −
n−1∑
i=1

(f2(i))Qi(n − 1)P (i)

=

n−1∑
i=1

(f2(i + 1))Qi(n − 1)P (i) −
n−1∑
i=1

(f2(i))Qi(n − 1)P (i).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

Since f(i + 1) − f(i) = 1/P (i) and Q0(n − 1) = 0, we have

H(n) − H(n − 1) =

n−1∑
i=1

Qi(n − 1)[f(i + 1) + f(i)]. (11)

Applying Definition 1 and Theorem 1, we obtain,

H(n) − H(n − 1) ≤ (1 + b)

n−1∑
i=1

Qi(n − 1)f(i) + 1

= (1 + b)F (n − 1) + 1

= (1 + b)(n − 1) + 1

and therefore

H(n) =

n∑
i=1

[H(i) − H(i − 1)] + H(0)

≤ (b + 1)n2 − (b − 1)n

2
. (12)

The variation of adaptive non-linear sampling is then com-
puted as,

V ar[n̂(c)] = H(n) − F 2(n) ≤
√

(b − 1)

2
− (b − 1)

2n
, (13)

and the relative error of ANLS can be upbounded by,√
V ar[n̂(c)]

n
≤
√

(b − 1)

2
− (b − 1)

2n
. (14)

Theorem 2 tells that the relative error is zero when n is
one. The relative error increases with the increment of n, but
converges to

√
(b − 1)/2 when n → ∞. The relative error

decreases as b diminishes, while b should be larger than one
as described in Definition 1.

To give an intuitive illustration, we select one specific
sampling function according to Definition 1 as

f(c) = [(1 + u)c − 1]/u, 0 < u < 1, (15)

where u is a constant parameter. It can be easily proved that
(15) satisfies Definition 1 by setting b = 1 + u. From Theorem
1, it is known that n̂(c) = [(1 + u)c − 1]/u is an unbiased
estimation with (15) adopted as the sampling function. In this
case, we can further obtain the accurate relative error instead
of an upper bound.

Theorem 3: when the sampling function is f(c) = [(1 +

u)c − 1]/u, the relative error of the unbiased estimation is√
(1 − 1/n)u/2.

Proof: From (15), we have,

f(i + 1) − f(i) − 1

u
=

1

u
[(1 + u)i − 1] = f(i).

Consequently, (11) is equivalent to

H(n) − H(n − 1)

=

n−1∑
i=0

Qi(n − 1){2f(i) + 1 + [f(i + 1) − f(i) − 1]}

=

n−1∑
i=0

Qi(n − 1)(2f(i) + 1) + u

n−1∑
i=0

Qi(n − 1)f(i)

= 2(n − 1) + 1 + u(n − 1).

0 200 400 600 800 1000
0

0.5

1

1.5

2

n

re
la

tiv
e

er
ro

r

static sampling/BNF, p=0.25
adaptive sampling, µ=0.01
adaptive sampling, µ=0.002

Fig. 2. Theoretical results of relative error.

Therefore,

H(n) = n2 +
n(n − 1)

2
u, (16)

and the variation and relative error can be obtained as,

V ar[n̂(c)] = H(n) − (F (n))2 =
n(n − 1)

2
u. (17)

√
V ar[n̂(c)]

n
=

√
n(n−1)

2 u

n
=

√
(1 − 1/n)

2
u (18)

With Theorem 3 and Theorem 6 (see Appendix), we can
examine the relative error of ANLS and static sampling versus
the flow size n, as shown in Fig. 2. Better NetFlow (BNF) [6]
adaptively adjusts the sampling rate, but it samples all the
flows with the same sampling rate. BNF can be viewed as
adaptive linear sampling since it adjusts sampling rate linearly.
If the final sampling rate of BNF in a sampling interval is pf ,
the relative error of BNF is the same as the relative error
of static sampling with sampling rate pf . In other words, in
theory, the relative error curve of BNF is the same as that
of static sampling (as shown in Fig. 2) with sampling rate pf .
The advantage of BNF over static sampling is that it could find
a proper sampling rate automatically to control the memory
consumption (this is the motivation of BNF). From the figure,
we observe that 1) for the static sampling method, the relative
error is quite large for small n as we demonstrated before; 2)
For the ANLS method, the relative error is almost the same for
different values of n; 3) The relative error of ANLS decreases
as parameter u diminishes.

From the Lemma 4 in [15], we can calculate the theoretical
relative error of CATE as follows,√

(1 − p2
f)(1 + 2(2k − 1)pf/(1 + pf))

2pf

√
Nk

(19)

The theoretical results of CATE and ANLS are listed in
Table II. When we compute the results, the parameter for
CATE is set as k = 1000, and the parameter for ANLS is
configured as u = 0.002. In this comparison, N = 106, and
the traffic proportions for large-size flows, medium-size flows,
and small-size flows are 0.1 ∼ 0.2, 0.0001 ∼ 0.0002, and 10−7,
respectively. The results indicate that ANLS is more accurate

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

than CATE for medium-size and small-size flows. It is a little
bit less accurate for large-size flows for ANLS but the accuracy
is reasonably acceptable.

TABLE II
THEORETICAL RELATIVE ERROR COMPARISON BETWEEN CATE WITH

k = 1000 AND ANLS WITH µ = 0.002.

Flow size Relative error of CATE Relative error of ANLS
large-size 0.0018 ∼ 0.0028 ≤ 0.0316
medium-size 0.1061 ∼ 0.1871 ≤ 0.0316
small-size 158 ≤ 0.0316

B. Memory consumption

There are two parts of memory usage, the sample counters
and the precomputed mapping table for P (c) (equation 2),
respectively. The former one dominates the memory usage.

1) Memory for sample counters: When the actual flow size
is n, the expected counter value in ANLS can be calculated
as

E[c(n)] =
∑n

i=1
Qi(n)i (20)

for which we have the following theorem.
Theorem 4: The expected counter value E[c(n)] is up-

bounded by f−1(n), where f−1(n) is the inverse function of
f(c).

Proof: As indicated in Definition 1, f(c) is a convex
function, which satisfies

f(x) ≥ f(y) + (x − y)f ′
r(y), ∀x, y > 0 (21)

where f ′
r(·) is the derivative of f(·) on the right. Now, let x = c

and y = E[c]. We get,

f(c) ≥ f(E[c]) + (c − E[c])f ′
r(E[c]) (22)

E[f(c)] ≥ E[f(E[c]) + (c − E[c])f ′
r(E[c])]. (23)

Substituting (8) into (23), we obtain,

E[f(c)] = n ≥ f(E[c]) (24)

Since f(c) is an increasing function, we can have

E[c(n)] ≤ f−1(n) (25)

The sampling function is specified in (15), and the expected
counter value of adaptive non-linear sampling method can
be accurately calculated by (3) and (20). We compare this
calculated value with the bound indicated in Theorem 4 and
plot the gap between them in Fig. 3. The figure shows that the
bound in Theorem 4 is a tight one for the specific sampling
function defined in (15): the exact gap is very small and the
relative gap is approximately on the order of 10−4 or below.
The counter values of the static sampling method and ANLS
are shown in Fig. 4. When the flow size is n, the expected
counter value for static sampling is obviously np. The counter
value for adaptive non-linear sampling is larger than the one
for static sampling when n is small, but it becomes much
smaller than the one for static sampling when n grows. Please

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

n

G
ap

 b
et

w
ee

n
th

e
bo

un
d

an
d

 th

e
ex

pe
ct

ed
 c

ou
nt

er
 v

al
ue

Fig. 3. Gap between the bound and the expected counter value.

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

flow size

of
 c

ou
nt

er
 b

its

adaptive sampling, u=0.01
adaptive sampling, u=0.002
static sampling, u=0.25

Fig. 4. Counter bits required for different sampling methods.

note that when we design the counter system, the width of
the counter entry is determined by the largest counter value.
Therefore, while keeping the same number of entries, ANLS
consumes a smaller amount of memory than static sampling.

2) Memory for mapping tables: To avoid the high compu-
tation overhead, we pre-compute the values of P (c) and store
it in a table. For on-line operation, we only need a single
memory access to read out the required P (c). Considering
the worst case of a fully loaded OC-48 link, which contains
only one flow with all 40-Byte packets. In this scenario, we
could compute the flow length n in a one-minute measure-
ment interval, and then the counter value will not exceed
f−1(n) < 10000 (actually it is about 9992). We store a 16-
bit for each P (c) where c ≤ 10000. Therefore, the extra table
to keep the mapping table P (c) is only 160kb. Such amount
of memory is not large compared with that for counters and in
the evaluations of Section V, we focus on the counter memory
usage.

C. Processing overhead

The processing overhead is the computation cost of pro-
cessing each packet, including the memory accesses and CPU
operations.

There are five steps for the general sampling model. (i)
the flow classification module picks up the flow ID from
the incoming packet, (ii) the flow sampling module decides
whether to sample the packet or not. If yes, (iii) it fetches
the counter address from the flow table, (iv) gets the counter
value using the address, and (v) writes back the updated value
to counter. Otherwise, drop the packet and wait for the next

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

Flow T able

Flow Mapping
Flow

c lass ific ation
Counter

(i)

(iv)

(ii)

(iii)

(v)

Fig. 5. System processing model of ANLS method.

packet. The ANLS model is in Fig. 5. (ii) fetches the counter
address from the flow table, (iii) uses the address to read
out the counter value, (iv) based on the counter value, the
flow sampling module decides whether to sample and update
the counter or not. From the model it is clear that we can
implement ANLS using a five-stage pipeline. Thus the most
time-consuming stage determines the processing speed. We
analyze the processing overhead of these five stages below.

Classification stage ((i) in Fig. 5). Before deciding whether
to sample a packet or not, the associated flow ID needs to
be identified. Such a flow classification is also required by
other flow sampling methods, like BNF and SDS. As the
flow classification issue has been extensively discussed in the
literature [20], we here ignore the detailed descriptions due to
space limitations.

Address fetching stage ((ii) in Fig. 5). The processing is a
table lookup operation on an on-chip SRAM.

Sampling rate computation stage ((iv) in Fig. 5). A concern
of ANLS is that the sampling rate needs to be calculated on the
arrival of each packet. However, the computational complexity
of P (c) should not be a big issue when ANLS is implemented
in the real system by hardware. The value of P (c) could be pre-
computed and stored in a table. Thus we only need a direct
address lookup on a table maintained by a small (on-chip)
SRAM.

Memory I/O stages ((iii) and (v) in Fig. 5). Since the
sampling method is utilized, the statistical results can be kept
in a SRAM. The operation speed in this stage is determined
by the access time on SRAM.

From the analysis above, we find that the processing
bottleneck is mainly due to SRAM operations. Suppose the
frequency of SRAM is 200 MHZ and, in the worst case,
that each packet is 40 bytes. The I/O throughput of SRAM
could match up to a 32 Gbps link speed. Actually, the
processing overhead for sampling can be reduced greatly if
the measurement function is implemented by hardware in
a router. An intuitive explanation is that the processing for
flow measurement should be much simpler than all the other
processing functions in the router. By comparing with the
other tasks’ processing in a router, the measurement processing
module should not be a big concern. Note that the flow
measurement module can be a by-pass/parallel unit with all
other data-path components in a router. Therefore, we can turn
to pay more attention to the estimation accuracy and memory

consumption for flow measurement.

V. PERFORMANCE EVALUATIONS

In this section, we compare ANLS with other existing
approaches including SS, BNF [6], SDS [5], CATE [15],
and ARS [16] in terms of accuracy, memory cost, and pro-
cessing overhead by performing two sets of experiments in
the evaluation comparisons: 1) employing synthetic traces
to test the different methods and 2) utilizing real IP data
traces from NLANR [21] to validate our observations. All the
results in this section are obtained by configuring the sampling
function of ANLS as the specific form in (15). Furthermore,
we discuss the processing overhead of each method and the
attack resilience of ANLS in this section.

A. Experiments and results on synthetic data

In order to examine the effects of flow size distribution on
ANLS, we generate synthetic data for experiments. Suppose
that we measure a fully loaded OC-48 (2.5 Gbps) link with
a one-minute measurement interval. The required memory
is calculated as the number of entries multiplied by the bit
width of the entry, since each entry is of same width in real
implementation as we mentioned before. The counter width
is determined by the largest flow to avoid overflow. Please
note that different sampling approaches vary in the number
of entries and entry width. We first generate the flows whose
sizes follow Pareto distribution (the shape parameter is 1.053
and the scale parameter is 4). We also synthesize data flows
with an exponentially distributed size (the location parameter
λ = 500, i.e., the mean flow size is 500), and with uniformly
distributed size between 1 and 1000.

The detailed results under different flow size distributions
are depicted in Table III, Table IV and Table V. From the tables
we observe that ANLS provides the most accurate estimation
and that different flow size distributions have almost no effect
on the average relative error (in fact, the average relative
error of ANLS is only determined by the parameter u as we
demonstrated in Section IV).

TABLE III
MEMORY AND RELATIVE ERROR COMPARISON UNDER SYNTHETIC DATA

GENERATED FROM PARETO DISTRIBUTION.

Methods Parameters Average relative error Memory
ANLS u = 0.01 0.07 4.49 Mb
SS p = 0.1 0.96 5.17 Mb
BNF M = 256k 1.38 4.44 Mb
SDS z = 1000 0.99 10.03 Mb

TABLE IV
MEMORY AND RELATIVE ERROR COMPARISON UNDER SYNTHETIC DATA

GENERATED FROM EXPONENTIAL DISTRIBUTION.

Methods Parameters Average relative error Memory
ANLS u = 0.01 0.07 2.10 Mb
ANLS u = 0.2 0.31 1.41 Mb
SS p = 0.1 0.50 2.46 Mb
BNF M = 256k 1.48 1.05 Mb
SDS z = 1000 0.95 3.90 Mb

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

TABLE V
MEMORY AND RELATIVE ERROR COMPARISON UNDER SYNTHETIC DATA

GENERATED FROM UNIFORM DISTRIBUTION.

Methods Parameters Average relative error Memory
ANLS u = 0.001 0.07 503.08 kb
SS p = 0.1 0.96 493 kb
BNF M = 256k 0.82 223.36 kb
SDS z = 1000 0.699 744.49 kb

ANLS, µ=0.002

flow size

re
la

tiv
e

er
ro

r

Fig. 6. ANLS relative error results on real NLANR trace.

Table III demonstrates the results for Pareto distributed flow
size. Even when BNF (the M parameter in the table is the
expected flow entry for BNF) is furnished with a larger amount
of memory comparable to ANLS, say 4.44Mb, its average
relative error is almost 20 times worse than ANLS. Table
IV, for the experiments on exponentially distributed synthetic
data, shows that ANLS needs a slightly larger amount of
memory than BNF but will provide tens of times more
accurate measurement results. When a flow is generated with
an uniformly distributed size between 1 and 1000, ANLS has
an average relative error that is over 10 times better than BNF
at a cost of about two times as much memory as BNF, as
shown in Table V.

The average relative error and required memory size of
SDS have no advantage over ANLS. Since SDS optimizes the
statistic of large flows, it requires a lot of memory to record
large flows. Compared with BNF, SDS has more accurate
results but requires a larger amount of memory.

Since CATE and ARS depend on the packet arrival process,
we do not use synthetic data to evaluate these two methods.
The comparisons with them will be presented in Section V-B
using real traces.

B. Experiments and results on real traces

When we use an OC-192 real trace published in [21] as the
experiment input, the results of ANLS are illustrated in Fig.
6, which shows the accuracy of ANLS for both small flows
and large flows. Fig. 6 also clearly validates Theorem 3, which
claims that a smaller u is helpful to control the relative error.

We also apply other sampling methods to analyze the real
trace and depict the results in Fig. 7 to Fig. 10. All these
methods demonstrate a large relative error for small flows.

flow size

re
la

tiv
e

er
ro

r

Fig. 7. relative error BNF(M = 20k) or SS (p = 1/20) on NLANR trace.

flow size

re
la

tiv
e

er
ro

r

Fig. 8. SDS relative error with z = 1000 on NLANR trace.

In [16], a perfect theoretical theorem is provided to guide
the sampling method. However, to practically benefit from the
theorem, we should have a pre-knowledge of the flow length
distribution. For this reason ARS, which employs an AR model
to predict flow length distribution before deciding the sampling
rate, is proposed. This method has the potential flaw that the
accuracy is greatly limited by the AR model. We test ARS
on a real trace using a AR(1) prediction model and show the
results in Fig. 10. Note that even when we use the actual data
for the initial input to the AR(1) model, the relative error for
small flows is still larger than ANLS as shown in Fig. 6.

Besides the comparison of accuracy, we further illustrate
the memory sizes of all the approaches in Fig. 11. It is
shown that BNF consumes the least amount of memory,
while SDS requires the largest amount of memory due to
its optimization on large flows. The memory requirement for
ANLS/ARS/CATE is similar. From the experiments on real
traces, we found that the memory consumed by CATE is
not as small as expected in [15]. The difference probably
comes from the assumption in [15] that the packet arrival is
uniform. In the experiment we observe many bursts of small
flows, which will also make records in the coincidence count
table of CATE. Please note that, the above memory expense
corresponds to different sampling accuracy. The corresponding
of relative errors of BNF, ANLS, ARS, SDS and CATE are
1.82, 0.21, 1.96, 1.186 and 262.11.

C. Processing overhead

The processing overhead can be measured by the number of
memory access and CPU operations, and we summarize the
results of different methods in Table VI.

As discussed in Section IV, for each packet, ANLS needs
one read operation, one write operation (update) on the
counter, and a further memory read operation to get the pre-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

flow size

re
la

tiv
e

er
ro

r

Fig. 9. CATE relative error with k = 1000 on NLANR trace.

flow size

re
la

tiv
e

er
ro

r

Fig. 10. ARS relative error on NLANR trace. Actual data is used for initial
input of AR prediction model.

computed sampling rate.

Considering the implementation of BNF, it needs an ad-
ditional CPU operation for re-normalization. Although re-
normalization will not block the accounting process, it may
delay the report process to the remote data collector if the re-
normalization is not completed at the end of the measurement
interval. Additionally, to determine the sampling rate, BNF
needs to keep several histogram bins, which also consume
memory. On the arrival of a packet, the related histogram
should be updated, and all the histograms must be refreshed
when a re-normalization process is activated. If a packet is
sampled, BNF needs one write and one read operation and
when the sampling is adjusted, BNF need two more memory
accesses. In most cases, a total of 4 memory accesses are
required.

SDS uses a minimum and division computation to decide
the sampling rate and employs a maximum computation for
re-normalization. For each packet, SDS requires one write op-
eration and one read operation on the memory. To implement
CATE, k comparisons need to be done for each incoming
packet. It can be deployed with a CAM, which requires one
memory access. Two more memory accesses (one write and
one read) are needed if there is a hitting in the comparison.
ARS utilizes an AR(n), (n > 1) model, which increases
the memory consumption linearly with n. Furthermore, to
determine the parameters of the AR(n) model, we need to
solve n linear equations, and its computational complexity is
a bit high if n gets large. A nice feature of ANLS compared
to ARS is that the sampling rate is adjusted according to the
counter value and that no pre-knowledge on the flow size
distribution is required. Two memory accesses (one write and
one read) are needed to update the counter.

1 2 3 4 5
0

500

1000

1500

2000

m
em

or
y

si
ze

 (
kb

)

BNF ANLS ARS CATE SDS

Fig. 11. Memory comparison of different approaches on NLANR trace. The
corresponding of relative errors of BNF, ANLS, ARS, SDS and CATE are
1.82, 0.21, 1.96, 1.186 and 262.11

TABLE VI
PROCESSING OPERATIONS PER PACKET OF DIFFERENT METHODS.

Methods ANLS SS BNF SDS CATE ARS
memory access 3 2 4 2 3 2
CPU operation 0 0 1 2 0 1

D. Attack resilience

ANLS keeps records for small flows. Although few re-
sources are needed to record each flow, one may be concerned
with the performance of ANLS when an attacker launches DoS
attacks towards ANLS system with large number of small
flows. We use a trace file collected by NLANR during the
spread of the Slammer worm in January 2003 to test the
attack resilience of ANLS. Since the average traffic rate of the
original trace is not very large, we scale down the time stamp
in each packet so that the flows will fully utilize the links
of 100Mbps and 1 Gbps respectively. When the measurement
interval is set as 5 seconds, the required memory size is shown
in table VII, which implies that ANLS is resilient to DoS
attacks.

TABLE VII
RESILIENCE TO ATTACK TRACES.

traffic load 100 Mbps 1 Gbps flow entries
memory size 134 kb 441 kb 16549

E. Summary

From the above results, the design spaces of different
sampling methods can be summarized in Table VIII, where
A, B, C or D is used to indicate that the performance of
a method is excellent, good, acceptable, or bad for a certain
metric. ANLS bounds the error for both large and small flows.
The analysis of the relative error and the upper bound for
counter size, given in Section IV, can also be exploited to
tackle the tradeoff in case that the memory constraint or error
constraint is given. In fact, from Fig. 2 and Fig. 4, we could
find out that, increasing u will decrease memory requirement
relatively quickly while slightly increasing the relative error.
For real implementation, u can not be arbitrarily large since
it is limited by the constraints of the implementation and
expected error.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

TABLE VIII
DESIGN SPACES FOR DIFFERENT METHODS.

Methods ANLS SS BNF SDS CATE ARS

Accuracy for
small flows A D D D D C
Accuracy for
media/large flows B B B A A B
memory B B A C B B
processing C A B C C C

VI. CONCLUSION

We have proposed an adaptive non-linear sampling method
(ANLS) for passive measurement with the purpose of miti-
gating the high relative error for small events introduced by
static sampling. The basic idea is to sample a small flow with
a large sampling rate and to sample a large flow with a small
sampling rate. ANLS has unbiased estimation and bounded
relative error for the flow size estimation, and bounded counter
size which implies small memory consumption. In particular,
ANLS significantly improves the estimation accuracy for small
flows compared to existing methods, while maintaining similar
memory size and processing overhead. ANLS tunes the sam-
pling rate according to the counter value, and no prediction
or estimation of the flow size distribution is required. The
experimental results show that the proposed sampling method
obtains a better tradeoff between relative error and memory
size consumption, in comparison to existing sampling meth-
ods. In addition, flow size distribution has almost no effect on
the estimation accuracy.

APPENDIX

ESTIMATION AND ERROR OF STATIC SAMPLING

Theorem 5: n̂(c) = c/p is an unbiased estimation of the
flow size n under the static sampling method.

Proof: From the definition of the expected value of n̂(c),
we have,

E[n̂(c)] =
∑n

i=0

(
n

i

)
pi(1 − p)n−i i

p

= n
∑n

i=1

(n − 1)!

(i − 1)!(n − i)!
pi−1(1 − p)n−i

= n(p + 1 − p)n−1 = n.

Theorem 6:
√

(1/p − 1)/n is the relative error of unbiased
estimation under the static sampling method.

Proof:

E[n̂2(c)] =
∑n

i=0

(
n

i

)
pi(1 − p)n−i(

i

p
)2

=
n

p

∑n

i=1

i(n − 1)!

(i − 1)!(n − i)!
pi−1(1 − p)n−i

=
n

p

∑n−1

i=0

(i + 1)(n − 1)!

i!(n − i)!
pi(1 − p)n−i−1

=
n

p
[(n − 1)p + 1] = n2 + n(1/p − 1).

From the definition, we have the relative error√
V ar[n̂(c)]

n
=
√

(1/p − 1)/n.

REFERENCES

[1] K. Claffy and S. McCreary. Internet measurement and data analysis:
Passive and active measurement. [Online]. Available: http://www.caida.
org/outreach/papers/1999/Nae4hansen/Nae4hansen.html

[2] G. Varghese and C. Estan, “The measurement manifesto,” ACM SIG-
COMM Computer Communication Review, vol. 34, pp. 9–14, 2004.

[3] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of sampling
methodologies to network traffic characterization,” in ACM SIGCOMM
1993, 1993, pp. 194–203.

[4] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in ACM SIGCOMM 2003, 2003, pp. 325–
336.

[5] ——, “Learn more, sample less: Control of volume and variance in
network measurement,” IEEE Trans. Inform. Theory, vol. 51, pp. 1756–
1775, 2005.

[6] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” in ACM SIGCOMM 2004, 2004, pp. 245 – 256.

[7] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in ACM SIGCOMM 2002, 2002, pp. 323 – 336.

[8] D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and M. May,
“Impact of traffic sampling on anomaly detection metrics,” in ACM
SIGCOMM IMC 2006, 2006, pp. 159 – 164.

[9] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled
data sufficient for anomaly detection?” in ACM SIGCOMM IMC 2006,
2006, pp. 165 – 176.

[10] K. Ishibashi, R. Kawahara, T. Mori, T. Kondoh, and S. Asano, “Effect
of sampling rate and monitoring granularity on anomaly detectability,”
in 10th IEEE Global Internet Symposium, 2007.

[11] C. Hu, B. Liu, Z. Liu, S. Gao, and D. O. Wu, “Optimal deployment of
distributed passive measurement monitors,” in ICC 2006, vol. 2, 2006,
pp. 621 – 626.

[12] K. Suh, Y. Guoy, J. Kurose, and D. Towsley, “Locating network
monitors: Complexity, heuristics, and coverage,” in INFOCOM 2005,
vol. 1, 2005, pp. 351–361.

[13] Cisco. Sampled netflow data sheet. [Online]. Avail-
able: http://www.cisco.com/en/US/products/ps6601/products data
sheet09186a0080081201.html

[14] ——. Cisco ios netflow data sheet. [Online].
Available: http://www.cisco.com/en/US/products/ps6601/products data
sheet0900aecd80173f71.html

[15] H. Fang, M. Kodialam, T. V. Lakshman, and Z. Hui, “Fast, memory-
efficient traffic estimation by coincidence counting,” in INFOCOM 2005,
vol. 3, 2005, pp. 2080 – 2090.

[16] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive packet sampling for
flow volume measurement,” University of Minnesota, MA, Tech. Rep.
TR 02-040, Dec. 2002.

[17] N. Hohn and D. Veitch, “Inverting sampled traffic,” in ACM SIGCOMM
IMC 2003, vol. 14, 2003, pp. 68–80.

[18] L. Yang and G. Michailidis, “Sampled based estimation of network
traffic flow characteristics,” in INFOCOM 2007, 2007.

[19] A. Kumar, M. S. amd J. J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” in ACM
SIGMETRICS 2004, 2004, pp. 177–188.

[20] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “Dppc-re: Tcam-
based distributed parallel packet classification with range encoding,”
IEEE Trans. Comput., vol. 55, pp. 947–961, 2006.

[21] NLANR. Passive measurement and analysis (pma). [Online]. Available:
http://pma.nlanr.net

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

	Select a link below
	Return to Main Menu

