
Robust Deep Learning for Wireless Network

Optimization

Shuai Zhang∗, Bo Yin∗, Suyang Wang∗, Yu Cheng∗

Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616

Abstract—Wireless optimization involves repeatedly solving
difficult optimization problems, and data-driven deep learning
techniques have great promise to alleviate this issue through
its pattern matching capability: past optimal solutions can be
used as the training data in a supervised learning paradigm so
that the neural network can generate an approximate solution
using a fraction of the computational cost, due to its high rep-
resenting power and parallel implementation. However, making
this approach practical in networking scenarios requires careful,
domain-specific consideration, currently lacking in similar works.
In this paper, we use deep learning in a wireless network
scheduling and routing to predict if subsets of the network links
are going to be used, so that the effective problem scale is reduced.
A real-world concern is the varying data importance: training
samples are not equally important due to class imbalance or
different label quality. To compensate for this fact, we develop
an adaptive sample weighting scheme which dynamically weights
the batch samples in the training process. In addition, we design
a novel loss function that uses additional network-layer feature
information to improve the solution quality. We also discuss
a post-processing step that gives a good threshold value to
balance the trade-off between prediction quality and problem
scale reduction. By numerical simulations, we demonstrate that
these measures improve both the prediction quality and scale
reduction when training from data of varied importance.

Index Terms—multi-hop wireless mesh network, deep learning,
network utility maximization

I. INTRODUCTION

Wireless optimization problems are challenging and ubiq-

uitous in many applications. Network controllers have com-

monly followed a model-based approach: a mathematical

model, parameterized by design variables, standard stipula-

tions and control variables, is formed which gives a measure

of the system utility or objective. Then given such a model,

optimization problems are solved by a network entity, e.g.,

a base station or access point, and the optimal solutions

are used as the control decision. Then this process repeats

periodically to adapt to the time-varying conditions of the

network. With the ever growing need for higher spectrum

and power efficiency and lower delay, the next generation

communication system will go through a fundamental change

in its paradigm.

To tackle this challenge, studies on the wireless network

optimization in the past years focus on the development

of approximation algorithms [1]–[3]. Wireless networks are

envisioned to be an integral part of many emerging appli-

cations, e.g., the Internet of Things (IoT), which are inher-

ently dynamic and require adaptive control. In this way, the

conventional approaches are becoming increasingly infeasible

since problem instances are solved in a case-by-case manner.

Inspired by the recent success of machine learning (ML)

in other domains, data-driven approaches receive a lot of

attention in the area of wireless network optimization.

One promising thread in wireless network optimization

follows the paradigm of supervised learning [4]–[6]. Specifi-

cally, works in this thread aim to utilize the pattern matching

capability of deep neural network (DNN) for distilling useful

insight with respect to a specific optimization task from the

historical problem instances that are solved by conventional

algorithms. The trained neural network could generalize to

new problem instances if the training data set is sufficiently

large, and if the model has the representation power to

characterize the relationship between the input and output

data. It is possible to build an end-to-end learning framework

in which the mapping from problem instances to solutions

is approximated. However, for problems that involve highly

sparse and high dimensional data, e.g., joint routing and

scheduling decisions, directly learning the mapping is difficult

in practice. Instead of building a ML model that outputs the

solutions directly, the work in [7] circumvents this difficulty

via training a DNN that learns meaningful properties of the

solution space. More precisely, the approach proposed in [7]

can identify the subspace in which an optimal or near-optimal

solution is included with high probability. As the search space

is narrowed down, the total amortized computation cost of

the conventional approximation algorithm can be significantly

reduced.

There are still several issues which hinder deep learning

from gaining more adoption in the networking field. A com-

monly encountered problem is that not all training samples

are of the same importance. This can be attributed to two

sources. First is class imbalance: it means that the probability

distribution to learn is severely distorted towards one type of

outcome over another. For example, in a D2D link scheduling

problem, most of the time links choose not to transmit. This

can lead to severe bias in the final training result as the model

is likely to output “not transmit” even when it is not supposed

to, because on average this matches the training data and is

easier to make this decision. In this sense, another sample of

not transmitting is not of much use for the training progress.

The other reason samples should not be treated equally is that

the labels’ quality can vary: the samples can be generated and

collected under subtle, different circumstances; labels can be

close to, but not exactly at the optimum of the problem to solve

due to the implementation of the conventional algorithms.

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

These minor factors in total can have an effect on the sample

labels that are similar to random noise. It is entirely possible

to train on these polluted data source and capture spurious

patterns that are not present in the testing or application.

Moreover, if the output needed by the network layer is discrete,

but the neural network provides a continuous variable, then a

proper threshold value should be established. In most works,

there is no principled approach to selecting good threshold and

the process is through simple trial-and-error, causing potential

loss of performance.

Considering these issues, we propose a novel scheme to

improve learning performance when the training samples are

of varied importance. Our contribution can be summarized as

follows:

• An adaptive sample weighting scheme. It learns the sam-

ple weights that can fit in any classification framework

without new weighting function. The weight is learned

based on how much each sample contributes to the metric

function on a separate, high quality dataset.

• An improved loss measure based on the cross entropy

function. Rather than treating each link as an equal and

independent label, we consider each link carrying a unit

flow as an independent label. In this way the link flow

information is also used to guide the learning process.

• A threshold value selection criterion to further improve

the performance. Based on Bayesian estimation, we use

an exponential family probabilistic model which gets

updated with samples of threshold values to avoid large

overhead involved in evaluation.

II. SYSTEM MODELS AND PROBLEM SETTING

We are interested in a multi-hop single-radio single-channel

wireless network, which is the general case of a D2D network.

A set of communication nodes N is randomly distributed

within a rectangular area. The time-slotted system has one

given frequency band W , assuming synchronization between

the nodes. A central node has access to the nodes’ location

information, and makes scheduling and routing decisions. At

a given time slot, a non-determined number of pairs of nodes

need to transmit to each other. The set of communication links

is denoted by E . The transmission capacity of the link between

transmitter u and receiver v is denoted by c(u, v). The multi-

commodity flow demands are denoted by K, in which each

flow k ∈ K is a source and destination tuple: k = {sk, tk}.

The system model is illustrated in Fig. 1.

In order to maximize the throughput-based system perfor-

mance, at each slot the decisions need to make are:

• scheduling, determining which subset of links to activate

to avoid interference;

• flow allocation, specifying which type of flow and how

much of it should be transported on each activated link

such that the flow conservation and link capacity is

satisfied.

We consider the communication links to follow the protocol

interference model [8]. This means a transmission from node

��

��

��

��

��
��

Fig. 1: System illustration

u to node v is successful only if no other nodes within the

detection range of v is simultaneously transmitting. Moreover,

each node works in a half-duplex manner, which prohibits the

concurrent activation of links that involve overlapping nodes.

The conflict relations among all the links can be characterized

by a conflict graph.

We adopt the pattern-based formulation in [9], where a

transmission pattern is an independent set of the conflict graph.

Formally, each pattern is characterized by a |E|-dimensional

vector, where the jth component equals to the feasible capacity

of the jth link in this pattern. More precisely, if link (u, v) is

active in pattern m, the value of its corresponding component,

denoted by pm(u, v), is c(u, v); otherwise, it equals to 0. To

ensure interference-free communications, all the transmission

patterns are supposed to be scheduled in a TDMA manner. Let

M be the set of all the transmission pattern and αm denotes

the fraction of slot allocated to pattern m.

Let fk(u, v) denote the flow allocation variable with respect

to commodity l over link (u, v). Generally, all the flow

variables need to satisfy following constraints.

• Link capacity: the sum of all the flows over a link does

not exceed its capacity, i.e.,
∑

k∈K

fk(u, v) ≤ c(u, v), ∀(u, v) ∈ E (1)

• Flow conservation: for commodity k, the amount of flow

entering an intermediate node equals to that exits the

node, i.e.,
∑

u∈N

fk(u, v) =
∑

u∈N

fk(v, u), ∀v �= sk, tk; ∀k ∈ K

(2)

The interference-free requirement introduces following con-

straints.

∑

k∈K

fk(u, v) ≤
∑

m∈M

αmpm(u, v), ∀(u, v) ∈ E (3)

∑

m∈M

αm = 1 (4)

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

With the demand of commodity k being expressed as

dk =
∑

v∈N

fk(sk, v)−
∑

v∈N

fk(v, sk), (5)

the maximum multi-commodity flow problem in wireless

networks can be formulated as

Maximize
{fk(u,v)},{am}

∑

k∈K

dk (6)

s.t. constraints (1), (2), (3), (4)

fk(u, v) ≥ 0, ∀(u, v) ∈ E , k ∈ K

αm ≥ 0, ∀m ∈ M

The problem described above has the form of linear pro-

gramming, because the objective and constraints are linear

functions. However, it is easy to see that to obtain a set of

non-interfering tuple links is equivalent to finding a graph

coloring of links. Therefore the problem is essentially a mixed-

integer linear programming (MINLP) type with an exponential

number of variables, since each transmission pattern requires

a time variable in the formulation Eq. (4). It is not practical

to enumerate all patterns and use a standard linear program-

ming solver. Practical algorithms typically employ the column

generation method [10], which starts from an initial set of

transmission patterns, solve a partial problem and use the

dual solution to generate new pattern to add in the problem.

Following this procedural column generation, a solution suffi-

ciently close to the optimum solution to the original problem is

obtained. In this way the algorithm memory usage is saved and

complexity can be controlled as a trade-off with the objective.

The reader is referred to the work [9] for a more detailed

account of this method, which we use as a teacher algorithm

in the later sections. The key intuition behind it is that the final

optimum result only makes use of a very small subset out of

all the transmission patterns, and most of the other patterns

are given zero time share.

III. MACHINE-LEARNING BASED SCHEDULING

In this section we explain how supervised learning paradigm

is used to alleviate the problem’s complexity and explore the

aspects where the deep learning could be more efficient.

A. Supervised Learning for Problem Scale Reduction

Consider the combinatorial nature of problem (6), we adopt

the framework proposed in [7] to develop our ML model, in

which intermediate characterizations of the problem instances,

i.e., link usefulness, are learned to reduce the problem scale.

Roughly speaking, a link is considered to be useful if it is

activated to accommodate arbitrary commodity flows. It is

shown in [7] that the computational complexity of the column

generation based optimization can be amortized significantly

through removing those links that are probably useless.

In this framework, the ML model is trained in a super-

vised learning fashion. Formally, the training dataset Dtrain �

{(x(i),y(i))}i captures the optimization results of past prob-

lem instances. x(i) denotes the vector representation1 of prob-

lem instance i and y(i) characterizes the ground truth in terms

of the link usefulness in the solution to this instance, i.e.,

y(i) = {
(
∑

k∈K(i) f
(i)
k

(u,v)>0)
: (u, v) ∈ E(i)}, (7)

where (·) is the indicator function and superscript (i) is used

to index the problem instance. A DNN is trained over Dtrain

to learn a reasonable mapping from x(i) to y(i). Given a new

problem instance with representation vector x(j), the output

of the DNN, say ŷ(j), indicates the activation probabilities of

the communication links. With the knowledge of this predicted

result, the network topology of instance j can be pruned

properly to generate a reduced-size problem instance, which

can be solved more efficiently by conventional algorithms.

During the training process, the parameters of the DNN

are updated iteratively via the backpropagation method, with

the objective of minimizing a loss measure L that quantifies

the discrepancy between the predicted output and the ground

truth. Typically, the loss measure L needs to be continuous

and differentiable, since the the backpropagation method is

gradient-based. However, task related performance measures

may not always have such a property. For example, if the

target y(i) is a discrete variable representing categories, then

in such classification problems, commonly used measures such

as accuracy, precision and F scores are not differentiable. Note

that y(i) in Dtrain is a binary vector, the link prediction can be

considered as a multi-label binary classification task. In this

way, a natural loss function is the average cross-entropy loss,

i.e.,

L(ŷ(i),y(i)) = −
1

|E(i)|

|E(i)|∑

n=1

(ŷ(i)n log(y(i)n)

+ (1− ŷ(i)n) log(1− y(i)n)),
(8)

where ŷ
(i)
n and y

(i)
n respectively denote the n-th component of

ŷ(i) and y(i).

B. Adaptive Sample Weights

Recall that in supervised learning, given the training dataset

Dtrain � {(xi,yi)}i, the training process can be expressed by

the optimization problem

minimize
θ

1

|Dtrain|

|Dtrain|∑

i=1

L(ŷ(i)(θ),y(i)) (9)

ŷ(i)(θ) � φ(x(i);θ) (10)

where ŷ(i) is the predicted result given the input x(i) produced

by the neural network φ parameterized by theta. After

training, the parameterized neural function should minimize

the expected loss measure L across all sample points.

This scheme works well when all the training samples have

consistent importance, so all the samples contribute equally

1
x
(i) can be either meta-features of the problem instance or intrinsic

structures that are extracted via representation learning approaches.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

when calculating the gradients of the output with respect to

the model parameters. However, if a large portion N of the

samples, denoted as D ⊂ Dtrain are labeled with corruptions,

and only a small subset Dhq ⊂ Dtrain of M (M � N)

samples can be verified to have high-quality labels, it is no

longer appropriate to give them equal weight in the parameter

updating. But it would also be a waste of data if one only

trains with Dhq , and the model quality could suffer due

to a smaller dataset. The better approach would be to give

samples individual weights according to its importance. It is

possible to identify and manually lower the weight of the low

quality sample points before the training; but this requires

the user to supply a weighting scheme independent of the

learning progress, and the selection of a good scheme is

essentially optimizing new hyperparameters requiring careful

tuning before it can be integrated into an existing workflow.

Different from that, we propose to use a learning approach

where a sample weighting scheme is generated from the high-

quality data during the training process. Adapted from a

mete-learning perspective [11], this approach fits into existing

supervised learning framework widely used in networking

applications, without requiring significant changes to the steps

in a typical learning process.

We hope to derive the sample-wise weight coefficients w =
{wi}i, where the index i is used in the dataset D and each

weight is a non-negative number. It is required to satisfy the

following relationship:

θ′(w) = argmin
θ

N∑

i=1

wiL(ŷ
(i)(θ),y(i)) (11)

w∗ = argmin
w≥0

1

M

M∑

i=1

J (ŷ(i)(θ′(w)),y(i)), (12)

where J is a continuous function that can be an identical to

or different from the loss L.

The above relationship comes from the following intuitive

observation: for each sample weight vector w, when it is

applied in a training step on the set D, there exists an

updated set of model parameters θ′(w), obtained from the

optimizer process, as w’s function. We can test this new

model parameter’s performance by a weight penalty function

J on the high-quality dataset Dhq , and since the labels can

be trusted to be good, the J function’s value should be a

good indicator of the new parameter’s quality unaffected by

any degradation from the data. Notice that the J function

can be non-differentiable, if its form permits finding a best

w efficiently. And because J value is a function of the

sample weights, one can find the corresponding best w which

minimizes it.

However, although the mentioned best sample weights exist,

practically it is not always feasible to attempt to find them

directly. This is because the set of training samples can be

very large, and to solve the equations to accuracy would need

several rounds through it. Besides, today’s learning process

performs parameter updates with mini-batches of sample data

rather than one sample at a time, so the above relationship

should be adapted to accommodate it. Another relevant factor

is that the new parameter is likely to not be a linear function

of the gradient in many optimizer algorithms used today, e.g.,

Adam-like optimizers that make use of higher-order gradient

statistics to regulate the effective learning rate, making it even

more difficult to find the best sample weight.

To make the process practical in the presence of the above

difficulties, we include the two additional approximating as-

sumptions:

• the new parameter θ′ can be approximated by a linear

function of the sample weights w, and the penalty func-

tion J is differentiable w.r.t to w;

• instead of finding the best w′, in each iteration use a fixed

number of gradient descent step to find a good enough

w̃′.

The above assumptions enables us to obtain differentiated

weighting without incurring a large number of iterative updates

to w, as we observed in the numerical experiments. With

the first assumption, one can directly use gradient descent to

improve current w; the second assumption uses the certain

number gradient steps to get a surrogate of the optimum w.

We can observe the relationship between the gradient with

respect to each sample weight to understand the behavior:

θ′(w) = θ − ηeff∇θ

1

N

N∑

i=1

wiL(φ(x
(i),θ),y(i)) (13)

∇wi
θ′ = −ηeff∇θL(φ(x

(i),θ),y(i)) (14)

∇wi

M∑

i=1

J =
1

M

M∑

i=1

∇1J · ∇θφ · ∇wi
θ′

= −
1

M

M∑

i=1

∇θJ (φ(x(i),θ),y(i)) · ηeff∇θL(φ(x
(i),θ),y(i))

(15)

From Eq. (15), it is clear that when the two gradient expression

is similar, i.e., having a large product, then the weight will

become larger, since the weight is updated with the negative

of gradient. At the same time, the update is still regulated with

the effective step length ηeff, so adjustable learning rate plays

a role here, adjusting how much the sample weight is changed

each time these steps are executed. In the context of network

link evaluation, this would mean that the each sample in the

set D is weighted according to how similar the gradient flow

it causes to the loss L compared with the average gradient

caused by the high-quality samples to the penalty function J .

C. Choice of Penalty Function J in link prediction

From previous analysis we have seen that the weights are

based on gradient similarity, then it is obvious that use J = L
is acceptable. However, if in the high quality set Dhq, there are

additional network layer information available, we can choose

a different J function to take advantage of that.

If cross entropy is chosen, then for any graph instance g,

minimizing the cross-entropy from the predicted link usage

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

to the actual link usage is equivalent to maximizing the

probability ∏

i∈Eg

ŷ
yi

i (1− ŷi)
1−yi . (16)

Such a probability measure contains an implicit assumption

that whether the prediction is right or wrong contributes

equally to how the model parameters are adjusted. This

assumption is valid when the underlying objects in the predic-

tions are largely unrelated and equally important; the outputs

can be said to be “structure-less”. But if the outputs here

correspond to the links in a network, it is no longer appropriate

because the links due to the graph topology have different

topological importance. For example, some links can act

as bottlenecks that are part of a minimum cut, so wrong

predictions at this links are likely to cause the prediction

quality to suffer. In this case, the output labels contain a

structure that should reflect in the design choice of the penalty

function.

Considering this, suppose that in Dhq , in addition to label,

there exists another information vector z ∈ R+ that is

correlated to y and holds information about the structural

importance of each output label. The new penalty function

can take the form
∏

i∈Eg

ŷ
(1+βsigmoid(zi))yi

i (1− ŷi)
(1+βsigmoid(zi))(1−yi). (17)

Now each link with importance zi is treated as (1 +
βsigmoid(zi) copies stacked together. This scheme favors the

link more important structurally.

D. Threshold value optimization

The neural model as we have shown is still a continuous

one. In the training phase, we could use continuous proxy

measures such as cross-entropy that measures how good the

decision is. But when the model is put to use, the only output

that matters is the discrete decision variables. Converting from

a continuous output to a discrete variables is typically done

through the use of threshold values: if the final output ŷ is one

of the 2 possibilities, then ŷ = 0 if ŷ ≥ p and 1 otherwise.

In our case, the threshold value has a large impact on the

final system performance. There are two key performance

metrics used:

• approximation ratio r, expressed as the ratio of reduced

problem instance optimization objective value to the value

of the original problem.

• time cost reduction dt. This measures the fraction of run

time saved by solving a smaller problem instance. Note

that it also considers the additional run time caused by

the loss of connectivity: if the reduced problem instance

does not have a feasible solution, then the algorithm will

attempt to add back links that are not present, in the order

of link score.

For easy comparison, we use their sum as the scalar value

called solution merit: ξ(α) = E r(α) + dt(α), where α is

the threshold value to be chosen and the expectation is taken

over problem instances. Then finding a good threshold value

is equivalent to maximizing the merit value. The relationship

between the threshold value and the merit value is not a

straightforward one. A lower threshold value includes more

links in the solution, and it increases the approximation ratio

and at the same time reduces the time cost reduction because

the problem has cut off less links. Similarly, a higher threshold

value prunes off links more aggressively, and this causes

solution quality to be likely lower, and may decrease the

solution time, because the pruning may cause the system to

become infeasible and additional time is needed to revert the

instance to a feasible one.

Typically to choose a good threshold value to is through

trial-and-error: one can use a grid search, where the neighbor-

hood of valid threshold values is divided into small regions and

a best region can be picked by evaluating them all. However,

considering the inherent structure of this problem, we adopt

a Bayesian approach for finding good threshold values. This

method is a fitting one because the relationship between the

merit and the threshold value is not explicitly expressible

with closed-form expressions and thus hard to apply typical

optimization techniques; Moreover, it is expensive to evaluate

even one point of this relationship, since we have to iterate

over all the points in Dhq for every α. The Bayesian ap-

proach maintains an internal probabilistic model whose mean

approaches ξ(α) as more samples are observed, thus making it

efficient to rapidly finding a good α given limited knowledge

of the function.

In this iterative algorithm, first we assume that without

further information, the α is described with a type of distri-

bution P0(α; γ) within a specified range. We start with a set

of observation points in the form of (αi, ξ(αi))i, then fit the

distribution according to these observations. With the updated

probabilistic model P ′ of α, the next point to sample α′ is

given by the expected improvement [12] method:

α′ = argmax
α

E
P ′

max(ξ(α)− ξ(α+), 0), (18)

where ξ(α+) is the largest value observed so far. This step uses

the probabilistic model to estimate the expected improvement

over the current best value, and returns the currently unob-

served point α′ to evaluate next. The algorithmic steps are

summarized in the following listing.

IV. NUMERICAL RESULTS

We implement this system with the existing software frame-

work Pytorch [13] in Python, and conducted experiments to

test its system performance. We consider the testing network

to be located within a square area of 1000 meters sides,

with its illustration shown in Fig. 1 and the parameters

listed in Table I. The communication nodes are randomly

distributed with a minimum separation of 0.5m. Two nodes are

connected by a link if their distance is smaller than the system

parameter transmit range and links present as an interference

if their distance is smaller than detection range. Once the

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Threshold Generation

input : P0(α), range of α, ξ, MaxIter, n0

output: threshold value α∗

Sample and Evaluate n0 points in the range of α

randomly

Let i = 1
while i ≤ MaxIter do

Let Pi be the updated distribution of α with all

observed data

αi = argmax ζ(α;Pi)
Record (αi, ξ(αi)

end

experiment area square 1000m, 1000m

transmit range 100m

detection range 200m

Number of Nodes [16, 64]

Train, Validation, Test 10000, 1500, 500

Batch size 16

β 3

Probabilistic Model Gaussian Process Matern kernel

Kernel Parameter Scale=1, nu=3.5

TABLE I: List of Parameters Used

node positions are calculated, the link capacity is taken as the

Shannon capacity with no interference and only white noise.

We generate data at two network scales, 16 nodes and 64

nodes respectively. For each scale we use 5 different node

location configurations and average the performance results.

For each setting, we use conventional teacher algorithm listed

in reference [14] to generate the link usage information for

12000 instances. These instances’ inputs are different by the

traffic demand and random perturbations to the link capacities.

Among the training samples, we add random noise to the link

information such that around 5% of the links receive wrong

labels. The validation and test sets contain samples where no

errors are introduced. The difference between the validation

In implementing the adaptive weight generation, we only use

one gradient step in obtaining xw and adopt a small batch

size, which is not optimized in order to save time on the

training progress. For the threshold optimization, the Matern

kernel [15] is used, which is a generalized Gaussian radial

basis function commonly used in probabilistic models.

In Fig. 2 we show the training progress plot, demonstrating

the effectiveness of adding adaptive sample weights to increase

the final validation performance. We can see that across the

two network scales, in the presence of varied quality data, the

general trend is that the performance metrics has a marked de-

crease without additional measures, and the training progress

is also slower. With adaptive weights, such degradation can

be alleviated partially, although there is still a gap from the

performance gained from clean data.

Regarding the choice of penalty function, we find that

(a) 16 nodes

(b) 64 nodes

Fig. 2: The F1-score vs Training iterations

by adding additional network-layer information, there is a

moderate increase in the prediction accuracy. This is expected

because in our problem, the output labels have a hidden

structure and therefore loss function should reflect that fact.

In Fig. 3 we show how the optimum threshold is estimated

by the Bayesian method. Several estimated ξ function, ob-

tained as the mean of the Matern process, is plotted in the

same frame. We can see that with more sampled α, ξ(α) pairs,

the estimated function converges to a reasonable estimation.

Another way of choosing a good threshold value is to choose

α such that the F1 score is maximized [16]. We also compare

the rule-of-thumb of choosing 0.5 as the threshold because

the output is a real number between 0 and 1. The results

clearly indicate that our approach is superior for finding a

better threshold. For small variations of α, the solution merit

value can still demonstrate significant difference in the final

test performance.

V. SUMMARY

We propose a data-driven deep neural networks-based ap-

proach in the wireless optimization task to identify important

network links in scheduling and multi-hop flow routing. To

make the learning process robust in the presence of varied-

quality data, we develop an adaptive sample weight scheme,

and use a improved penalty function and threshold selection

method to enhance the learning results from such data. The

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The convergence of the Bayesian estimation to the best

α value, marked by the vertical line. All the α values evaluated

are marked with ”x”. The other methods’ solutions are marked

with red and black dot.

simulation results confirm that these measures combined result

in a higher solution quality at the cost of additional processing.

As data becomes a more pressing issue, future work is

expected to explore techniques for the learning model to deal

with the issues related to it.

REFERENCES

[1] D. Chafekar, V. A. Kumar, M. V. Marathe, S. Parthasarathy,
and A. Srinivasan, “Approximation algorithms for computing
capacity of wireless networks with sinr constraints,” in Proc.
of IEEE INFOCOM, 2008, pp. 1166–1174.

[2] S. Misra, S. D. Hong, G. Xue, and J. Tang, “Constrained
relay node placement in wireless sensor networks: Formulation
and approximations,” IEEE/ACM Transactions on Networking,
vol. 18, no. 2, pp. 434–447, 2010.

[3] R. Gandhi, Y.-A. Kim, S. Lee, J. Ryu, and P.-J. Wan, “Approx-
imation algorithms for data broadcast in wireless networks,”
IEEE Transactions on Mobile Computing, vol. 11, no. 7,
pp. 1237–1248, 2012.

[4] M. A. Wijaya, K. Fukawa, and H. Suzuki, “Neural network
based transmit power control and interference cancellation for
mimo small cell networks,” IEICE Transactions on Commu-
nications, vol. 99, no. 5, pp. 1157–1169, 2016.

[5] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T.
Inoue, and K. Mizutani, “On removing routing protocol from
future wireless networks: A real-time deep learning approach
for intelligent traffic control,” IEEE Wireless Communications,
vol. 25, no. 1, pp. 154–160, 2017.

[6] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D.
Sidiropoulos, “Learning to optimize: Training deep neural
networks for interference management,” IEEE Transactions on
Signal Processing, vol. 66, no. 20, pp. 5438–5453, 2018.

[7] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep
learning meets wireless network optimization: Identify critical
links,” IEEE Transactions on Network Science and Engineer-
ing, 2018.

[8] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE Transactions on information theory, vol. 46, no. 2,
pp. 388–404, 2000.

[9] Y. Cheng, X. Cao, X. S. Shen, D. M. Shila, and H. Li, “A
systematic study of the delayed column generation method
for optimizing wireless networks,” in Proceedings of ACM
MobiHoc, 2014, pp. 23–32.

[10] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear opti-
mization. Athena Scientific Belmont, MA, 1997, vol. 6.

[11] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to
reweight examples for robust deep learning,” arXiv preprint
arXiv:1803.09050, 2018.

[12] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of
Global optimization, vol. 13, no. 4, pp. 455–492, 1998.

[13] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.
DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in pytorch,” in NIPS-W, 2017.

[14] L. Liu, X. Cao, Y. Cheng, and Z. Niu, “Energy-efficient sleep
scheduling for delay-constrained applications over WLANs,”
IEEE Transactions on Vehicular Technology, vol. 63, no. 5,
pp. 2048–2058, Jun. 2014.

[15] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning, Springer, 2003, pp. 63–
71.

[16] Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal
thresholding of classifiers to maximize f1 measure,” in Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, 2014, pp. 225–239.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 29,2020 at 02:35:55 UTC from IEEE Xplore. Restrictions apply.

