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Abstract—In recent years, the applications of Internet of
Things (IoT) have been extensively explored. Among these
applications, information fusion based on probability theories
or Artificial Intelligence (AI) plays a foundational role. However,
to the best of our knowledge, few works consider the scheduling
of the IoT nodes that collect redundant data to promise the
freshness of the fused information. Age of Information (AoI)
is a metric that characterizes the obsolescence of information.
Although AoI works well in single-source updating systems, it
is hardly applicable to a multi-source system setting such as
IoT. In this paper, we propose a new metric called Age of Local
Information (AoLI) to illustrate the obsolescence of data collected
by each node of IoT used in fusion. We first simulate AoLI in
an FCFS queue and show that the optimal arrival rate that
minimizes the mean AoI does not necessarily result in a quicker
information fusion. Instead, the arrival rate that minimizes the
maximal AoI performs better. We then propose a scheduling
policy called the Fusion Greedy policy to schedule the IoT nodes
in a discrete manner under an FCFS queue of length 1. Through
simulation, we demonstrate that the proposed policy outperforms
traditional policies such as Whittle’s index policy or the AoI
Greedy policy.

Index Terms—Internet of Things, Age of Local Information,
Artificial Intelligence.

I. INTRODUCTION

As the development of networking techniques such as 6G

continues, the Internet of Things (IoT) has become one of

the keys developments of the information revolution. The

enormous data collected by IoT enables a higher level under-

standing of the environment and better decision-making, thus

it is expected to provide many potential benefits to our daily

lives. However, the possible billions of devices connected to

the IoT create lots of redundant information and lay a heavy

burden on communication. Therefore, scheduling the devices

in the IoT is essential.

Information fusion plays a central role in the applications

of IoT. There are several advantages of information fusion,

namely: 1) more sensible and precise information; 2) higher

robustness and reliability; and 3) better control performance.

This work was supported in part by the National Natural Science Foundation
of China under Grant 92067111, in part by the Defense Industrial Technology
Development Program under Grant JCKY2020206B068, and in part by the
Zijin Scholarship. The work of Yu Cheng was supported in part by the NSF
under grants CNS-1816908 and CNS-2008092.

Traditional information fusion methods mostly rely on prob-

ability theories. However, due to the explosive development

of Artificial Intelligence (AI), many new information fusion

algorithms based on AI have been developed. These algorithms

not only perform better on the traditional linear system infor-

mation fusion tasks but are also applicable to more complex

non-linear system information fusion as well as the higher

level semantic interoperability [1]. Hijji, et al. [3] combined

the 2D Convolution Neural Network (CNN) and 1D CNN to

form a new neural network to fuse the information updated by

the cars in the IoT to detect the potholes on the road. The pre-

training method that enabling task immigration is widely used

in deep neural networks. Wang, et al. [2] proposed a neural

network (NN)-based information fusion algorithm, which is

enhanced by pre-training, to improve the performance of the

IoT. Although many information fusion methods have been

proposed, as far as we know, characterizing the freshness of

fused information of IoT system and local information of IoT

nodes that collects redundant information (which is a common

issue [4]) remains to be discovered.

The newly proposed metric, Age of Information (AoI) [5],

which is defined as the time elapsed since the last generating

time of the information, is now attracting research interest

[6], [7]. However, AoI only characterizes the obsolescence

of information in a single-source network, which makes it

unable to handle multi-source information transmission and

fusion tasks. Therefore, an alternative metric that can account

for multi-source information updating and fusing in a IoT

system has emerged. Nowadays, comparing to minimizing

the raw AoI, people are more interested in the AoI induced

from some actions. Note that in this aspect, the raw AoI

could be viewed as the Age of Information on the successful

transmission of packages. Query AoI (QAoI) [8] considered

AoI on the query, which is an initiative user-driven action.

The authors minimizes QAoI by controlling the waiting pe-

riod between two queries. Effective AoI (EAoI) [9] further

considered scheduling AoI proactively, which is the first work

that introduce the idea of feedforward control to the AoI-based

scheduler. On the other hand, Age-Upon-Decisions (AuD)

[10] considered studied the AoI when a decision is made,

whose action, on the opposite to QAoI, is performed on
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section V we show the simulation results. Finally, we conclude

this paper in section VI.

II. SYSTEM MODEL

In this paper, we consider an IoT system composed of N

nodes, indexed by k, where k ∈ N , {1, · · · , N}, and

one fusion center. The node k collects local information at

time stamp uk(t), denoted by Ik(t). Then, it transmits the

Ik(t) through a wireless network to the fusion center. For the

simplicity of analysis, we use FCFS queue to model such

information collection-transmission actions. Once the local

information transmitted to the fusion center is sufficient to

perform a fusion, and the fusion center execute the fusion

action and broadcasts the fusion result to all the nodes. We

define the most recent time instance of the fusion as c(t). We

also follow the assumption that Ik(t) contains all the available

local information of node k before uk(t) [5]. Thus AoI ∆k of

node k evolves as follows:

∆k = t− uk(t). (1)

We also define the Age of Fused Information (AoFI) that

illustrate the freshness of the fusion information as follows:

S(t) = t− c(t). (2)

Now we are ready to define AoLI, which we denote by

Sk(t). AoLI envoves as follows: it increases linearly during

the transmission of the local information and incurs a hop on

the calculation of the fused information. The hopping of AoLI

is quite different form that of raw AoI since we assume that

the local information collected by each node is redundant and

some of it may not be used for fusion. In the case where the

local information of a node k, Ik(t), is used for the calculation

of the fused information, the AoLI of this node, Sk(t), reduces

to t − uk(t), where uk(t) is the generation time of the local

information Ik(t). On the other hand, the AoLI should infer

the occurrence of the information fusion action. Thus, in the

case where the local information of node k
′

is not used for the

calculation of the fused information, the corresponding AoLI

reduces to 0. As discussed above, we define the AoLI of node

k at time t as follows:

Sk(t) =

{

t− uk(t), if Ik(t) ∈ A (t),
t− c(t), otherwise,

(3)

where A (t) denotes the set of the latest local information

from each node after the last calculation of fused information

at time t.

A (t) , {Ik(t)|t > c(t), k ∈ N }. (4)

Note that during the calculation time instance that calculates

the fused information, A (t) is the local information set that

is used for the fusion.

In the following example, we will illustrate the differences

between AoLI and AoI. Consider an obstacle that can only

be sensed by two nodes, node 1 and node 2. Suppose node

1 suffers from poor network conditions and updates its in-

formation much slower than node 2. We use two preemptive
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Fig. 2. The evolution of AoLI. At time instance t(α) and t(β), the newly
updated local information is enough to perform information fusion and AoLIs
of node 1 and node 2 encounter a hop.

queue of size 1 to model the information updating process

of each node. By preemptive, we mean that if new local

information arrives and encounters a full queue, then the newly

collected information is preempted. We assume that the fused

information could be calculated from the local information

set A (t) = {I1(t), I2(t)}. Then following our definition of

AoLI, the AoLI of node 1 and node 2 are S1(t) = t − u1(t)
and S2(t) = t − u2(t), respectively. To compare AoLI and

AoI, we plot the changes in AoLI for node 1 and 2 in Fig. 2,

and the changes in AoI in Fig. 3, respectively.
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Fig. 3. The evolution of AoI. Different form AoLI, AoI is a single-source
metric, thus AoI of node 1 and node 2 are uncorrelated with each other and
incur hop on its own transmission success.

As shown in Fig. 3, the local information is sensed at the

time instant without prime and is updated at the time instant

with prime. Therefore, at time t′
1
, the information collected by

node 1 at t1 is updated to the fusion center node and the AoI of

node 1 is reduced to t′
1
−t1. Conversely, as shown in Fig. 2, the

fusion center node broadcasts the calculated fused information

at time slot t(α), and the AoLIs of node 1 and node 2 are
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transmission decision at time slice t, and sk(t) ∈ {0, 1}, k ∈
N , to indicate the transmission state, where

P (sk = 1) = pk, (7)

where pk, k ∈ N , denotes the successful transmission rate.

Then, we define γk, k ∈ N , to indicate whether a transmission

is succeed as follows:

γk(t) = dk(t)sk(t). (8)

To calculate AoI under such system setting, we update them

at the end of each time slice, which lead to the discrete form

of AoI as follows [15]:

∆k(t) =

{

∆k(t− 1) + 1, if γk(t) = 0,
1, otherwise.

(9)

The evolution of c(t) in the discrete form can be deduced by

sampling c(t) at the end of each time-slice. Since the system

we considering gathers information redundantly, we further

assume that fusion can be processed when local information

from M,M < N, nodes is successfully updated. As such, the

evolution of c(t) is as follows:

c(t) =

{

t, if
∑

k∈N
γk(t) >= M,

c(t− 1), otherwise.
(10)

To this end, the discrete form of AoLI is as follows:

Sk(t) =







Sk(t− 1) + 1, if f(t) = 0,
∆k(t), if f(t)γk(t) = 1,
1, otherwise,

(11)

where f(t) indicate whether c(t) equals t.

Considering the definition of AoLI as well as the assumption

of redundant information gathering, the scheduling policy that

minimizes AoLI is quite different from that which minimizes

AoI. As proved by Kadota, et. al [15], the optimal scheduling

policy that minimizes AoI of a symmetric system that updates

information similarly is the Greedy policy, while the Whittle’s

index policy is a sub-optimal policy that minimizes AoI of an

unsymmetrical system. However, in the following, we show

through simulation that to obtain a fresher fused information,

scheduling argmink∈N ∆Sk, which is defined as follows, is

a better policy.

∆Sk , Sk −∆k, ∀k ∈ N . (12)

We call the newly proposed policy Fusion Greedy policy.

We further illustrate that ∆Sk denotes the relative network

status of node k comparing to other nodes. This means that

the larger the value ∆Sk is, the better network status of the

corresponding node. Therefore, by scheduling the node with

the minimum value of ∆Sk, we can allocate the network

resources more efficiently than policies based on AoI. What’s

more subtle is that by scheduling the nodes with the smallest

difference of AoLI and AoI, the nodes whose information

is not used by the latest fused information are more likely

to be scheduled next. This trend balances the information

transmitting load of each node.

Note that the Fusion Greedy policy not only benefits from

the advantages of AoLI described in the introduction section

of this paper, but it is also a flexible lightweight scheduling

policy that allows for real-time system modification and quick

scheduling decision making.

V. SIMULATION
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Fig. 5. The maximum AoI, ∆max, and summation of AoI, ∆sum, under
different λ1.

We first simulate an FCFS queue and confirm that the arrival

rate that minimizes the maximal AoI performs better than

the arrival rate which minimizes the mean AoI to obtain a

fresher fused information. To this end, we consider a system

consisting of four nodes and a fusion center. The information

updating process of the nodes follows a Poisson distribution

with rate λk, k ∈ {1, · · · , 4}, where
∑

k∈{1,··· ,4} λk = 0.8,

λ1 varies from 0.1 to 0.5, and λk, k ∈ {2, 3, 4} follow the

ratio of 3:4:5. We further assume that the processing time,

including information transmission and calculation, follows

an exponential distribution with parameter 1. As shown in

Fig. 5, the minimum ∆sum occurs when λ1 = 0.1968 while

the minimum ∆sum occurs when λ1 = 0.1968. To further

confirm that the AoLI is smaller under the system setting of

λ1 = 0.1600, we perform a 20000 times of queuing simulation

and confirm that when λ1 = 0.16, S = 147, whereas for the

case λ1 = 0.20, S = 153.

In the following, we will restrict the queuing length to 1
and simulate the scheduling policy that we have proposed

earlier. Since the proposed policy is discrete, we assume that

the successful transmission probability of the node 1 ranges

from 0.5 to 0.9, while the other nodes have probabilities

of 0.4, 0.6, 0.9, respectively. We simulate the system under

the following policies: AoI Greedy policy, Whittle’s index

policy and our Fusion Greedy policy for 20000 iterations. The

schedulers choose one node to perform transmission at each

iteration, and the fusion process is executed when three nodes

successfully transmit, in other words, M = 3. The simulation

result are shown in Fig. 6, from which it is clear tha our policy

performs significantly better than the other two as p increases.

5
Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 19,2023 at 03:13:10 UTC from IEEE Xplore.  Restrictions apply. 



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

p

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A
o
F

I
AoI Greedy policy

Whittle's index policy

Fusion Greedy policy

Fig. 6. The mean AoFI using three scheduling policies under different
transmission success probabilities, where the proposed Fusion Greedy policy
performs the best.

Considering that IoT typically consists of a large number

of devices, we are interested in comparing the adaptability

of the proposed policy to AoI-based policies at different

system scales. Therefore, we perform another simulation of

three policies in an IoT system with a varying number of

nodes. The transmission success probability of each node is

randomly chosen from the range 0.6 to 0.9, the simulation

is also performed for 20000 iterations for each policy, one

system scheduled at each iteration, and M = 3. The simulation

results are illustrated in Fig. 7. From these results, we can see

that the proposed policy fluctuates much milder than the ones

based on AoI as the the system scale increases. Conversely, the

system AoFI increases dramatically for the AoI-based policies

as the IoT scale becomes larger. Thus, we conclude that the

newly proposed policy is more adaptable to the scaling of IoT

systems.
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Fig. 7. The mean AoFI using three scheduling policies under different number
of nodes, where the proposed Fusion Greedy policy adapt to the scaling of
the system the best.

VI. CONCLUSION

In this paper, we have considered the problem of keeping

the fused information in an IoT system as fresh as possible.

We have proposed a new metric called the Age of Local

Information (AoLI) and discussed the differences between

AoLI and AoI. We have shown that in a FCFS queuing

system, the optimal arrival rate of AoLI is not the one that

minimizes the summation of the multi-source AoI. Instead,

through simulation, we have shown that the system performs

better under the arrival rate that minimizes the maximal AoI.

Lastly, we have proposed a scheduling policy called the

Fused Greedy policy to minimize AoLI. Through simulation,

we have demonstrated that the proposed policy outperforms

policies such as the Whittle’s index policy or the AoI Greedy

policy. Additionally, the proposed policy exhibits much greater

adaptability to different system scales.
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