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Abstract— The Packet-pair dispersion techniques are the most
common probing-based approach to measuring the bottleneck
capacity of a path. In practice, the dispersion measurement, and
therefore the bandwidth estimation, could be seriously distorted
by the cross traffic queuing between or in front of the probe
packet pair. Almost all the existing packet-pair techniques depend
on heuristic filtering methods to find a final capacity estimate. In
this paper, we take a different perspective to exploit the cross-
traffic effect. We develop a queueing model to describe the output
packet-pair dispersions interfered by the cross traffic, based on
which a new measurement technique to estimate the available
bandwidth is derived. Another important contribution is that we
for the first time reveal that the statistics of the cross traffic,
e.g. the marginal distribution and the autocovariance function
of the arrival process, can also be inferred from the stochastic
behavior of the output packet dispersions. Efficiency of the pro-
posed available bandwidth estimation and traffic characterization
techniques are demonstrated by computer simulations.

I. INTRODUCTION

The end-based network measurement has attracted wide
attention in recent years, by which internal network status
is indirectly inferred from end-to-end or edge-to-edge active
or passive traffic measurements [1]. The end-based approach
is more feasible than the router-based approach by requiring
cooperation of only the path end-points. While the end-based
approach greatly facilitates customers’ awareness of network
status, it can also bring higher flexibility and scalability to the
network management [2], [3].

Packet dispersion techniques [4]–[7] are the most popular
end-based approach for bandwidth measurement. Two band-
width metrics that are commonly associated with a path are the
capacity and the available bandwidth [7]. According to [7],
we refer to the capacity limiting link as narrow link and to
the available bandwidth limiting link as tight link, to avoid
the ambiguity of the term bottleneck link which has been
widely used for both metrics. Among the packet dispersion
techniques, the pack-pair dispersion techniques are normally
used for measuring the capacity of a path, and the packet-train
dispersion techniques normally for measuring the available

bandwidth of a path [8]. This paper focuses on the packet-
pair techniques.

The basic idea of the packet-pair technique is that when a
back-to-back probe packet pair of the same size is launched
into a network, assuming no cross-traffic, the packet pair will
be maximally dispersed at the narrow link, and the dispersion
will go through the downstream links to reach the destination.
If knowing the probe packet size, the receiver can then
estimate the capacity of the path from the measured disper-
sion. Unfortunately, the cross traffic, referring to the Internet
traffic that shares the same first-come-first-serve (FCFS) buffer
with the probe packet pair, exist in practice. The dispersion
received can be either expanded by the cross-traffic packets
queueing between the probe packet pair at the narrow link, or
compressed by the cross-traffic packets queueing in front of the
probe pair downstream of the narrow link. The expansion or
compression of the dispersion will lead to under-estimation or
over-estimation of the path capacity, respectively. To overcome
this problem, the common approach is to generate a reasonable
number of dispersion samples, maybe from packet pairs with
different sizes, and use some heuristic filtering methods to find
the final bandwidth estimation [5], [6], [9], [10].

In this paper, we give a new exploitation of the packet-
pair dispersion techniques by developing a queueing model
to describe the impact of the cross traffic on the packet-pair
dispersion. The study is motivated by the objective to build a
systematic methodology to infer internal network status from
end-to-end measurements. Based on the queueing model, we
find that the queueing behavior of the probe packet pair can
be divided into two situations. One is that the packet pair are
served in the same busy period of the queue, where the packet
pair is termed as a united pair; the other is that the two probe
packets fall into different busy periods, where the packet pair
is termed as a divided pair. The dispersions from the united
pairs and divided pairs have different distributions. While
the divided-pair dispersions are exploited to derive a simple
and efficient available bandwidth measurement approach, the
united-pair dispersions are exploited for traffic characteri-



zation, that is, extracting the statistics (e.g. the marginal
distribution and the autocovariance function [11], [12]) of the
cross traffic. It is noteworthy that traffic characterization can
be used to enhance QoS control on the customer side and
facilitate resource management on the network side through
queueing analysis or effective bandwidth techniques [12]–[14].
To the best of our knowledge, no similar dispersion technique
for traffic characterization has been presented in the literature.

The remainder of this paper is organized as follows. Sec-
tion II gives a review of the related work. Section III describes
the queueing model governing the output dispersions under the
cross traffic. Section IV and Section V present the proposed
available bandwidth measurement and the traffic characteriza-
tion techniques, respectively. Section VI presents simulation
results to demonstrate the performance. Section VII gives the
concluding remarks.

II. RELATED WORK

It is indicated in [15] that the dispersion expansion or com-
pression due to the cross-traffic leads to multimodal distribu-
tion of the bandwidth measurements. The relationship between
the network load, cross-traffic packet size, probe packet size
and the location and strength of different modes has been
investigated in [7], based on which a filtering methodology
is proposed. Pasztor and Veitch proposed a queueing model
in [16] to formalize and unify the network dispersion effect,
which is the most related work to our study. Nevertheless, we
step further in this paper to decode the statistic information of
the cross traffic from the dispersion measurements. Moreover,
in [16] the available bandwidth is estimated by united-pair
measurement (according to our terminologies), while in this
paper we estimate the available bandwidth by divided-pair
measurement.

With FCFS forwarding, the available bandwidth is only
meaningful over an averaging timescale [8]. Therefore, the
packet-train dispersion techniques [6], [17], instead of the
packet-pair dispersion, are normally used to measure the avail-
able bandwidth. Recently, Dovrolis, Ramanathan, and Moore
showed that the dispersion of long packet trains does not
measure the available bandwidth of a path; instead, it measures
a different throughput metric referred to as the asymptotic
dispersion rate (ADR) [7], [18]. The SLoPS technique [8]
detects the available bandwidth by sending probe packet
streams with variable testing rates, based on the observation
that the one-way delay of a packet stream increase obviously
when the streams’ rate is higher than the available bandwidth.
The TOPP technique [19] shows that such a delay principle
can be combined with the packet-pair dispersion measurement
to estimate the available bandwidth. Note that the available
bandwidth estimation techniques proposed in this paper also
use packet-pair dispersion measurement, but based on queue-
ing analysis.

III. PACKET-PAIR DISPERSION

In this section, we describe a queueing model to formalize
the packet-pair dispersion behavior. We model a store-and-
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Fig. 1. Two types of dispersion behaviors: (a) the second packet reaches
queue i before the first leaves, (b) the second packet reaches queue i after
the first has departed.

forward router on a path as a FCFS queue which is served at
a fixed rate of C bits per second (or equivalently bytes per
second), the capacity of the link connected to the router. A
network path consisting of links from 1 to n is modeled as
the concatenation of n queues, where each queue has serving
capacity Ci (1 ≤ i ≤ n). We define a probe packet pair as
two consecutive probe packets that are transmitted along a path
between the source and the destination. The first packet in the
pair has a size L(1) bits, and the second packet has a size
L(2). If L(1) = L(2), then the packet-pair is called symmetric,
otherwise it is called asymmetric. We refer to other packets in
the network other than the probe traffic as cross traffic.

A. Dispersion Governing Equations

The packet-pair dispersion at a given point is defined as
the the time when the last bit of the first packet arrives at the
point to the time when the last bit of the second packet arrives.
The dispersion of a packet pair leaving queue i is denoted
as ∆i, also termed as the output dispersion of queue i. We
assume that the propagation delay along a link is constant, and
therefore the output dispersion from a queue is equal to the
input dispersion at the next downstream queue.

The packet-pair dispersion behavior at a queue i can fall in
two cases [7], as illustrated in Fig. 1. In one case the second
probe packet arrives before the first probe packet leaves the
queue, and in the other case the second probe packet arrives
after the first probe packet has left. For queue i, the two
cases of the output dispersion are described by the following
governing equations [7]:

∆i =

{

σ
(2)
i if ∆i−1 ≤ σ

(1)
i

∆i−1 + σ
(2)
i − σ

(1)
i otherwise

(1)

where σ
(j)
i = τ

(j)
i +W

(j)
i and τ

(j)
i = L(j)

Ci
for j = 1, 2. W (1)

i

is the queueing delay of the first probe packet, and W
(2)
i is the

queueing delay of the second probe packet due to the cross
traffic inserted between the probe packet pair.



B. Cross-Traffic Effect

In the dispersion governing equations, the cross traffic
affects the output dispersion through the queueing delay W

(j)
i .

To explicitly describe the cross traffic effect, we classify the
packet-pair probing into two cases. The first case is defined as
united-pair probing, where the two probe packets fall in the
same busy period of the queueing process. In this case, the
server is always busy before the second packet arrives, while
the first probe packet may depart before or after the second
probe packet arrives. Let A(t) denote the cross-traffic arrival
process (in bytes) to the queue, the output dispersion in this
case is

∆i =
A(∆i−1) + L(2)

Ci

. (2)

The second case is defined as divided-pair probing, where the
two probe packets fall in different busy periods of the queueing
process. In this case, the first probe packet definitely leaves
before the second probe packet arrives, as shown in Fig. 1(b).
The output dispersion in this case is

∆i = ∆i−1 +
L(2) − L(1)

Ci

+W
(2)
i −W

(1)
i . (3)

In summary, the output dispersion under the cross-traffic effect
can be expressed as

∆i =

{

A(∆i−1)
Ci

+ L(2)

Ci
for united-pairs

∆i−1 +
L(2)−L(1)

Ci
+W

(2)
i −W

(1)
i for divided-pairs.

(4)

IV. AVAILABLE BANDWIDTH ESTIMATION

According to the dispersion governing equation (4), the
united-pair measurement is normally combined with the exist-
ing filtering techniques to estimate the capacity of the narrow
link along a path [7]. In this section, we propose a novel
divided-pair measurement method derived from (4) to estimate
the available bandwidth of a path.

The available bandwidth is estimated through the utilization
measurement. In a FCFS work-conserving queue, the utiliza-
tion factor u is defined as the proportion of time that the link is
busy. Assume the queue is infinite and no packet loss happens,
the utilization of link-i can be expressed as

ui =
ri
Ci

(5)

where Ci is the link capacity, and ri = limt→∞

Ai(t)
t

is the
average rate of the traffic arrival process Ai(t) to queue-i.
According to [7], the available bandwidth at link i is defined
as Ai = Ci(1 − ui), and the available bandwidth of a path
having H hops is

A = min
i=1...H

Ci(1− ui) = Atight-link. (6)

With symmetric united-pair probing, it is not difficult to
derive from (4) that

ui =
E[∆i]− L(2)/Ci

∆i−1
.

In this method, the link capacity should be measured first for
utilization estimation; the capacity estimation error will then
impact the utilization measurement. Such a disadvantage can
be avoided by divided-pair measurement.

If we use symmetric divided-pairs, from (4), we know that

∆i = ∆i−1 +W
(2)
i −W

(1)
i . (7)

As the two probe packets are in different busy periods, the
amount of queued traffic they see (and therefore the two delay-
times W

(1)
i and W

(2)
i ) are independent and have the same

distribution, assuming a stationary queueing process.
In order to find the utilization, we first investigate the

probability of W
(1)
i = W

(2)
i . Considering the possible two

cases, we have

P
[

W
(1)
i =W

(2)
i

]

=P
[

W
(1)
i =W

(2)
i = 0

]

+

P
[

W
(1)
i =W

(2)
i 6= 0

]

.

It is far more likely for the waiting times to be equal due to
that both probe packets found the queue empty (a common
occurrence, especially in low-utilization cases) than due to
that the two non-zero waiting times are equal. Therefore, it
is reasonable to get the approximation

P
[

W
(1)
i =W

(2)
i

]

≈ P
[

W
(1)
i = 0,W

(2)
i = 0

]

= P
[

W
(1)
i = 0

]

P
[

W
(2)
i = 0

]

. (8)

Furthermore, according to the definition of the utilization
factor, we have1,

P
[

W
(1)
i = 0

]

= P
[

W
(2)
i = 0

]

≈ P [link is idle] = 1− ui.

(9)

Combining (7), (8), and (9), we obtain

P [∆i = ∆i−1] = P
[

W
(1)
i =W

(2)
i

]

≈ (1− ui)
2 (10)

where an estimator of ui can then be derived as

ûi ≈ 1−
√

P [∆i = ∆i−1]. (11)

It is expected that the estimator of (11) has a good per-
formance when the utilization is not very high, which will be
demonstrated through simulations in Section VI. The estimator
can also be applied to a multi-queue path. Without loss of
generality, we denote link-1 as the tight link of a path with H
hops. The relationship of (10) can then be extended to

P [∆i = ∆i−1] ≈ (1− u1)
2
H
∏

i=2

(1− ui)
2. (12)

If the utilization of other links is much lower than that of
the tight link, i.e.

∏H
i=2(1 − ui)

2 ≈ 1, the estimator of
(11) can then well approximate u1. In a more strict sense,
it is not difficult to see that the estimation from (11) gives a
upper bound of u1 in the multi-queue case. To the best our
knowledge, no measurement technique similar to the proposed
divided-pair estimation has yet been presented in the literature.

1If the input process is a Poisson process, the “≈” in (9) can be replaced by
a “=”, according to the PASTA theory (i.e. Poisson arrivals see time average).



V. TRAFFIC CHARACTERIZATION

In this section, we show that the packet-pair dispersion mea-
surements can be used to estimate the statistical characteristics,
e.g. the marginal distribution and the autocovariance function
of the cross-traffic packet arrival process. To facilitate the
estimation, we use the independent and identically distributed
(iid) packet-size assumption and the fact that Internet packet
size follows a known multi-modal distribution.

A. Internet Packet Size Distribution

Internet measurements have shown that packets of a few
sizes tend to make up the vast majority of Internet packets
[20]–[23]. As an example, we refer to the measurements
performed by the Cooperative Association for Internet Data
Analysis (CAIDA) on the traffic passing through the NASA
Ames Internet Exchange (AIX) between February 21st and
27th, 2000 [20]. The cumulative distribution function of the
packet sizes is re-plotted in Fig. 2. From the figure, it can be
seen that the vast majority of packets were of a few sizes, i.e.
40 bytes, 576 bytes, and 1500 bytes, which is attributed to the
behavior of the Transport Control Protocol (TCP). As CAIDA
does not provide the histogram, we produce an approximate
numerical probability mass function (PMF) from Fig. 2:

P [S = k] =































0 k ∈ {0, 1, . . . , 39}
0.50 k = 40
0.13
575−40 k ∈ {41, 42, . . . , 575}

0.17 k = 576
0.03

1499−576 k ∈ {577, . . . , 1499}

0.17 k = 1500

(13)

B. Cross-Traffic Marginal Distribution Estimation

In the following, we develop a method to estimate the
marginal distribution of packet arrival process and the marginal
packet-size distribution, based on the probability generating
function (PGF).

Consider a united-pair with dispersion ∆ is sent to probe
a queue. Cross-traffic can be completely described by two
random variables, which are the random variable N(∆) to
denote the number of packets that arrive in a given interval
∆, and the random variable S to denote the packet size. The
total amount of cross-traffic A(∆) can then be expressed as
A(∆) =

∑N(∆)
n=0 Sn, where Sn are iid random variables.

Let us define the PGFs of N(∆) and X as

GN(∆)(z) = E[zN(∆)] =
∞
∑

k=0

P [N(∆) = k]zk (14)

GS(z) = E[zS ] =

∞
∑

k=0

P [S = k]zk. (15)

According to the independence assumptions given at the
beginning of this Section, it is the well-known result [24] that

GA(∆)(z) = E[zA(∆)] = E
[

E[zA(∆)|N(∆)]
]

= GN(∆) (GS(z)) . (16)

Fig. 2. Packet size distribution at NASA AIX, February 21–27,2000

With united-pair measurement, the total cross-traffic volume
can be obtained from the dispersions. Again, using ∆i−1 and
∆i to represent the input and output dispersions associated
with the queue under consideration, respectively, we have

A(∆i−1) = Ci∆i − L(2). (17)

By sending a reasonable number of probe packet pairs, the
histogram of A(∆) (we drop the subscription of ∆i−1 for the
convenience of expression), and therefore the corresponding
PGF GA(∆)(z), can be calculated. Using qk(∆) to denote the
histogram probability P [A(∆) = k], the PGF GA(∆)(z) is
then calculated as

GA(∆)(z) =

∞
∑

k=0

qk(∆)z
k. (18)

Given GA(∆)(z), our objective is to estimate the marginal
distribution P [N(∆) = n], briefly denoted as pn(∆), for
n = 0, 1, . . . ,∞.

One fact we are to use is that the Internet packet size
distribution takes only a few, say m, dominant values as we
have discussed. Then, GS(z) reduces to

GS(z) = a1z
l1 + a2z

l2 + · · ·+ amzlm (19)

where l1, l2, . . . , lm, arranged as l1 < l2, · · · < lm, are
the m dominant packet sizes and a1, a2, . . . , am are the
corresponding probabilities. Define the probability vector p =
(p0, p1, . . . , plm), where plk = ak (k = 1, . . .m) and
other values in the vector are equal to 0. If use p(n) =

(p
(n)
0 , p

(n)
1 , . . . , p

(n)
nlm
) to denote the probability vector of the

random variable S(n) =
∑n

i=1 Si, and ⊗ the convolution
operation, we have

p(n) = p⊗ p · · · ⊗ p (with n fold). (20)

For the PGF, we have

GS(n)(z) = (GS(z))
n
=

nlm
∑

k=0

p
(n)
k zk. (21)



Based on the result of (21), (16) can be unwrapped as

GA(∆)(z) = GN(∆)(GS(z)) =

∞
∑

n=0

(GS(z))
n
pn(∆)

=
∞
∑

n=0

nlm
∑

k=0

p
(n)
k zkpn(∆) =

∞
∑

k=0

[

∞
∑

n=0

p
(n)
k pn(∆)

]

zk.

(22)

Comparing (18) and (22), we can get

qk(∆) =

∞
∑

n=0

p
(n)
k pn(∆). (23)

It is possible to solve pn(∆) from (23). However, it is
impractical to estimate pn(∆) up to n → ∞. In practice,
the cross-traffic input to a queue is limited by the upstream
link capacity. Letting Lmin denote the minimum packet size
allowed, we can obtain an upper bound of N(∆) as

N(∆) ≤ N∆max = Ci−1∆/Lmin (24)

and (23) reduces to

qk(∆) =

N∆max
∑

n=0

p
(n)
k pn(∆). (25)

With vectors p(n) (n = 0, 1, . . . , N∆max) available from (20),
define p(k) = (p

(0)
k , p

(1)
k , . . . , p

(N∆max)
k ). Assume that we can

find N∆max + 1 points of k, i.e. k0, k1, . . . , kN∆max
, so that

the
(

N∆max + 1
)

×
(

N∆max + 1
)

matrix P , with p(ki) for
i = 0, 1, . . . , Nmax(∆) as the row vectors, is invertible.
Moreover, from the histogram of A(∆), we can have the
values of (qk0(∆), qk1(∆), . . . , qkN∆max

(∆)), denoted as vector
q(∆). Use the vector p(∆) to denote the cross-traffic marginal
distribution (p0(∆), p1(∆), . . . , pN∆max

(∆)), which can be es-
timated as

p(∆)T = P−1q(∆)T . (26)

In the above, we have discussed the cross-traffic marginal
distribution estimation in the single-queue context. In a multi-
queue path, if there is only one bottleneck, narrow as well as
tight, and the downstream links only incur ignorable delay,
the estimation of (26) is expected to have an acceptable
performance.

C. Packet Size Distribution Estimation
We can also estimate the packet size distribution based on

(16), if the packet arrival marginal distribution is available
from traffic modeling or from historical data measurements.
The estimation is straightforward as

GS(z) = G−1
N(∆)(GA(∆)(z)). (27)

For example, let’s assume that the self-similar Internet traffic
can be well modeled by an M/G/∞ input process [11].
The Marginal distribution is then Poisson with average rate λ
packets/second, giving GN(∆) = eλ∆(z−1). Using this result,

GS(z) = 1 +
1

λ∆
ln(GA(∆)(z)). (28)

With the PGF known, the probability vector p can be obtained
with an inverse fast Fourier transform (IFFT) operation.

VI. PERFORMANCE EVALUATION

In this section, we present some computer simulation results
to illustrate the performance of the proposed traffic charac-
terization techniques. We develop a single-queue simulator
using the event-driven simulation technique in the MATLAB
language. In all the simulation examples, we use the iid packet-
size assumption, and the cross-traffic packet size distribution
follows the CAIDA PMF given in (13).

A. Utilization estimation

In this example, we examine the performance of the utiliza-
tion estimation technique based on divided-pair measurement.
We simulate a 10 Mbps queue. The packet-pairs are symmetric
with size 1500 bytes, and inter-pair interval is 0.05s. Poisson
cross traffic is sent for four different target utilizations (0.10,
0.30, 0.50, and 0.70) and five different input dispersions
(0.0016, 0.0032, 0.0064, 0.0128 and 0.00256) second, to
examine the goodness of the utilization estimator given in (11)
over a wide range of scenarios. Each estimate is obtained from
10000 trials, and batch method is applied to find the 99%
confidence interval.

The estimation results are given in Fig. 3(a)–3(d). Corre-
sponding to each estimation point, there is a “actual utilization
point”, which is the accurate measurement of the true average
utilization that occurs in the queue over the simulation run. The
actual utilization is obtained by dividing the total time during
which the queue is servicing a cross-traffic packet (probe-
packet service time is not counted) by the total time of the
simulation run. From Fig. 3, we can see in all the utilization
scenarios, the estimator has a robust performance where the
actual utilization falls in the confident estimation range, except
when input dispersion is too small, i.e. the case of 0.0016
seconds. There the estimator significantly overestimate the
actual utilization. The reason is that the small input dispersion
leads to united packet pairs, where the assumption that the
waiting times of the two packets are independent breaks down,
which contributes to the estimation deviation.

B. Packet Size Distribution Estimation

In this example, we illustrate the performance of the packet
size distribution estimator given in (27). A 10 Mbps queue
is simulated. We consider Poisson arrival process with packet
size distribution following the CAIDA PMF. Four scenarios
with the combination of (u,∆) = (0.5, 0.0006), (0.5, 0.0012),
(0.99, 0.0006), and (0.99, 0.0012), are simulated. Probe packet
size is set correspondingly to guarantee the unite-pair mea-
surement, and inter-pair interval is 0.05s. In all the scenarios,
a series of 10000 probe pairs are sent for sampling, and
N∆max = 12 is used considering that

∑N∆max

k=0 pk(∆) ≈ 1.0000.
The packet size distribution is estimated according to the
following procedure.

• Measure the output dispersions and convert the disper-
sions to traffic loads in bytes according to (17). Generate
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Fig. 3. Utilization estimation based on divided-pair measurement of a 10 Mbps queue with target utilization (a) 0.1, (b) 0.3, (c) 0.5, and (d) 0.7.

TABLE I
ESTIMATED CROSS-TRAFFIC PACKET SIZE DISTRIBUTION, USING IFFT

METHOD

Scenario Simulated Estimated probabilities of three main modes
u ∆ 40 576 1500

0.50 0.0006 0.4854 0.1713 0.1744
0.50 0.0012 0.5306 0.1737 0.1668
0.99 0.0006 0.5192 0.1729 0.1747
0.99 0.0012 0.4680 0.1497 0.1466
True probabilities 0.5000 0.1700 0.1700

the histogram of A(∆), and then take the (1500N∆
max +

1)-point FFT of the histogram to obtain GA(z).
• Calculate GS(z) = 1 +

1
λ∆ ln(GA(z)).

• Take the (1500N∆max + 1)-point IFFT of GS(z) to get
the packet size distribution estimate P̂{S = k}.

The estimated PMFs for the four scenarios are plotted in
Figures 4(a) to 4(d). Although the maximum packet size is
1500 bytes, the FFT and IFFT operations will spread the
estimation errors to all the points. In Fig. 4, P̂{S = k} for
k = 0, 1, . . . , 3000 are plotted to illustrate the error spreading.
In all the four scenarios, the estimated distribution correctly
identifies the three main packet sizes, i.e. 40, 576, and 1500
bytes, and the estimated probabilities are quite close to the
true CAIDA values. The estimate values of the three dominant
probabilities are presented in Table I.

In the figures, we can observe that estimation errors exist
in all the scenarios and spread to points larger than 1500.
Also, the FFT and IFFT operations lead to negative estimates
for some points. When the input dispersion or the utilization
increases, the estimation error also increase. For example, the
estimation in Fig. 4(d) with (u,∆) = (0.99, 0.0012) is much
noiser than that in Fig. 4(a) with (u,∆) = (0.5, 0.0006).
The estimation error is due to the insufficiency of mea-
surement samples. In the case of (u,∆) = (0.5, 0.0006),
the packet arrival rate is 0.8443 packets/dispersion, corre-
spondingly,

∑6
k=0 pk(0.0006) ≈ 1.0000. In the case of

(u,∆) = (0.99, 0.0012), the packet arrival rate is 3.3436 pack-
ets/dispersion, correspondingly,

∑12
k=0 pk(0.0012) ≈ 1.0000.

With the same number of samples, many more modes need to
be estimated in the latter case to obtain the histogram of A(∆),
therefore the accuracy decreases. We have done experiments
to do estimation with more probing pairs, the noise in the case
of (u,∆) = (0.99, 0.0012) can be obviously suppressed.

C. Packet Arrival Process Characterization

In this paper, we omit the performance evaluation of the
marginal distribution estimation technique proposed in sec-
tion V-B, due to the paper length limit. In stead, we give
a detailed investigation in [25] of the traffic characterization
technique using packet-pair probing. In [25], we discuss how
to construct a invertible matrix P for marginal distribution
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Fig. 4. Packet size distribution estimation in four scenarios, with (u,∆)
set as (a) (0.5, 0.0006), (b) (0.5, 0.0012), (c) (0.99, 0.0006), and (d) (0.99,
0.0012).

estimation, extend the estimation technique to estimate the
autocorrelation function of a self-similar process, and present
simulation results to demonstrate the efficiency of the traffic
characterization for both Poisson arrivals and self-similar
arrivals. Moreover, we discuss how the edge-based traffic
characterization is in fact a black box system that can be
applied for end-to-end QoS provisioning along a path.

VII. CONCLUSIONS

In this paper, we propose new packet-pair dispersion tech-
niques for network measurement. As the dispersion measure-
ment is taken at end systems or network edges, it considerably
strengthen the customers’ capability for QoS control and
bring higher flexibility and scalability to network management.
We develop a queueing model to describe the stochastic
relationship among the input dispersion, the cross traffic, and
the output dispersion. Based on the queuing model, new
available bandwidth estimation and traffic characterization
techniques have been derived. Particulary, traffic character-
ization, i.e. estimating the marginal distribution and auto-
covariance function of the traffic arrival process based on
dispersion measurement, is a novel technique for the first
time being presented. While bandwidth estimation mainly
focus on the control of the average throughput, traffic char-
acterization can facilitate the control of other QoS metrics,
e.g. the delay and loss rate. Performance of the proposed
bandwidth estimation and traffic characterization techniques
have been demonstrated through computer simulations. We
have discussed the proposed dispersion-techniques mainly for
a single-queue or single-bottleneck path. Developing efficient
multi-queue measurement techniques in a systematic way is
still an open problem.
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