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Abstract—In recent years, the applications of Internet of
Things (IoT) have been extensively explored. Among these
applications, information fusion based on probability theories
or Artificial Intelligence (AI) plays a foundational role. However,
to the best of our knowledge, few works consider the scheduling
of the IoT nodes that collect redundant data to promise the
freshness of the fused information. Age of Information (Aol)
is a metric that characterizes the obsolescence of information.
Although Aol works well in single-source updating systems, it
is hardly applicable to a multi-source system setting such as
IoT. In this paper, we propose a new metric called Age of Local
Information (AoLI) to illustrate the obsolescence of data collected
by each node of IoT used in fusion. We first simulate AoLI in
an FCFS queue and show that the optimal arrival rate that
minimizes the mean Aol does not necessarily result in a quicker
information fusion. Instead, the arrival rate that minimizes the
maximal Aol performs better. We then propose a scheduling
policy called the Fusion Greedy policy to schedule the IoT nodes
in a discrete manner under an FCFS queue of length 1. Through
simulation, we demonstrate that the proposed policy outperforms
traditional policies such as Whittle’s index policy or the Aol
Greedy policy.

Index Terms—Internet of Things, Age of Local Information,
Artificial Intelligence.

I. INTRODUCTION

As the development of networking techniques such as 6G
continues, the Internet of Things (IoT) has become one of
the keys developments of the information revolution. The
enormous data collected by IoT enables a higher level under-
standing of the environment and better decision-making, thus
it is expected to provide many potential benefits to our daily
lives. However, the possible billions of devices connected to
the IoT create lots of redundant information and lay a heavy
burden on communication. Therefore, scheduling the devices
in the IoT is essential.

Information fusion plays a central role in the applications
of IoT. There are several advantages of information fusion,
namely: 1) more sensible and precise information; 2) higher
robustness and reliability; and 3) better control performance.
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Traditional information fusion methods mostly rely on prob-
ability theories. However, due to the explosive development
of Artificial Intelligence (AI), many new information fusion
algorithms based on AI have been developed. These algorithms
not only perform better on the traditional linear system infor-
mation fusion tasks but are also applicable to more complex
non-linear system information fusion as well as the higher
level semantic interoperability [1]. Hijji, et al. [3] combined
the 2D Convolution Neural Network (CNN) and 1D CNN to
form a new neural network to fuse the information updated by
the cars in the IoT to detect the potholes on the road. The pre-
training method that enabling task immigration is widely used
in deep neural networks. Wang, et al. [2] proposed a neural
network (NN)-based information fusion algorithm, which is
enhanced by pre-training, to improve the performance of the
IoT. Although many information fusion methods have been
proposed, as far as we know, characterizing the freshness of
fused information of IoT system and local information of IoT
nodes that collects redundant information (which is a common
issue [4]) remains to be discovered.

The newly proposed metric, Age of Information (Aol) [5],
which is defined as the time elapsed since the last generating
time of the information, is now attracting research interest
[6], [7]. However, Aol only characterizes the obsolescence
of information in a single-source network, which makes it
unable to handle multi-source information transmission and
fusion tasks. Therefore, an alternative metric that can account
for multi-source information updating and fusing in a IoT
system has emerged. Nowadays, comparing to minimizing
the raw Aol, people are more interested in the Aol induced
from some actions. Note that in this aspect, the raw Aol
could be viewed as the Age of Information on the successful
transmission of packages. Query Aol (QAol) [8] considered
Aol on the query, which is an initiative user-driven action.
The authors minimizes QAol by controlling the waiting pe-
riod between two queries. Effective Aol (EAol) [9] further
considered scheduling Aol proactively, which is the first work
that introduce the idea of feedforward control to the Aol-based
scheduler. On the other hand, Age-Upon-Decisions (AuD)
[10] considered studied the Aol when a decision is made,
whose action, on the opposite to QAol, is performed on
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Fig. 1. The IoT nodes collect local information and transmit it to the fusion
center, which performs information fusion through NN. The fusion center then
broadcast the fused information.

the client instead of the user. The authors conclude that the
periodic arrival usually performs better than the randomized
one. Security is also an importance issue in communication of
the IoT system. Recently, an Aol based metric concerning the
security information transmission issue under eavesdropping
was proposed [11]. The authors argued that by maximizing the
Aol of the eavesdropper, the prescription of the information
could be guaranteed. It should be noted that the metrics based
on Aol could all be enhanced by a similar idea to protect the
interested information by enlarging the corresponding metric
of the eavesdropper.

In this paper, we propose a new metric called Age of Local
Information (AoLI) to characterize the obsolescence of local
information used for fusion. Note that since we schedules the
nodes of an IoT system, some of the local information could
be redundant. This is one of the main differences between
AoLI and Aol. To optimize AoLI, we not only balance the
information gathering and transmitting rate, which is similar
to Aol, but also pursue a trade-off among all the information
sources. In this sense, we define AoLI for each source in
two situations. In the case where the local information of a
source is used for calculating the fused information, then the
corresponding AoLl is defined as the time elapsed since the
generating time of its local information. On the other hand,
if the information fusion has already been processed, AoLlI is
simply defined as the time elapsed since the broadcasting time
of the latest fused information.

The work most relevant to the proposed AoLI is [10].
However, despite the similarities between our approach to
AuD, there exist notable differences that should be mentioned.
First, the action we choose to induce AoLI is based the
information fusion, which sets restrictions on the information
sources. On the other hand, the authors of AuD assume that
the server make decisions following a Poisson process, which
basically treats each information source independently.

In the following, we provide an example of AoLI along with
its features. As illustrated in Fig. 1, the fusion center fuses
the local information, which is updated by each IoT nodes,

using some Neural Networks. Once the fused information is
successfully calculated, the fusion center broadcasts it. It is
worth noting that since we assume the redundancy of the local
information, the fusing process can commence without waiting
for the remaining local information.

In the ensuing discussion, we take an IoT system as an
example and delve deep into some of the various cases that
the system may encounter during its runtime. Subsequently, we
demonstrate the aforementioned characteristics in minimizing
AoLI. Form Fig. 1 we observe that the local information
set is used to calculate the fused information. It can easily
be deduced that if the distance between the nodes and the
object is rather large, then the local information gathering
process become slow, resulting in a large AoLI. On the other
hand, if the information gathering is quick enough and the
nodes transmit frequently but the fusion center process these
packages slowly, the AoLI will still be large. In the above
we show how AoLI can indicate the balance between the
information gathering and the processing rate, which is similar
to Aol. However, AoLI also indicates the trade-off among
the information sources, which is of great importance in
the scheduling of IoT systems. Still, let’s take Fig. 1 as an
example. Since the capacity of the IoT network is limited, if
one node transmits its information extremely quickly, then the
others may encounter poor network conditions, resulting in a
delay in calculating the fused information. This delay enlarges
the AoLI because there is not enough timely information
available.

Since AoLlI is specifically proposed for multi-source infor-
mation updating systems, such as IoT system, here are some
of the features of AoLlI that may benefit IoT systems:

o Tolerance of network topology changes. Since many
nodes of IoT are highly dynamic, network topology
changes occur frequently. However, the definition of
AoLI is uncorrelated with the network topology, which
greatly enhances the robustness of the IoT scheduling
policies based on AoLI. Additionally, the factors of
network topologies are revealed in the evolution of AoLlI,
thus changes in these factors only demand modification
to the scheduling algorithms.

o Distributed nature. The definition of AoLI is weekly
correlated with the fusion center, so it is possible to
schedule the IoT nodes in a distributed manner based
on AoLlI, which is preferred in large-scale systems.

« Enabling the scaling of IoT systems. An IoT system
must be able to accommodate demands for the addition
or reduction of nodes during operation. Fortunately, our
definition of AoLI can be utilized in multi-scale IoT
systems with varying numbers of nodes.

The rest of this paper is organized as follows. We first intro-
duce our system model and give a formal definition of AoLI
in section II. In section III, we discuss the relation between
the maximal Aol and AoLI. Then, we propose methods to
calculate the arrival rate that minimizes the maximal Aol. In
section IV we propose a scheduling policy based on AoLI. In
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section V we show the simulation results. Finally, we conclude
this paper in section VI.

II. SYSTEM MODEL

In this paper, we consider an IoT system composed of N
nodes, indexed by k, where k € .4 = {1,--- N}, and
one fusion center. The node % collects local information at
time stamp wu(t), denoted by Iy (¢). Then, it transmits the
I;(t) through a wireless network to the fusion center. For the
simplicity of analysis, we use FCFS queue to model such
information collection-transmission actions. Once the local
information transmitted to the fusion center is sufficient to
perform a fusion, and the fusion center execute the fusion
action and broadcasts the fusion result to all the nodes. We
define the most recent time instance of the fusion as c(t). We
also follow the assumption that I (¢) contains all the available
local information of node k before wuy(t) [5]. Thus Aol Ay of
node k evolves as follows:

A =t —ug(t). @))

We also define the Age of Fused Information (AoFI) that
illustrate the freshness of the fusion information as follows:

S(t) =t —c(t). (2)

Now we are ready to define AoLI, which we denote by
Sk(t). AoLI envoves as follows: it increases linearly during
the transmission of the local information and incurs a hop on
the calculation of the fused information. The hopping of AoLI
is quite different form that of raw Aol since we assume that
the local information collected by each node is redundant and
some of it may not be used for fusion. In the case where the
local information of a node k, Ij(t), is used for the calculation
of the fused information, the AoLlI of this node, S (t), reduces
to t — ug(t), where ug(t) is the generation time of the local
information Ij(t). On the other hand, the AoLI should infer
the occurrence of the information fusion action. Thus, in the
case where the local information of node & is not used for the
calculation of the fused information, the corresponding AoLlI
reduces to 0. As discussed above, we define the AoLI of node
k at time ¢ as follows:

Su(t) = { t—up(t),

t—c(t),
where <7 (t) denotes the set of the latest local information
from each node after the last calculation of fused information
at time t.

if I.(t) € (1),
otherwise,

3)

A (t) = (I ()|t > c(t),k € N} )

Note that during the calculation time instance that calculates
the fused information, <7 (t) is the local information set that
is used for the fusion.

In the following example, we will illustrate the differences
between AoLI and Aol. Consider an obstacle that can only
be sensed by two nodes, node 1 and node 2. Suppose node
1 suffers from poor network conditions and updates its in-
formation much slower than node 2. We use two preemptive

Node 1
Node 2

Process Fusion.

Process Fusion. —,

AoLl/S

)
Time/t

Fig. 2. The evolution of AoLI. At time instance ¢(«) and t(3), the newly
updated local information is enough to perform information fusion and AoLIs
of node 1 and node 2 encounter a hop.

queue of size 1 to model the information updating process
of each node. By preemptive, we mean that if new local
information arrives and encounters a full queue, then the newly
collected information is preempted. We assume that the fused
information could be calculated from the local information
set &7 (t) = {I1(t), I2(t)}. Then following our definition of
AoLlI, the AoLI of node 1 and node 2 are Si(t) =t — uq(t)
and S3(t) = t — ua(t), respectively. To compare AoLI and
Aol, we plot the changes in AoLI for node 1 and 2 in Fig. 2,
and the changes in Aol in Fig. 3, respectively.

Aol/A

Time/t

Fig. 3. The evolution of Aol. Different form AoLI, Aol is a single-source
metric, thus Aol of node 1 and node 2 are uncorrelated with each other and
incur hop on its own transmission success.

As shown in Fig. 3, the local information is sensed at the
time instant without prime and is updated at the time instant
with prime. Therefore, at time ¢}, the information collected by
node 1 at ¢; is updated to the fusion center node and the Aol of
node 1 is reduced to ¢} —t;. Conversely, as shown in Fig. 2, the
fusion center node broadcasts the calculated fused information
at time slot #(«), and the AoLIs of node 1 and node 2 are
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reduced to t(a) — t1(«) and t(B) — t2(f), respectively. Note
that the Aol of node 2 is reduced to t; — t3 at time instant
th in Fig. 3, as the information of node 2 is successfully
updated. However, the AoLI at time ¢4 remains the same as the
information of node 1 between ¢ to t3 is unavailable to the
fusion center node, so it cannot perform information fusion.
This example demonstrates that the behavior of Aol and AoLlI
can be significantly different. Such differences become more
pronounced in more complicated system settings.

By comparing Fig. 2 and Fig. 3, we can see that some
of the communication resources are wasted since the local
information of node 2 {I5(t),t2() < t < to(F)} is transmit-
ted to the fusion center node but ultimately discarded for the
next calculation of the fused information performed at time
instant ¢(3). Thus, in this example, it is expected that by
allocating more communication resources to node 1, the AoLI
could be further reduced. On the other hand, if we reduce the
allocation frequency of node 2, we could save energy wasted
by the unnecessary transmission of local information collected
by node 2.

III. ANALYSIS BASED ON Aol

The optimization of AoLl, as defined in equation (3), is
challenging. However, we have observed an inequality rela-
tionship between the value of AoLI and the maximal value of
Aol given by the following expression:

S <maxA;, ke N, ®))
ieN

where Sj, denotes the AoLI of node k. Therefore, we can

intuitively minimize AoLI by minimizing the maximal Aol.

Note that the system setting that minimizes Aol does not

necessarily minimize AoLI, which we demonstrate through

simulation in the rest of this paper.

In the following, we focus on an IoT system where lo-
cal information is updated through an M/M/1 queue. Each
node k,k € .4, enqueues the information I following a
Poisson process of rate A;. The local information is served
by the fusion center with the transmission time following an
exponential distribution of parameter 1/u. Additionally, We
define the utilization factor of node k as px £ )\, /. It can
be easily seen that the optimal arrival rates A, that minimizes
Apmax 2 maxpe g Ag and Ay 2 > ke Ay are different. In
latter section, we will simulate and show the differences in S},
under these two system settings. Through the simulation, we
aim to demonstrate the effectiveness of minimizing the AoLI
using the inequality (5).

The Stochastic Hybrid System (SHS) model is a widely-
used model. it considers systems whose states are piece-wise
continuous and introduces the discrete state to handle the
discontinuous point. As suggested in [12], the SHS model can
be easily applied to the Aol queuing systems and dramatically
reduces the analysis complexity compared to traditional queu-
ing theory methods. To build an SHS model, we first define
the continuous part and the discrete part of the state, denoted
by x(t) and g, respectively. Then, we write the state transition
function of the continuous part conditioned on the discrete one,

which is a simple continuous form of Markov Chain. However,
the complexity of the system still exists, demonstrated by the
possible intractability of the system state when considering
the discrete part of the state and its impact on the continuous
part of the state. To handle such complexity, we can introduce
a test function whose expected value is tractable, allowing
us to calculate some result of interest without fully parsing
out the SHS model. specifically, in the application of Aol
analysis in the SHS model, the continuous part of the state
transition function is unrelated to the discrete part. Therefore,
the test function could be calculated by solving the stationary
distribution of the discrete part of the state and then calculating
the expected value of the mean Aol. For more discussion on
SHS model, please refer to [12] and [13].

Aigthie s Aithic Aigthie s
7 7 p

Fig. 4. The state transition diagram of the state g.

The simple definition of Aol makes it easier to define the
states to characterize the evolution of Aol for each node k.
Specifically, we define the discrete state ¢ € {1,--- ,m}, m —
oo as the number of packages waiting in the queue and the
continuous state x(t) € R™*1 m — oo as the evolution of
the age of some chosen node k. The state transition diagram
of the discrete state ¢ is shown in Fig. 4. On the other hand,
x increases with slope 1 if the state ¢ remains still, while it
experiences a state hopping on the transition of the discrete
state ¢q. Assuming the ergodicity of the Markov chain shown
in Fig. 4, we can calculate its stationary distribution, denoted
by 7. Since the evolution of x(¢) can be fully determined by
7, the stationary distribution of x(t) is also available to us.
Then, according to [14][Theorem 2], the multi-source Aol is:

1 L—p 1 P—k
A== +E5©

oS- pZ)  1-p i
where pr = MNe/p p = Dpey M/l Pk =

Xi/p, and &), = PV (1+p)2 10—k Note that
Zz z;ék ieN K

equation (6) allows us to calculate the optlmal arrival rate that
minimizes either the maximal Aol or the mean Aol.

IV. AOLI-BASED SCHEDULING POLICY

In this section, we propose a scheduling policy based on
AoLI that minimizes AoFI, ensuring that the fused information
is fresher. Considering that most IoT devices are based on
the digital chips, the proposed scheduling policy is in discrete
form. Therefore, we consider an IoT consisting of N nodes
and one fusion center. The transmission and fusion time are
slotted, and each node can complete its task within one time
slice. We further define d(t) € {0,1},k € .47, to denote the

Authorized licensed use limited to: lllinois Institute of Technology. Downloaded on September 19,2023 at 03:13:10 UTC from IEEE Xplore. Restrictions apply.

4



transmission decision at time slice ¢, and si(t) € {0,1},k €
A, to indicate the transmission state, where

P(sg = @)

where pi,k € 47, denotes the successful transmission rate.
Then, we define v, k € .4/, to indicate whether a transmission
is succeed as follows:

V() = di(t)sk(t)- ®)

To calculate Aol under such system setting, we update them
at the end of each time slice, which lead to the discrete form
of Aol as follows [15]:

{ At —1)+1, if 3(t) =0,

1, otherwise.
The evolution of ¢(t) in the discrete form can be deduced by
sampling c(t) at the end of each time-slice. Since the system
we considering gathers information redundantly, we further
assume that fusion can be processed when local information
from M, M < N, nodes is successfully updated. As such, the
evolution of ¢(¢) is as follows:

1) = pg,

Ag(t) 9

_ t, if Zkew 'Vk(t) >= M,
e(t) = { c(t —1), otherwise. (10)
To this end, the discrete form of AoLI is as follows:
Spt—1)+1, if f(t) =0,
Sk(t) = ¢ Ax(?), if f(t)ye(t) =1, (11)
1, otherwise,

where f(t) indicate whether ¢(t) equals .

Considering the definition of AoLI as well as the assumption
of redundant information gathering, the scheduling policy that
minimizes AoLlI is quite different from that which minimizes
Aol. As proved by Kadota, et. al [15], the optimal scheduling
policy that minimizes Aol of a symmetric system that updates
information similarly is the Greedy policy, while the Whittle’s
index policy is a sub-optimal policy that minimizes Aol of an
unsymmetrical system. However, in the following, we show
through simulation that to obtain a fresher fused information,
scheduling arg mingec_ sy ASf, which is defined as follows, is
a better policy.

ASL 2 S, — A, Vk e N, (12)

We call the newly proposed policy Fusion Greedy policy.
We further illustrate that AS} denotes the relative network
status of node k comparing to other nodes. This means that
the larger the value ASj is, the better network status of the
corresponding node. Therefore, by scheduling the node with
the minimum value of AS;, we can allocate the network
resources more efficiently than policies based on Aol. What’s
more subtle is that by scheduling the nodes with the smallest
difference of AoLI and Aol, the nodes whose information
is not used by the latest fused information are more likely
to be scheduled next. This trend balances the information
transmitting load of each node.

Note that the Fusion Greedy policy not only benefits from
the advantages of AoLI described in the introduction section
of this paper, but it is also a flexible lightweight scheduling
policy that allows for real-time system modification and quick
scheduling decision making.

V. SIMULATION

,=0,1968
0.2

I I I
0.15 0.25 0.35 0.4 0.45 0.5

03
P

Fig. 5. The maximum Aol, Amax, and summation of Aol, Agym, under
different \1.

We first simulate an FCFS queue and confirm that the arrival
rate that minimizes the maximal Aol performs better than
the arrival rate which minimizes the mean Aol to obtain a
fresher fused information. To this end, we consider a system
consisting of four nodes and a fusion center. The information
updating process of the nodes follows a Poisson distribution
with rate \g,k € {1,---,4}, where Zke{l,---,4} A = 0.8,
A1 varies from 0.1 to 0.5, and A\g, k € {2,3,4} follow the
ratio of 3:4:5. We further assume that the processing time,
including information transmission and calculation, follows
an exponential distribution with parameter 1. As shown in
Fig. 5, the minimum Ay, occurs when A\; = 0.1968 while
the minimum Ag,, occurs when A; = 0.1968. To further
confirm that the AoLI is smaller under the system setting of
A1 = 0.1600, we perform a 20000 times of queuing simulation
and confirm that when A\ = 0.16, S = 147, whereas for the
case A\; = 0.20, S = 153.

In the following, we will restrict the queuing length to 1
and simulate the scheduling policy that we have proposed
earlier. Since the proposed policy is discrete, we assume that
the successful transmission probability of the node 1 ranges
from 0.5 to 0.9, while the other nodes have probabilities
of 0.4,0.6,0.9, respectively. We simulate the system under
the following policies: Aol Greedy policy, Whittle’s index
policy and our Fusion Greedy policy for 20000 iterations. The
schedulers choose one node to perform transmission at each
iteration, and the fusion process is executed when three nodes
successfully transmit, in other words, M = 3. The simulation
result are shown in Fig. 6, from which it is clear tha our policy
performs significantly better than the other two as p increases.
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—H8— Aol Greedy policy

3.78 —F8— Whittle's index policy | 4
—8— Fusion Greedy policy

AoFI

29 I I I I I I I

0.5 0.55 0.6 0.65 0.7

p

0.75 0.8 0.85

Fig. 6. The mean AoFI using three scheduling policies under different
transmission success probabilities, where the proposed Fusion Greedy policy
performs the best.

Considering that IoT typically consists of a large number
of devices, we are interested in comparing the adaptability
of the proposed policy to Aol-based policies at different
system scales. Therefore, we perform another simulation of
three policies in an IoT system with a varying number of
nodes. The transmission success probability of each node is
randomly chosen from the range 0.6 to 0.9, the simulation
is also performed for 20000 iterations for each policy, one
system scheduled at each iteration, and M = 3. The simulation
results are illustrated in Fig. 7. From these results, we can see
that the proposed policy fluctuates much milder than the ones
based on Aol as the the system scale increases. Conversely, the
system AoFI increases dramatically for the Aol-based policies
as the IoT scale becomes larger. Thus, we conclude that the
newly proposed policy is more adaptable to the scaling of IoT
systems.

25 T T 1]
—8— Aol Greedy policy

—H8— Whittle's index policy
—&— Fusion Greedy policy

AoFI

5 I I I | I | I
14 16 18 20 22

system number

24

Fig. 7. The mean AoFI using three scheduling policies under different number
of nodes, where the proposed Fusion Greedy policy adapt to the scaling of
the system the best.

VI. CONCLUSION

In this paper, we have considered the problem of keeping
the fused information in an IoT system as fresh as possible.
We have proposed a new metric called the Age of Local
Information (AoLI) and discussed the differences between
AoLI and Aol. We have shown that in a FCFS queuing
system, the optimal arrival rate of AoLlI is not the one that
minimizes the summation of the multi-source Aol. Instead,
through simulation, we have shown that the system performs
better under the arrival rate that minimizes the maximal Aol.
Lastly, we have proposed a scheduling policy called the
Fused Greedy policy to minimize AoLI. Through simulation,
we have demonstrated that the proposed policy outperforms
policies such as the Whittle’s index policy or the Aol Greedy
policy. Additionally, the proposed policy exhibits much greater
adaptability to different system scales.
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