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Abstract—This paper presents an edge-based Internet traffic
characterization approach. Our objective is to estimate the
marginal distribution and the correlation structure of the packet
arrival process at a queue, by sending probe packet pairs with
a specific dispersion to sample the traffic. The aggregate work
load process inferred from the output dispersions is a compound
process of the packet arrival process and the packet size distri-
bution. We show that the packet arrival marginal distribution
and the packet size distribution can be decoupled by using the
probability generating function; given one of the distributions,
the other can then be estimated. We use the fact that the Internet
packet size follows a known multi-modal distribution. Moreover,
multiple series of packet pairs with different input dispersions
can be used to estimate the packet arrival process at different
time scales, and therefore to estimate the Hurst parameter,
which characterizes the long-range dependence, by generating the
variance-time plot. While the traffic characterization techniques
are developed and validated in a single-queue context, we indicate
how the techniques can be applied to a black box system for end-
to-end quality of service provisioning along a multi-hop path.

I. INTRODUCTION

Most Internet traffic measurements today use passive mon-
itoring. Data traces are collected and recorded by specific
hardware in a router, and then forwarded to a measurement
collector for analysis to extract statistical characteristics of the
Internet traffic [1]. Passive measurement system have several
disadvantages in addition to the requirement for specific data
collection hardware. (1) The data collection consumes a large
amount of network resources. The high data volume generated
by a large network requires large amount of memory in routers,
storage and computation resources at the collector, and trans-
mission bandwidth between them [1], [2]. (2) The “collect,
transmission, and analyze” procedure is not appropriate for
on-line traffic monitoring, which is important for adaptive
QoS provisioning and resource allocation in dynamic network
conditions. (3) The per-hop traffic characterization is not
convenient for end-to-end QoS analysis. For such an objective,
we need to characterize both the input and output processes of
a queue to analyze concatenated queues, and to characterize
the superposition and splitting of packet streams along the
path. This is normally not an easy task except for the case of
Poisson modeling [3]. (4) The heterogeneous and decentralized
nature of the Internet (for example, a path between two end
users often passes multiple administrative domains) implies

that one cannot rely on the cooperation of individual servers
and routers to aid in network measurement [4]. (5) The
Internet service provider (ISP) may regard the collected data
traces as confidential. The unavailability of interior network
status makes it difficult to design distributed and edge-based
admission control and traffic engineering schemes [5].

To avoid the disadvantages of the router-based passive mea-
surement, we propose in this paper edge-based Internet traffic
characterization using packet-pair dispersion techniques. The
packet-pair dispersion at a given point is defined as the
duration from the time when the last bit of the first probe
packet arrives at the point to the time that the last bit
of the second probe packet arrives. The basic idea of our
measurement approach is that if a closely-spaced probe packet
pair is input into a queue, the output dispersion will reflect the
aggregate service time of the cross traffic arriving during the
input dispersion. The output dispersion measurement can be
mapped into a traffic load sample. Internet traffic is commonly
measured and modelled as having a wide-sense-stationary
increment process, at least during a measurement window
[4], [6]–[9], so we can use a series of probe packet pairs to
collect statistical information about the traffic load during a
time interval. The resulting samples allow us to estimate the
marginal distribution of the aggregate traffic arrival process in
bits/second or bytes/second.

Our objective is to characterize the packet arrival process,
which is important for packet-level QoS analysis [10]–[13] and
packet-based switch design [14], using packet-pair probing.
The challenge is that the byte-level or bit-level work load
measured from the output dispersions is a compound process
of the packet arrival process and the packet size distribu-
tion. We show that the packet arrival marginal distribution
and the packet size distribution can be decoupled by using
the probability generating function (PGF), under a common
simplifying assumption that the packet sizes are independently
and identically distributed (iid), and independent of the packet
arrival process [11], [15]. We also use the fact that the Internet
packet size follows a known multi-modal marginal distribution
[2], [7], [16]–[19]. We show how multiple series of probe
packet pairs with different input dispersions can be used to
sample the packet arrival process at different time scales.
By generating the variance-time plot [11], [16], we can then



estimate the Hurst parameter H that characterizes the long
range dependence (LRD) [9]. On the other hand, we also
demonstrate that if the packet arrival marginal distribution
is available, for example from a measurement collector, the
packet size distribution can also be estimated using the PGF
tool. This estimation approach avoids the resource-consuming
packet-header analysis involved in directly measuring the
packet sizes. It has been found that packet size distribution is
very application dependent; monitoring packet size distribution
is helpful in identifying which network applications are active
at a certain time [2], [16], [18].

Packet dispersion techniques, including packet-pair disper-
sion and packet-train dispersion [20], [21], are the most
common end/edge-based approach for bottleneck capacity or
available bandwidth measurement, which fall in the field of
network monitoring and inference termed as Internet tomogra-
phy [4]. Internet tomography technologies can greatly facilitate
customers’ awareness of network status, and bring higher
flexibility and scalability to the network management. The
edge-based measurement techniques presented in this paper
provide new methods for traffic characterization in Internet
tomography.

In this paper, we analyze and validate the proposed traffic
characterization techniques in the context of a single-hop path.
However, we discus how the edge-based traffic characteriza-
tion is in fact a black box system that can be applied for
end-to-end QoS provisioning along a path. Specifically, we
can model an end-to-end path as a virtual single queue served
with the bottleneck capacity of the original path. The probe
packet pair is launched at the source end of the path and
the output dispersion is measured at the destination end of
the path. The marginal distribution and the Hurst parameter
estimated from the dispersion measurements can then be used
to characterize the virtual arrival process associated with the
virtual queue. Such a virtual arrival process aggregates all the
buffering effects, superposition effects, splitting effects, and
queue concatenation effects along the path. The QoS achieved
in the virtual queue would be equivalent to that achieved along
the original end-to-end path.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work. Section III describes the queueing
model, that provides the relationship between the input disper-
sion, the cross traffic, and the output dispersion. Section IV
presents the traffic characterization techniques. Section V
presents simulation results to demonstrate the performance of
the proposed techniques. Section VI discusses the black-box
modeling. Section VII gives the concluding remarks.

II. RELATED WORK

Whereas it is commonly accepted that Internet traffic has
a self-similar nature [2], [9], [10], [15], [16], [22], the packet
arrival process may have different marginal distributions, e.g.
Poisson distribution [10], [23], [24], Gaussian distribution
[6], [8], [11], [22], [25] or α-stable distribution [26], [27].
Each different marginal distribution has a different queueing
analysis [6], [8], [25], [28]–[30]. The packet pair probing

proposed in this paper, by identifying the marginal distribution
of the packet arrival process, can be helpful in determining the
proper queueing analysis tool.

Packet-pair dispersion techniques with various modifica-
tions, [20], [31], [32] and the references therein, are the most
common approach to measure the bottleneck capacity of a
path. The bottleneck capacity will be used in the proposed
procedure for traffic characterization. Therefore, the Internet
traffic characterization can be combined with the capacity
estimation to make the packet-pair dispersion technique a
versatile framework for Internet measurement.

The performance of packet dispersion techniques is crit-
ically dependent on the clock resolution of the end nodes
involved in the probing. High resolution timing and accurate
clock synchronization well below 1 μs can be achieved
with special hardware synchronized to the Global Positioning
System (GPS) time [2], [33], or with personal computer
(PC) based software clock where the CPU clock cycle (TSC)
register is use to keep track of time at very high resolution
[34]. The actual dispersion measurement takes place at a single
point where the clock synchronization is not of importance.

In this paper, we develop traffic characterization techniques
based on the assumption that packet size is iid and independent
of the packet arrival process [11], [15], which is termed as the
iid packet-size assumption for convenience. However, some
Internet traffic measurements [7], [16] show that the sequence
of packet sizes is long-range dependent. We nevertheless make
the assumption for the following three reasons. (1) The Internet
in evolving into a common communication infrastructure for
all kinds of multimedia applications, where the aggregate
packet stream entering a core router in the backbone will
consist of traffic from different wireless/wireline access net-
works as well as from various applications (e.g. voice, video,
email, web browsing). In such a heterogeneous, large-scale,
high-multiplexing environment, the iid packet-size assumption
can be justified in some degree. (2) It is a common practice
in Internet tomography to use simplifying assumptions of
spatial and temporal independence to devise practical inference
algorithms [4]. We admit that much work remains to be
done to incorporate spatial or temporal dependency models
into network inference problems. (3) It is valid to model a
virtual queueing system with a virtual packet arrival process
independent of the packet size distribution, as long as it is an
equivalent black box system, with the same input and output
statistics, to the original end-to-end path under consideration.

III. PACKET-PAIR DISPERSION BEHAVIOR

In this section, we describe a queueing model to formalize
the packet-pair dispersion behavior. We model a store-and-
forward router on a path as a first-come-first-serve (FCFS)
queue served at a fixed rate of C bits per second (or equiva-
lently bytes per second), the capacity of the link connected to
the router. A network path consisting of links from 1 to n is
modeled as the concatenation of n queues, where each queue
has serving capacity Ci (1 ≤ i ≤ n). We define a probe packet
pair as two consecutive probe packets that are transmitted
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Fig. 1. Two types of dispersion behaviors: (a) the second packet reaches
queue i before the first leaves, (b) the second packet reaches queue i after
the first has departed.

along a path between the source and the destination. The first
packet in the pair has a size L(1) bits, and the second packet
has a size L(2). We refer to other packets in the network
other than the probe traffic as cross traffic. Our objective is to
identify the statistical characteristics of the cross traffic.

A. Dispersion Governing Equations

The packet-pair dispersion at a given point is defined as the
duration from the time when the last bit of the first packet
arrives at the point to the time when the last bit of the second
packet arrives. The dispersion of a packet pair leaving queue
i is denoted as Δi, also termed as the output dispersion of
queue i. We assume that the propagation delay along a link is
constant, and therefore the output dispersion from a queue is
equal to the input dispersion at the next downstream queue.

The packet-pair dispersion behavior at a queue i can fall in
two cases [20], as illustrated in Fig. 1. In one case the second
probe packet arrives before the first probe packet leaves the
queue, and in the other case the second probe packet arrives
after the first probe packet has left. For queue i, the two
cases of the output dispersion are described by the following
governing equations [20]:

Δi =

{
σ

(2)
i if Δi−1 ≤ σ

(1)
i

Δi−1 + σ
(2)
i − σ

(1)
i otherwise

(1)

where σ
(j)
i = τ

(j)
i +W

(j)
i and τ

(j)
i = L(j)

Ci
for j = 1, 2. W

(1)
i

is the queueing delay of first probe packet, and W
(2)
i is the

queueing delay of packet 2 after packet 1 has departed from
the queue.

B. Cross-Traffic Effect

In the dispersion governing equations, the cross traffic
affects the output dispersion through the queueing delay W

(j)
i .

To explicitly describe the cross traffic effect, we classify the

packet-pair probing into two cases. The first case is defined as
united-pair probing, where the two probe packets fall in the
same busy period of the queueing process. In this case, the
server is always busy before the second packet arrives, while
the first probe packet may depart before or after the second
probe packet arrives. Let A(t) denote the cross-traffic arrival
process (in bytes) to the queue, the output dispersion in this
case is

Δi =
A(Δi−1) + L(2)

Ci
.

The second case is defined as divided-pair probing, where the
two probe packets fall in different busy periods of the queueing
process. In this case, the first probe packet definitely leaves
before the second probe packet arrives, as shown in Fig. 1(b).
The output dispersion in this case is

Δi = Δi−1 +
L(2) − L(1)

Ci
+ W

(2)
i − W

(1)
i .

In summary, the output dispersion under the cross-traffic effect
can be expressed as

Δi =

{
A(Δi−1)

Ci
+ L(2)

Ci
for united-pairs

Δi−1 + L(2)−L(1)

Ci
+ W

(2)
i − W

(1)
i for divided-pairs.

(2)

C. Input Dispersion Selection

We will use the united-pair probing for traffic charac-
terization. In the divided-pair case, both idle period(s) and
busy periods occur during the input dispersion so the cross
traffic cannot be sampled properly. According to (1), a united-
pair can be guaranteed if we conservatively select the input
dispersion or design the probe packet size according to

Δi−1 ≤ L(1)/Ci ≤ σ
(1)
i . (3)

Basically, we can use a large size packet for the first probe
packet to guarantee the united-pair probing, and a small size
packet for the second probe packet to reduce the measurement
traffic load.

IV. TRAFFIC CHARACTERIZATION

In this section, we show that the packet-pair dispersion
measurements can be used to estimate the statistical charac-
teristics, i.e. the marginal distribution and the autocovariance
function of the cross-traffic packet arrival process. To facilitate
the estimation, we use the iid packet-size assumption and the
fact that Internet packet size follows a known multi-modal
distribution.

A. Internet Packet Size Distribution

Measurements of Internet traces have shown that packets
of a few sizes tend to make up the vast majority of Internet
packets. Exactly which sizes are prominent depends on ap-
plications and network protocols used. The prominent sizes
have varied over the years, as new applications emerge, new
protocols replace old ones, and protocol behaviors change [2],
[7], [16]–[19].



Fig. 2. Packet size distribution at NASA AIX, February 21–27,2000

As an example, we refer to the measurements performed
by the Cooperative Association for Internet Data Analysis
(CAIDA) on the traffic passing through the NASA Ames
Internet Exchange (AIX) between February 21st and 27th,
2000 [17]. The cumulative distribution function of the packet
sizes is re-plotted in Fig. 2, where it can be seen that the vast
majority of packets were of a few sizes, i.e. 40 bytes, 576
bytes, and 1500 bytes. The researchers attributed this result to
the behavior of the Transport Control Protocol (TCP), with the
40-bytes packets corresponding to a TCP acknowledgements,
the 576-bytes packets to TCP implementations without path
discovery, and the 1500-bytes packets to TCP implementations
with packet discovery. The 1500-bytes mode also corresponds
to the Ethernet payload size limit. As CAIDA does not
provide the histogram, we produce an approximate numerical
probability mass function (PMF) from Fig. 2:

P [S = k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 k ∈ {0, 1, . . . , 39}
0.50 k = 40

0.13
575−40 k ∈ {41, 42, . . . , 575}
0.17 k = 576

0.03
1499−576 k ∈ {577, . . . , 1499}
0.17 k = 1500

(4)

Such a PMF will be used in Section V for performance
evaluation.

B. Packet Arrival Marginal Distribution Estimation

We now develop a method to estimate the marginal dis-
tribution of packet arrival process, based on the probability
generating function (PGF). Consider a united-pair with dis-
persion Δ that is sent to probe a queue. Cross-traffic can be
completely described by two random variables, which are the
random variable N(Δ) to denote the number of packets that
arrive in a given interval Δ, and the random variable S to
denote the packet sizes. The total amount of cross-traffic A(Δ)
is:

A(Δ) =
N(Δ)∑
n=0

Sn (5)

where Sn are iid random variables.

1) PGF Analysis: Let us define the PGFs of N(Δ) and X
as

GN(Δ)(z) = E[zN(Δ)] =
∞∑

n=0

P [N(Δ) = n]zn (6)

GS(z) = E[zS] =
∞∑

k=0

P [S = k]zk. (7)

According to the iid packet-size assumption, it is well-known
that [35]

GA(Δ)(z) = E[zA(Δ)] = E
[
E[zA(Δ)|N(Δ)]

]
= E

[
(GS(z))N(Δ)

]
= E[zN(Δ)]|z=GS(z)

= GN(Δ) (GS(z)) . (8)

With united-pair probing, the aggregate cross-traffic arrivals
during the input dispersion can be obtained from the output
dispersion measurement. Again, using Δi−1 and Δi to repre-
sent the input and output dispersions associated with the queue
under consideration respectively, we have

A(Δi−1) = CiΔi − L(2). (9)

By sending a sufficient number of probe packet pairs, the
histogram of A(Δ) (the subscription of Δi−1 is dropped for
convenience) can be estimated, and therefore the correspond-
ing PGF GA(Δ)(z) can be calculated. Using qk(Δ) to denote
the histogram probability P [A(Δ) = k], the PGF GA(Δ)(z)
is

GA(Δ)(z) =
∞∑

k=0

qk(Δ)zk. (10)

Given GA(Δ)(z), our objective is to estimate the marginal
distribution P [N(Δ) = n], briefly denoted as pn(Δ), for
n = 0, 1, . . . ,∞.

We now use the fact that Internet packet size takes only
a few, say m, dominant values, by which GS(z) can be
simplified as

GS(z) = a1z
l1 + a2z

l2 + · · · + amzlm (11)

where l1, l2, . . . , lm, arranged as l1 < l2, · · · < lm, are
the m dominant packet sizes and a1, a2, . . . , am are the
corresponding probabilities. Define the probability vector
p = (p0, p1, . . . , plm), where plk = ak (k = 1, . . .m)
and other values in the vector are equal to 0. Use p (n) =
(p(n)

0 , p
(n)
1 , . . . , p

(n)
nlm

) to denote the probability vector of the
random variable S (n) =

∑n
i=1 Si, and ⊗ the convolution

operation, we have

p(n) = p ⊗ p · · · ⊗ p (with n fold). (12)

For the PGF, we have

GS(n)(z) = (GS(z))n =
nlm∑
k=0

p
(n)
k zk. (13)



TABLE I
AN EXAMPLE OF MATRIX P

������ki

p(ki) p
(0)
ki

p
(1)
ki

p
(2)
ki

p
(3)
ki

p
(4)
ki

p
(5)
ki

p
(6)
ki

p
(7)
ki

p
(8)
ki

p
(9)
ki

p
(10)
ki

0 1 0 0 0 0 0 0 0 0 0 0
40 0 0.5000 0 0 0 0 0 0 0 0 0
80 0 0.0002 0.2500 0 0 0 0 0 0 0 0
1580 0 0 0.0001 0.1276 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
2156 0 0 0.0000 0.0001 0.0868 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001
2196 0 0 0.0000 0.0001 0.0002 0.0723 0.0002 0.0002 0.0001 0.0001 0.0001
2236 0 0 0.0000 0.0001 0.0002 0.0002 0.0543 0.0002 0.0001 0.0001 0.0001
2276 0 0 0.0000 0.0001 0.0002 0.0002 0.0002 0.0380 0.0001 0.0001 0.0001
3776 0 0 0 0.0000 0.0000 0.0001 0.0001 0.0002 0.0259 0.0002 0.0002
4352 0 0 0 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0199 0.0002
4392 0 0 0 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0166

Based on (13), (8) can be unwrapped as

GA(Δ)(z) = GN(Δ)(GS(z)) =
∞∑

n=0

(GS(z))n
pn(Δ)

=
∞∑

n=0

nlm∑
k=0

p
(n)
k zkpn(Δ) =

∞∑
k=0

[ ∞∑
n=0

p
(n)
k pn(Δ)

]
zk.

(14)

Comparing (10) and (14), we can get

qk(Δ) =
∞∑

n=0

p
(n)
k pn(Δ). (15)

2) Marginal Distribution Estimation: It is possible to solve
pn(Δ) from (15). However, it is impractical to estimate pn(Δ)
up to n → ∞. In practice, the cross-traffic input to a queue
is limited by the upstream link capacity. Letting Lmin denote
the minimum packet size allowed in the network, so we can
obtain an upper bound of N(Δ) as

N(Δ) ≤ NΔ
max = Ci−1Δ/Lmin (16)

and (15) reduces to

qk(Δ) =
NΔ

max∑
n=0

p
(n)
k pn(Δ). (17)

With vectors p(n) (n = 1, . . . , NΔ
max) available from (12),

define p(k) = (p(0)
k , p

(1)
k , . . . , p

(NΔ
max)

k ). Assume that we can
find NΔ

max + 1 points of k, i.e. k0, k1, . . . , kNΔ
max

, so that
the

(
NΔ

max + 1
) × (

NΔ
max + 1

)
matrix P , with p(ki) for

i = 0, 1, . . . , NΔ
max as the row vectors, is invertible. More-

over, from the histogram of A(Δ), we can have the values
of (qk1 (Δ), qk2(Δ), . . . , qk

NΔ
max

(Δ)) to form a vector q(Δ).
Define the cross-traffic marginal distribution vector p(Δ) =
(p0(Δ), p1(Δ), . . . , pNΔ

max
(Δ)), which can be estimated as

p(Δ)T = P−1q(Δ)T . (18)

We would like to emphasize that the solvability of p(Δ)T

depends on the invertibility of matrix P , which is closely
related to the packet size distribution. However, in practice,
the number, position, and magnitude of the dominant packet
size modes vary with the applications. It is not an easy
task to theoretically derive a general approach to construct

an invertible P . In our experiments, we use the following
heuristic approach to construct the matrix P .

Step 1: As it is obvious that p
(0)
0 = 1 and p

(i)
0 = 0 for

i = 1, . . . , NΔ
max, select k0 = 0 and use p(0) as the

zeroth row of the matrix.
Step 2: For i = 1, . . . , NΔ

max, select ki according to

ki : p
(i)
ki

= max
k

(p(i)) = max
k=0,1,...,i·lm

(p(i)
k ) (19)

Step 3: For i = 1, . . . , NΔ
max, use the vector p(ki) as the

i-th row of matrix P .

The intuitive idea behind the construction approach is to
generate a matrix P , the diagonal of which has dominant
values much larger than other elements in the matrix; therefore
the matrix is invertible. Our experiments show that the con-
struction approach is robust in producing an invertible P from
the available packet size distributions. As an example, consider
the CAIDA packet size distribution. If the input dispersion is
set small enough to limit NΔ

max = 10, the obtained matrix P is
shown in Table I. We are carrying on theoretical investigations
of the heuristic matrix construction approach.

C. Hurst Parameter Estimation

A wide-sense stationary X(t) in discrete time is said to
exhibit long-range dependence, if its autocorrelation function
rX(k) decays with time lag k taking the form

rX(k) ∼ k−β , as k → ∞ (20)

where 0 < β < 1 and “∼” denotes that the expressions on
the two sides are asymptotically proportional to each other
[9], [11], [36]. Note that LRD implies nonsummability of the
correlations, i.e.,

∑
k rX(k) = ∞. The Hurst parameter H is

commonly used to measure the degree of LRD, and is related
to the parameter β in (20) by H = 1 − β/2.

Let the aggregated process X (m) = {X(m)
k } be obtained by

averaging the original traffic process X over non-overlapping
intervals, with each interval being m time units in length, i.e.
X

(m)
k = 1

m

∑mk
t=m(k−1)+1 X(t). It has been proved [37] that

the long-range dependence can also be characterized by

var[X(m)] ∼ m−β , as m → ∞, 0 < β < 1. (21)



Denoting the autocorrelation function of X (m) by r
(m)
X (k), we

also have

r
(m)
X (k) ∼ k−β, as m → ∞, k → ∞, 0 < β < 1. (22)

The expression (22) means that the correlation structure of
X(t) is asymptotically preserved under the time aggregation,
so X(t) is also defined to be asymptotically second-order self-
similar. In fact, by the restriction 0 < β < 1 or 1

2 < H < 1,
asymptotic second-order self-similarity implies long-range de-
pendence, and vice versa. Therefore in practice, self-similarity
and long-range dependence are often used interchangeably [9].

Long-range dependence or self-similarity can be detected,
and the corresponding value of H can be estimated in many
ways [7], [36]. One simple and popular approach is the
variance-time plot which makes use of the property that the
“log(var[X(m)]) vs. log(m)” curve asymptotically tends to be
linear with a slope of −β [10], [11], [16].

The variance-time plot approach can be readily exploited by
the packet-pair probing. We first determine the minimum us-
able input dispersion Δmin, according to the clock resolution
of the end nodes involved in the measurement. Define Δmin

as a time unit. By sending a series of probe packet pairs with
input dispersions set as Δmin, we can estimate the marginal
distribution and therefore the variance of X (1) using the
traffic characterization techniques presented in Section IV-B.
Similarly, var[X (m)] can be estimated by packet-pair probing
with input dispersion of mΔmin. The variance-time plot can
then be applied to estimate the Hurst parameter.

D. Packet Size Distribution Estimation

We can also estimate the packet size distribution based on
(8), if the packet arrival marginal distribution is available from
traffic modeling or from historical data measurements. The
estimation is straightforward as

GS(z) = G−1
N(Δ)(GA(Δ)(z)). (23)

For example, let’s assume that the self-similar Internet traffic
can be well modeled by an M/G/∞ input process [10], [23].
The Marginal distribution is then Poisson with average rate λ
packets/second, giving GN(Δ) = eλΔ(z−1). Using this result,

GS(z) = 1 +
1

λΔ
ln(GA(Δ)(z)). (24)

With the PGF known, the probability vector p can be obtained
with an inverse fast Fourier transform (IFFT) operation.

V. PERFORMANCE EVALUATION

In this section, we present some computer simulation results
to illustrate the performance of the proposed traffic charac-
terization techniques. We develop a single-queue simulator
using the event-driven simulation technique in the MATLAB
language. Due to the paper length limit, here we focus on
evaluating the accuracy in estimating the marginal distribution
of the packet arrival process and the Hurst parameter for the
LRD traffic. Simulation results demonstrating the accuracy
of the packet-size distribution estimation are presented in

[41]. In all the simulation examples, we use the iid packet-
size assumption, and the cross-traffic packet size distribution
follows the CAIDA PMF given in (4).

A. Estimation with Poisson Arrival

We first use a simple example to illustrate the performance
of the marginal distribution estimation technique proposed
in Section IV-B. We simulate a FCFS queue with a serving
capacity of 10 Mbps. The cross packet arrivals are generated
as a Poisson process. The CAIDA PMF is used to generate
iid packet sizes, corresponding to an average packet size
of 444.1338 bytes. Packet pairs with size of (L (1), L(2)) =
(1500, 40) bytes are sent for probing. The packet-pair input
dispersion is set as 0.0012s so that united-pair measurement
is guaranteed according to (3). The inter-pair interval is set
as 0.05s. Two load scenarios with utilization u = 0.8 and
u = 0.99 are simulated, where the packet arrival rates are
2.2516×103 and 2.7863×103 packets/s or 2.7019 and 3.3436
packets/dispersion, respectively. In this example, we assume
that a proper NΔ

max can be set according to the historical traffic
measurements; the NΔ

max according to (16) is normally a
conservative configuration incurring unnecessary calculations.

Specifically, set NΔ
max = 12 so that

∑NΔ
max

n=0 pn(Δ) ≈ 1.0000
in both load scenarios.

We estimate the packet arrival marginal distribution from the
output dispersion measurements by the following procedure:

• Calculate p(n) according to (12), and construct the matrix
P using the approach given in Section IV-B.

• Send a reasonable number of probe packet pairs, 10000
and 30000 pairs in this example, with the selected input
dispersion. Measure the output dispersions and convert
the dispersions to traffic loads in bytes according to (9).

• Generate the histogram of A(Δ), where the estimated
value of q̂k(Δ) is estimated as the frequency of the
dispersions corresponding to A(Δ) = k, for k =
0, 1, 2, . . . , 1500NΔ

max.
• Estimate the packet arrival marginal distribution

p̂n(Δ), n = 0, 1, . . . , NΔ
max according to (18).

The estimated marginal distributions in both load scenarios
are given in Table II and compared with the true Poisson
probabilities. We can have the following observations. (1) In
both load scenarios, the probabilities as small as the order
of 10−2 can be estimated with a reasonable accuracy. (2) It
is desirable to capture the distributional discrepancy between
the estimated probabilities and the real values by the standard
chi-square test [38]. However, the marginal distribution is
indirectly inferred rather than directly estimated by counting
in different categories; therefore, chi-square test can not be
applied. Instead, we use the metric of weighted mean relative
difference (WMRD) proposed in [1] to measure the distribu-
tional discrepancy. Specifically,

WMRD =
∑

n |p̂n(Δ) − pn(Δ)|∑
n(p̂n(Δ) + pn(Δ))/2

. (25)

(3) The matrix inversion calculation in the estimation can
lead to negative estimate values, if the to-be-estimated prob-



TABLE II
TRAFFIC CHARACTERIZATION WITH POISSON ARRIVAL PROCESS

u = 0.8 u = 0.99
10000 pairs 30000 pairs True 10000 pairs 30000 pairs True

N(Δ) Estimated Normalized Estimated Normalized probabilities Estimated Normalized Estimated Normalized probabilities

0 0.0680 0.0692 0.0673 0.0676 0.0671 0.0376 0.0383 0.0361 0.0368 0.0353
1 0.1762 0.1793 0.1781 0.1789 0.1812 0.1110 0.1131 0.1121 0.1141 0.1181
2 0.2382 0.2424 0.2470 0.2482 0.2448 0.1959 0.1997 0.1950 0.1986 0.1974
3 0.2230 0.2269 0.2219 0.2230 0.2205 0.2088 0.2128 0.2150 0.2190 0.2200
4 0.1516 0.1543 0.1489 0.1496 0.1490 0.1756 0.1789 0.1783 0.1815 0.1839
5 0.0780 0.0794 0.0845 0.0849 0.0805 0.1276 0.1301 0.1359 0.1384 0.1230
6 0.0338 0.0344 0.0332 0.0333 0.0362 0.0722 0.0736 0.0648 0.0660 0.0685
7 0.0140 0.0142 0.0113 0.0114 0.0140 0.0344 0.0351 0.0344 0.0350 0.0327
8 −0.0007 0 0.0019 0.0019 0.0047 0.0181 0.0185 0.0104 0.0106 0.0137
9 −0.0004 0 0.0012 0.0012 0.0014 −0.0008 0 −0.0008 0 0.0051
10 −0.0005 0 −0.0005 0 0.0004 −0.0010 0 0.0031 0 0.0017
11 −0.0006 0 0.0045 0 0.0001 −0.0012 0 −0.0012 0 0.0005
12 −0.0007 0 −0.0009 0 0.0000 −0.0016 0 −0.0015 0 0.0001

WMRD 2.80% 2.27% 4.90% 4.07%

abilities are too small. When calculating WMRD, we first
set those ineffective probability estimates p̂n(Δ) = 0, n =
nneg, . . . , N

Δ
max, where nneg is the smallest index of a neg-

ative estimate value, and then normalize the distribution to∑NΔ
max

n=0 p̂n(Δ) = 1. Estimation accuracy can be improved,
reflected as a decreased WMRD, by collecting more dispersion
samples. (4) The WMRD is larger for u = 0.99. The reason
is that the random variable N(Δ) has a larger variance under
a larger arrival rate.1 Estimating with the same number of
samples, the larger variance leads to the larger distributional
discrepancy.

B. Estimation with fractional Brownian motion (FBM) arrival

In this example, we consider the marginal distribution
estimation and the Hurst parameter estimation with a more
practical input process, i.e. the FBM process, which has been
extensively used to model the self-similar Internet traffic [6],
[8], [11], [22], [25]. The standard (normalized) FBM process
{Z(t) : t ≥ 0} with Hurst parameter H ∈ [0.5, 1) is a centered
Gaussian process with stationary increments that possesses the
following properties [9]: (a) Z(0) = 0, (b) var{Z(t)} = t2H ,
and (c) Z(t) has continuous sample paths. The self-similar
FBM input {A(t) : t ≥ 0} can be represented by

A(t) = λt + σZ(t) (26)

where the mean arrival rate E{A(t)/t} = λ, and the variance
var[A(t)] = σ2t2H . Note that σ2 is the variance of traffic in
a time unit. The FBM is exactly self-similar according to the
property (b) [9]. When 0.5 < H < 1, the self-similar FBM is
long-range dependent.

We again simulate a 10 Mbps queue. The CAIDA PMF
is used as the packet size distribution. Four scenarios with
different utilization and Hurst parameter combinations, i.e.
(u, H) = (0.6, 0.6), (0.6, 0.7), (0.8, 0.6), and (0.8, 0.7), are
simulated. The FBM process is generated using the modified
Random Midpoint Displacement (RMD) algorithm [39], [40],
where one time unit (t-unit) is set as 0.0006s. In different
simulation scenarios, FBM processes are generated with λ
tuned to the target utilization and σ2 = 2λ. As the number

1With Poisson distribution, mean and variance of the random variable are
equal.

of packets in a time unit generated from the RMD algorithm
may take fractional values, we ceil all the fractional values
to integer values. Variance-time plot is used to calibrate the
Hurst parameter of the ceiled FBM process.

In each scenario, we use two 25000-pairs probing series, one
with the input dispersion of 1 t-unit and the other of 5 t-units,
to estimate the marginal distributions of N(1) and N(5), re-
spectively. For simplicity, we ignore the limit of the maximum
packet size, and set L(1) = 750 (3750) bytes when Δ = 1 (5)
t-units to guarantee the united-pair measurement. The inter-
pair interval is set as 0.05s. Since FBM is exactly self-similar,
the Hurst parameter can be estimated from var[A(t)] = σ 2t2H

as

Ĥ =
1
2

log (v̂ar[N(5)]) − log (v̂ar[N(1)])
log(5)

. (27)

In practice, Internet traffic is asymptotically self-similar, and
the variance-time plot or other approaches should be used to
estimate the Hurst parameter. This example with FBM input
is to illustrate the validity of the multiple-timescale probing in
estimating the correlation structure.

We set NΔ
max = 25 for the estimation, and discard in-

effective probability estimates and normalize the estimated
distributions as that done in the previous example. Since here
we are estimating a continuous Gaussian distribution, we can
apply the Kolmogorov-Smirnov (K-S) test for Normality with
the mean and standard deviation unknown [38] to measure the
estimation accuracy.

The K-S test statistic values D and the estimated Hurst
parameters in all the four scenarios are presented in Table III,
where we can have the following observations. (1) In all the
scenarios, the K-S test static values (Ds) calculated from
the effective probability estimates are smaller than the cor-
responding critical values (Dc) at the 1% level of significance
(obtained from Table 9 on page 336 in [38]). Therefore, the
hypothesis that the packet arrival process is Gaussian can be
accepted at the 1% level of significance. (2) The Ds values
when Δ = 5 t-units are smaller than the corresponding
values when Δ = 1 t-unit. The reason is that the higher
aggregation over a longer input dispersion makes the discrete
distribution closer to the continuous Gaussian distribution. As
an illustration, the sample cumulative distribution function and



TABLE III
TRAFFIC CHARACTERIZATION WITH FBM ARRIVAL PROCESS

u H 0.6 (0.64 calibrated) 0.7 (0.73 calibrated)

0.6

Ĥ 0.61 0.67
K-S test Δ = 1 Δ = 5 Δ = 1 Δ = 5

Ds 0.1388 0.0727 0.1318 0.0906
Dc 0.2940 0.2124 0.3110 0.2248

0.8

Ĥ 0.62 0.66
K-S test Δ = 1 Δ = 5 Δ = 1 Δ = 5

Ds 0.1386 0.0752 0.1310 0.1200
Dc 0.2940 0.2248 0.3110 0.2350

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet arrivals during an input dispersion

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n Δ = 1 t−unit

Δ = 5 t−units

Fig. 3. Kolmogorov-Smirnov test of the marginal distribution estimated with
the FBM input, with u = 0.8 and H = 0.7 (calibrated as 0.73).

the hypothesized Gaussian distribution function in the K-S test
for (u, H) = (0.8, 0.7) are plotted in Fig. 3. (3) In all the
scenarios, the estimated Hurst parameters Ĥ are close to the
true values. However, in all the cases, Ĥ < H (calibrated).
The reason is that in the estimation procedure we have to give
up some ineffective probability estimates, which are associated
with those large values of N(Δ), due to the limited number of
samples; therefore, the estimate value of the variance is smaller
than the true value. We define the variance underestimation as
the smoothing effect for convenience. With the same number
of samples, the smoothing effect is more severe when the
to-be-estimated variance is larger, which then leads to the
underestimation of the Hurst parameter according to (27). A
straightforward approach to improve estimation accuracy is to
collect more measurement samples. However it is well known
that such an approach is not very efficient in the presence of
LRD [7]. Combining the edge-based traffic characterization
approach with other efficient estimation tools for LRD traffic,
e.g. the wavelet analysis, is very interesting and being under
our investigation.

In the previous discussions and examples, we have empha-
sized that NΔ

max should be selected properly for the estimation.
In practice, NΔ

max can be adaptively adjusted. At first, a
large enough initial value is selected according to historical
traffic measurement. After a measurement period, N Δ

max can
be reduced to nneg − 1 to avoid ineffective estimations. After
a measurement period where all the estimate probabilities are
effective, NΔ

max can be increased by 1 for more accurate
estimation.

VI. BLACK-BOX MODELING

With edge-based network measurement and inference, the
network is treated as a black-box system. The capacity and
available bandwidth estimation techniques in the literature
and the traffic characterization technique in this paper are
developed to infer the internal status of the black box by
analyzing its input and output statistics. Seen from the system
perspective, it is desirable to derive a mathematical description
of the black box system, ignoring the details of how the system
is constructed. For example, in signal processing, a transfer
function is usually used to describe a linear system, ignoring
what circuits are used to construct the system.

We deem that the edge-based traffic characterization can
also be used to derive a mathematic description of an end-
to-end path. We define the bottleneck link capacity along
a path as the path capacity. In a QoS context, the path
capacity may be determined by a scheduler. The end-to-end
path can be modeled as a virtual single-hop FCFS queue that
is fed with a virtual packet arrival process and served with
the path capacity. With black-box modeling, it is required
to determine the marginal distribution and the correlation
structure of the virtual packet arrival process so that the
input and output statistics of the virtual queue are exactly the
same as those associated with the original end-to-end path.
The traffic characterization techniques developed in this paper
can be used to determine the virtual packet arrival process
modulated by iid packet-sizes. Such a system model conceals
the service details along the path into the virtual queueing
system, such as the actual packet arrival process at each hop,
the statistical relationship between the packet arrival process
and the packet size distribution, correlation structure of the
packet size sequence, queueing effect at each hop, and the
traffic multiplexing/splitting effect along the path.

The black-box modeling has the potential to bring great
convenience to end-to-end QoS provisioning and edge-based
admission control. When a new flow comes in, queueing
analysis can be applied to the virtual queue to check whether
a target end-to-end QoS measure, e.g. the outage probability
of a delay bound, can still be guaranteed after admitting the
new flow. In addition, the virtual packet arrival process needs
to be re-characterized periodically by packet-pair probing to
trace the dynamics of the network status.

VII. CONCLUSIONS

In this paper, we propose an edge-based approach to esti-
mate the statistical characteristics of the Internet traffic. For
the estimation, a series of probe packet pairs with a selected
dispersion are sent to sample the cross traffic. From the output
dispersion measurements, the aggregate work load process can
be inferred, which is a compound process of the packet arrival
process and the packet size distribution. Under the iid packet-
size assumption, we develop a probability generating function
tool to decouple the packet arrival marginal distribution and
the packet size distribution; given one of the distributions,
the other can then be estimated. The fact that Internet packet
size follows a known multi-modal distribution is utilized to



facilitate the estimation. When self-similarity or LRD presents,
multiple series of packet pairs with different input disper-
sions are used to perform a multi-timescale sampling and
estimation, and an estimate of the Hurst parameter is obtained
by generating the variance-time plot. Computer simulation
results in a single-queue context demonstrate that the proposed
traffic characterization techniques have a reasonable estimation
accuracy. In addition, we present a system perspective that the
probing-based traffic characterization can be used to establish
a black-box model for an end-to-end path, where all the service
details along the path are concealed into an equivalent single-
hop virtual queue.

For future work, we are investigating how to apply some
advanced statistical analysis techniques, e.g. the wavelet anal-
ysis, to the dispersion samples to improve estimation accuracy
when LRD presents. We also plan to experiment with practical
Internet traces to further validate the edge-based traffic charac-
terization. The black-box modeling also needs to be examined
with simulations and experiments along multi-hop paths.
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