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Abstract—As a main use case of 5G and Beyond wireless net-
work, the ever-increasing machine type communications (MTC)
devices pose critical challenges over MTC network in recent
years. It is imperative to support massive MTC devices with
limited resources. To this end, Non-orthogonal multiple access
(NOMA) based random access network has been deemed as
a prospective candidate for MTC network. In this paper, we
propose a deep reinforcement learning (RL) based approach for
NOMA-based random access network with truncated channel
inversion power control. Specifically, each MTC device randomly
selects a pre-defined power level with a certain probability for
data transmission. Devices are using channel inversion power
control yet subject to the upper bound of the transmission
power. Due to the stochastic feature of the channel fading and
the limited transmission power, devices with different achievable
power levels have been categorized as different types of devices.
In order to achieve high throughput with considering the fairness
between all devices, two objective functions are formulated. One
is to maximize the minimum long-term expected throughput of
all MTC devices, the other is to maximize the geometric mean of
the long-term expected throughput for all MTC devices. A Policy
based deep reinforcement learning approach is further applied
to tune the transmission probabilities of each device to solve
the formulated optimization problems. Extensive simulations are
conducted to show the merits of our proposed approach.

Index Terms—NOMA, random access, truncated channel in-
version power control, Deep reinforcement learning

I. INTRODUCTION

The numbers of machine-type communication (MTC) de-
vices and the corresponding mobile data volume have grown
rapidly with the development of smart metering, smart traffic
surveillance, environmental monitoring, smart grid and other
Internet of Things (IoT) applications. More than 14.7 billion
machine type devices are anticipated to be connected to the
internet by the year of 2023 [1]. Due to the fact that the
channel conditions are too costly to measure and update for
low power machines, random access (RA) has attracted great
attention for MTC networks [2].

Non-orthogonal multiple access (NOMA), as a promising
technology in 5G and Beyond, allows more than one device
sharing the same time-frequency resource block, which im-
proves the spectral efficiency considerably [3]. Recently, the
notion of NOMA is applied to slotted ALOHA system in
order to achieve higher throughput for MTC network [4],

[5]. Specifically, the transmission power of devices need to
be tuned according to the channel state information (CSI)
to guarantee that the received signal strength equals to one
of some predefined values at the receiver. By empowering
each device to decide its transmission power with differ-
ent probabilities, NOMA significantly improves the network
throughput performance by resolving collisions via successive
interference cancellation (SIC) technique. However, due to the
power limitation, IoT devices may have various constraints in
a realistic IoT network. For instance, some IoT devices may
not be able to transmit in all power levels. In order to analyze
this scenario, the author in [6] developed an analytical model,
in which two type of devices has been considered and two
power levels are available at the receiver side. Based on the
analytical model, two algorithms have been proposed to find
the optimal transmission probabilities to attain the maximum
throughput and max-min fairness respectively. However, the
analytical model requires the knowledge of the number of
devices for each type, and the proposed algorithms cannot
be applied to the case with more than two power levels are
available in the system due to the complexity of formulation.

Machine learning (ML) plays an very important role in
human life these days. Reinforcement learning (RL), as a
promising solution to handle many ML problems, has been
applied extensively in NOMA based MTC networks in recent
years. In order to minimize random access channel collision,
a Q-learning algorithm has been implemented for each MTC
device to dynamically select RA slots and transmit power for
its transmission [7]. The authors in [8] extended the work
in [7] by further considering the short-packet communication
and imperfect successive interference cancellation. In [9], the
case with unsaturated traffic has been further considered.
However, the proposed Q-learning methods in [7]–[9] cannot
handle the situation when the number of supported devices
changes dynamically due to the limitation of the Q table.
Besides, the fairness between devices cannot be guaranteed. In
order to tackle those problems, NOMA based slotted ALOHA
scheme may better suit the MTC network. The author in [10]
applied reinforcement learning method to an adaptive NOMA
based p-persistent slotted ALOHA protocol. However, the
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Fig. 1: System model of a NOMA based uplink MTC network.

reversed power control has not been considered which may
cause the performance degradation.

In this work, we study the network throughput performance
of the NOMA-based slotted ALOHA in MTC network. To
capture the realistic power constraints of IoT devices and
stochastic wireless fading channels, truncated channel inver-
sion power control is considered. We first analyze the power
level design strategy in MTC network. With given power level
design, devices in the network are categorized into different
types, with some types of devices being capable to utilize
all power levels, while other types of devices only using
lower power levels. In order to guarantee the fairness between
different types of devices, two optimization problems have
been formulated, namely, to maximize the minimum long-term
expected throughput and to maximize the geometric mean of
the long-term expected throughput for devices in the network.
To solve the optimization problems effectively, a stateless
deep RL learning approach has been proposed. To the best of
our knowledge, our approach is the first to optimize network
performance of the NOMA based slotted ALOHA in MTC
network with truncated channel inversion power control, in
which more than two types of devices exist in the network.
Extensive simulations have been conducted to validate the
performance of our proposed approach.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model. The power level design
analysis is presented in Section III. Optimization problems
are formulated and a deep RL approach has been proposed
to solve the optimization problem in Section IV. The per-
formance of our proposed approach has been validated and
analyzed in Section V, followed by concluding remarks and
future work in Section VI.

II. SYSTEM MODEL
As depicted in Fig. 1, a single cell uplink MTC network

system has been considered, in which an access point (AP)
is located at the center of a circular coverage area with a
radio of R meters, and multiple IoT devices are randomly
distributed in its coverage area. The number of IoT devices
may change dynamically to capture the mobility feature of the
MTC network.

During the uplink transmission, IoT devices send data to
the AP by using NOMA based p-persistent slotted ALOHA
protocol. Specifically, time is slotted. Power-domain NOMA is
exploited to allow the AP to receive data from multiple IoT de-
vices in each time slot. During each transmission, IoT devices
can adjust its transmission power to ensure the received signal

strength at the AP side belongs to a fixed predefined set V
where V = {V1, V2, . . . , VM}, and V1 < V2 < · · · < VM . Due
to the fact that IoT devices have limited transmission power,
truncated channel inversion power control has been considered
in this scenario. This is, IoT devices in the coverage area may
not be able to adjust their transmission power to achieve all
power levels. Therefore, M type of devices could exist in
the system. i.e., The first type of devices can only utilize the
power level V1 as their received signal strength at the AP side.
The second type of devices can use all power levels less than
or equal to V2 and etc. Thus, the M -th type of devices can
exploit all M power levels. Let N = {N1,N2, . . . ,NM} be
the set of IoT devices in the system, in which Nn denotes the
set of n-th type of IoT devices and 1 ≤ n ≤M .

Similar to p-persistent slotted ALOHA protocol, a trans-
mission probabilities matrix P has been introduced to guide
the uplink transmission of IoT devices. The transmission
probabilities matrix is updated by AP and will broadcast
to all devices after every T time slots. If we use m to
indicate the index of the power level, the probability of a
n-th type of device to transmit by using m-th power level
is denoted as τn,m. Since the transmission probability for
each type of devices is less than or equal to 1, we have∑M
m=1 τn,m ≤ 1,∀n ≤ M . And τn,m = 0,∀n < m due to

the fact that n-th type of devices cannot transmit with m-th
power level when n < m. Thus, the transmission probabilities
matrix P is a triangular matrix which can be written as

P =


τ1,1 0 · · · 0
τ2,1 τ2,2 · · · 0

...
...

. . .
...

τM,1 τM,2 · · · τM,M

 .
Multiple devices may transmit simultaneously during each

time slot in a random access network. If we use N ′m to denote
the set of devices transmitting by using Vm as received power,
the received signal at the AP side can be written as

y =
∑
Vm∈V

∑
l∈N ′

m

√
Vmxl + z, (1)

where xl denotes the transmitted signals of the device l, and
z is the background noise.

The AP can decode signals sequentially by applying SIC
technique based on the descending order of the signal strength.
Specifically, the AP starts the decoding from the signal with
the highest receiving power under the interference from all
other signals which is transmitting concurrently. Without loss
of generality, we assume that the AP can decode the signal
successfully only when the SINR of the decoding signal larger
than or equal to a threshold Γ. Once the signal has been
successfully decoded, it will be canceled by the AP. Thus,
the rest signals would not be interfered by it. Throughput of
the signal that has been decoded successfully is given by

Th = log2(1 + SINR).

In contrast, if the signal has not been decoded successfully,
it cannot be canceled and will interfere the decoding of the
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following signals. The corresponding throughput of the signal
is thus 0. It is worth noting that since the AP decode signals on
the descending order of the signal strength, once a signal with
high power level cannot be decoded successfully, all following
signals cannot be decoded successfully as well. It is possible
that there are more than one devices transmitting by using the
same power level. In this case, the AP decodes their signals
sequentially in random order.

If all signals before the i-th decoding signal with the power
level Vm have been decoded and canceled successfully, the
interference comes from all following signals that haven’t
been decoded. In this case, the SINR of the signal can be
written as

SINRi
m =

Vm
Vm(|N ′m| − i) +

∑
x<m Vx|N ′x|+ δ2

, (2)

in which | · | denotes the number of devices in the correspond-
ing device set and i ≤ |N ′m|, δ2 is the normalized background
noise.

III. POWER LEVEL ANALYSIS

In this section, we analyze the constraints of power lev-
els after inversion power control. To take the advantage of
NOMA, the predefined power level set V needs to satisfy that

Vm∑
x<m Vx + δ2

≥ Γ, ∀1 < m ≤M (3)

and V1/δ
2 ≥ Γ.

Proposition 1. If we use Vmax to indicate the maximum
achievable power level of the system, the maximum number
of power levels we can have is given by

M = b
log(Vmax

δ2Γ )

log(1 + Γ)
+ 1c, (4)

in which bxc denotes the highest integer smaller than or equal
to x.

Proof. To find the maximum number of power levels, the gap
between all power levels should be as small as possible. Under
this circumstance, equation (3) can be rewritten as follow,

Vm = Γ(
∑
x<m

Vx + δ2)

= ΓVm−1 + Γ(
∑

x<m−1

Vx + δ2)

= ΓVm−1 + Vm−1. (5)

Thus, we have Vm = Vmax/(1 + Γ)(M−m). To ensure V1 ≥
δ2Γ,

Vmax
(1 + Γ)(M−1)

≥ δ2Γ

Vmax
δ2Γ

≥ (1 + Γ)(M−1)

log(Vmax

δ2Γ )

log(1 + Γ)
+ 1 ≥M. (6)

It is also possible to design power levels in other way as
long as equation (3) is satisfied, and the deep RL method
we proposed can also solve the problem. However, in the
following paper, we will focus on the case that Vm =
Vmax/(1 + Γ)(M−m) which helps us to utilize more power
levels for the MTC network.

IV. PROPOSED RL METHOD

A. Optimization Problems

Our goal is to maximize the network performance by
tuning the transmission probabilities matrix P. The most
commonly used performance matrix for IoT network is the
total expected throughput. However, total expected throughput
and fairness are generally conflicting performance metrics in
heterogeneous IoT networks. Specifically, devices belong to
the same type can achieve long term fairness in a random
access network, yet devices belong to different types use
different transmission probabilities and achieve different ex-
pected throughput. The NOMA transmission may favor the
type of devices which could help to achieve the highest total
expected throughput and stop the transmission of other type
of devices to avoid channel congestion. With considering
the fairness, two optimization problems has been considered.
The first objective function we considered in this paper is to
achieve the max-min fairness of devices in the network. In
this case, we formulate the decision problem of tuning P as
a optimization problem

(P1) maximize
P

min
(
Thl

)
, ∀l ∈ N , (7)

in which Thl is the expected throughput of device l over T
time slots.

Geometric mean of the expected throughput for all devices,
on the other hand, is a performance matrix that also considered
the fairness [10]. It is zero if any device in the network do not
have chance to transmit. With the increasing of the geometric
mean, we ensure that no device is starved without any chance
to transmit, and the expected throughput of most devices are
increasing. The corresponding optimization problem can be
written as

(P2) maximize
P

(∏
l∈N

Thl

)1/|N |

, (8)

where |N | is the number of devices in the IoT network.
The objective functions in P1 and P2 are mathematically

intractable. Therefore, we propose a data-driven approach
where a policy-based deep RL agent is applied at the AP
to learn the transmission probabilities matrix P automatically.

B. Deep RL basic

The goal of a RL approach is to find an optimal strategy, i.e.,
a sequence of actions that maximizes the long-term expected
accumulated discounted reward. Policy based RL methods,
specifically, are well-known in addressing tasks with continu-
ous action space. There are several policy based RL algorithms
which has been developed recently, i.e., REINFORCE, trust
region policy optimization (TRPO), deep deterministic policy
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gradient (DDPG), and proximal policy optimization (PPO).
Among these algorithms, PPO draws great attention due to the
fact that it is efficient, easy to be implemented and tuned [11].

In policy based RL algorithms, the most commonly used
estimator is given by

L(πθa) = Eτ [πt(at|st; θa)At(st, at)], (9)

where st and at represent state and action at time t respec-
tively, πt(at|st; θa) represents the policy at time t and θa is the
parameter of actor neural network which is used to generate
policy πt(at|st; θa). With given parameter θa, the action can
be generated by using Gaussian distribution,

πt(at|st; θa) =
1√

2πσ(st, θσ)2
exp− (at − µ(st, θu)2)

2σ(s, θσ)2
,

(10)

in which µ(st, θu) and σ(s, θσ) are generated parameters from
actor neural network. At(st, at) = Gt − Bt is the advantage
value where Gt is the discounted future reward after time t
and Bt is baseline.

It is worth noting that in PPO, data generated in previous
episode can also be used to update current policy. In order
to reuse the historical data, a clipping function is used to
avoid large changes between current updated policy and the
old policy. The clip function is given by,

clip(y, 1− ε, 1 + ε)=


y, if 1− ε < y < 1 + ε,

1− ε, if y ≤ 1− ε,
1 + ε, if y ≥ 1 + ε.

(11)

The changes between current updated policy and old policy
can be written as

rt =
πt(at|st; θnew)

πt(at|st; θold)
. (12)

Thus, the new estimator can be modified as

L(πθa) = Eτ [min(rtAt, clip(rt, 1− ε, 1 + ε)At)]. (13)

It can be found that if At(s, a) is negative, the estimator is
bounded by (1 − ε)At. On the other hand, when At(s, a) is
positive, the estimator is at most (1 + ε)At.

As an actor-critic algorithm, PPO learns the baseline by
using a critic neural network. The loss function of the critic
network is given by

Loss(st, θv) = Gt − V (st; θv), (14)

where V (st; θv) is the value generated by the critic neural
network and θv is the parameter of the critic network. During
each episode, the actor neural network optimize the estimator
L(πθa) in (13) with respect to θa and minimize the loss
function Loss(st, θv) with respect to θv .

C. Overview of Our Approach

A stateless deep RL approach has been taken to solve our
optimization problems P1 and P2, in which RL agent (PPO
network) at the AP generates a transmission probabilities
matrix P based on given power level set V; once P has been
generated, AP broadcasts it to all devices in the network. AP
knows how many devices exist in the network but do not know
the type of each device. Devices then start to upload packets
to the AP with corresponding transmission probabilities in
P. Without loss of generality, devices are aware of their
own type, so the transmission probabilities can be decided
by a device once P is received. After T time slot, the AP
calculates the reward, updates the actor critic network and
generates new transmission probabilities matrix. The stateless
deep RL problems can be formulated as Markov Decision
Process (MDPs), consisting of two key elements:
• actions: the transmission probabilities matrix P.
• reward: the reward collected during T time slots.(e.g.,

Minimum expected throughput, Geometric mean of the
expected throughput).

1) Actions: Recall that for the transmission probabilities
matrix, we need to guarantee

∑n
m=1 τn,m ≤ 1,∀n ≤ M .

One way to generate reasonable P is to introduce the Beta
distribution. Beta distribution defines on the interval [0, 1], in
which two positive parameters α and β control the shape of
the distribution. For n-th type of devices, in order to generate
τn,m,∀1 ≤ m ≤ n, we first generate continuous number an
and bn from the agent, then calculate αn = exp(an), βn =
exp(bn) to ensure αn and βn are larger than or equal to 0.
With given αn and βn, the cumulative distribution function
(CDF) of the beta distribution can be calculated easily. Let
Fn(x) be the value of the CDF at x, we have Fn(0) = 0 and
Fn(1) = 1. The probability that n-th type of devices transmit
by using m-th power level τn,m can be calculated as

τn,m = Fn

(
m

n+ 1

)
− Fn

(
m− 1

n+ 1

)
,∀1 ≤ m ≤ n. (15)

Thus, the probability that the n-th type of devices do not
transmit is 1− Fn( n

n+1 ).
2) Reward: In order to find the P that achieves the max-

min fairness, the reward is defined as the following:

R = min
(
Thl

)
, ∀l ∈ N . (16)

If the goal is to find the P which maximizes the geometric
mean of the expected throughput for all devices, the reward
is given by

R =

(∏
l∈N

Thl

)1/|N |

. (17)

We summarize our proposed approach in Algoithm1.
V. PERFORMANCE EVALUATION

The performance of a NOMA-based random access net-
work with truncated channel inversion, which adopts the
proposed deep RL approach has been evaluated in this section.
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(a) Total expected throughput as the reward func-
tion.
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(b) Geometric mean of the expected throughput
as the reward function.
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(c) Minimum expected throughput as the reward
function.

Fig. 2: Comparison between different reward functions with respect to the system performance.
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(a) Total expected throughput as the reward func-
tion.
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(b) Geometric mean of the expected throughput
as the reward function.
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(c) Minimum expected throughput as the reward
function.

Fig. 3: Comparison between different reward functions with respect to the performance of different type of devices.

Algorithm 1: Agent Learning Process

Goal: P;
Initialize: T , V , Γ;
while True do

1. Generates {a1, b1, a2, b2, . . . , aM , bM} through
actor neural network;

2. Calculate {α1, β1, α2, β2, . . . , αM , βM};
3. Generate P by using (15);
4. Broadcast P to all IoT devices in the network;
5. Wait T time slots and calculate Thl,∀l ∈ N ;
6. Calculate reward R by using (16) or (17);
7. Update weights of actor neural network and

critic neural network by optimizing (13) and
minimizing (14) respectively;

end

The IoT network parameters we used in the simulation are
M = 5, T = 3000, Vmax = 16, {|N1|, |N2|, . . . , |N5|} =
{5, 5, 8, 10, 12}, Γ = 1, δ2 = 1 if not otherwise specified. The
power level set can be calculated as mentioned in Lemma. 1,
in which V = [16, 8, 4, 2, 1]. The parameters for the deep RL

approach are shown in follow: learning rate of the actor and
critic network are 1e−4, and the clipping parameter ε is 0.3.

In Fig. 2, the network performance such as the arithmetic
mean of the expected throughput, geometric mean of the
expected throughput, and the minimum expected throughput,
are shown for the cases of (a) using total expected throughput
as the reward function, (b) using geometric mean of the
expected throughput as the reward function, and (c) using
the minimum expected throughput as the reward function
respectively. It can be intuitively seen that our approach has
fast convergence speed and is capable to find the optimal
solution. The corresponding average throughput for each type
of devices are shown in Fig. 3.

For the case (a), after convergence, the geometric mean of
the expected throughput and the minimum expected through-
put are all zeros as shown in Fig. 2a. It can also be observed
in Fig. 3a that only type 5 devices who can utilize all
power levels are transmitting. This is due to the fact that
the transmission of other type of devices will only increase
the congestion probability of the channel, the best strategy to
maximize the total expected throughput is to maximize the
performance of the type 5 devices while other type of devices
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Fig. 4: Reward of the RL approach with different V when
case (b) is considered.

stop their transmission. When it comes to the case (b), the
network performance and the average throughput for each type
of devices are shown in Fig. 2b and Fig. 3b respectively. As
can be observed that after convergence, all type of devices
are capable to transmit while the total expected throughput
is still relatively high. However, the average throughput of
devices with more power levels to utilize is higher than the
average throughput of devices with less power levels options
to transmit. In other word, the network is not totally fair
for all devices. In Fig. 2c, we plot the network performance
of case (c). As shown in this figure, after convergence, the
gap between arithmetic mean of the expected throughput,
geometric mean of the expected throughput and the minimum
expected throughput are small. This is because after maximize
the minimum expected throughput, the average throughput of
each type of devices are generally equal as shown in Fig. 3c.
Otherwise, if the average throughput of a type of devices is
smaller than the average throughput of other type of devices,
the transmission probabilities of other type of devices should
be decremented to promote the average throughput of the type
of devices with minimum expected throughput, which helps
to increase the minimum expected throughput of the network.
It is worth noting that even thought the case (c) achieves
fairness and improves the minimum throughput of the system,
the total expected throughput is lower than that of case (b),
which indicates that in order to achieve max-min fairness, the
average throughput of devices with more power levels to select
has been severely influenced.

To evaluate the effect of the power level set V on the system
performance, we depict the reward of the proposed RL ap-
proach of case (b) and case (c) in Fig. 4 and Fig. 5 respectively.
The results shown that better network performance could be
achieved with more power levels available in the system.

VI. CONCLUSION
In this paper, we introduced a novel deep RL approach for

NOMA-based slotted ALOHA network with truncated chan-
nel inversion power control. The proposed approach enables
the AP to tune the transmission probabilities matrix which
guides the uplink transmission of IoT devices to improve the
network performance. Instead of optimizing the total expected
throughput which ignored the fairness in this heterogeneous
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Fig. 5: Reward of the RL approach with different V when
case (c) is considered.

scenario, two optimization problems have been formulated to
maximize the geometric mean of the expected throughput and
the minimum expected throughput for all devices. Extensive
simulations shown that our approach helps us to find the
optimal solutions of our optimization problems. In our future
work, we will incorporate intelligent reflecting surface (IRS)
in the NOMA-based random access network.
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