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Abstract—The performance of remote estimation over wireless
channel is strongly affected by sensor data losses due to interfer-
ence. Although the impact of interference can be alleviated by
performing spectrum sensing and then transmitting only when
the channel is clear, the introduction of spectrum sensing also
incurs extra energy expenditure. In this paper, we investigate
the problem of energy efficient spectrum sensing for state
estimation of a general linear dynamic system, and formulate an
optimization problem which minimizes the total sensor energy
consumption while guaranteeing a desired level of estimation
performance. The optimal solution is evaluated through both
analytical and simulation results.
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I. INTRODUCTION

Estimating the state of dynamic processes is a fundamental

task in many real-time applications such as environment

monitoring, health-care, smart grid, industrial automation and

wireless network operations [1], [2]. Consider remotely es-

timating the state of a general linear dynamic system, where

sensor data are transmitted over a wireless channel to a remote

estimator. Due to interference from other users on the same

channel, the sensor data may randomly get lost, which can

significantly affect the estimation performance [3]–[5].

To alleviate the impact of interference, a sensor can adopt

the “listen before talk” strategy, i.e., it can sense the channel

first and only transmit data when the channel is clear. With

spectrum sensing, the problem of estimation stability has been

studied in [6], [7], and the questions of whether and to what

extent the state estimation performance can be improved have

been addressed in [7]. However, since both data transmission

and spectrum sensing are energy consuming, the system en-

ergy efficiency becomes an important while challenging issue,

which has not been studied in the literature yet.

In this paper, we investigate the problem of energy effi-

cient spectrum sensing for state estimation over a wireless

channel. Specifically, we consider when and how long to

perform spectrum sensing in order to minimize the sensor’s

total energy consumption while guaranteeing a certain level

of estimation performance. The problem is modeled as a

mixed integer nonlinear programming (MINLP) which jointly

optimizes the spectrum sensing frequency and sensing time,

subjecting to an estimation performance constraint. The joint

optimization in fact achieves a balance between spectrum

sensing and transmission energy consumption. We derive a

condition under which the estimation error covariance is stable

in mean sense. Since the mean estimation error covariance is

usually a random value and may vary slightly but not converge

along time, we resort to a close approximation of the constraint

which results in an approximated optimization problem whose

solution suffices the original problem. Finally, we provide

both analytical and simulation results of the solution to the

optimization problem. The remainder of the paper is organized

as follows. Section II presents system model and optimization

problem. The approximation problem is then introduced and

analyzed in Section III. Section IV presents some simulation

results, and Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM SETUP

We consider estimating the state of a general linear discrete-

time dynamic process as follows.
{

xk+1 = Axk + wk,
yk = Cxk + vk,

(1)

where x ∈ R
q1 is the dynamic process state (e.g., environment

variable) which changes along time. A wireless sensor is

deployed to measure the process state and report the measure-

ment to a remote estimator, where the sensor’s measurement

about x is y ∈ R
q2 . In the above, q1 and q2 are dimensions of

x and y, respectively. Note that the estimator only has noisy

information of both process model and sensor measurements.

The noises are denoted as wk and vk with E[wkw
T
k ] = Q,

E[vkv
T
k ] = R and E[wiv

T
j ] = 0, where (·)T denotes the

transpose of a matrix or vector. A and C are constant matrices.

Assume that C has full column rank and that (A,Q
1
2 ) is

controllable [3].

The sensor data are transmitted to a remote estimator where

the transmissions are augmented by the spectrum sensing

technique. The estimator applies a modified Kalman Filter

[3] to estimate the system state x recursively. Given the

system model as shown in (1), define x̂k|k−1 and x̂k|k as

the prediction and estimate of the system state at step k,

respectively. Define Pk|k−1 := E[(xk−x̂k|k−1)(xk−x̂k|k−1)
T ]

and Pk|k := E[(xk − x̂k|k)(xk − x̂k|k)
T ] as the covariance of

the prediction and estimation errors, respectively. According

to [3], the estimation process can be given as follows.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Q

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1)
Kk := Pk|k−1C

T (CPk|k−1C
T +R)−1

Pk|k = (I − γkKk)Pk|k−1

(2)
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with a given initial value P1|0 ≥ 0, where I is an identity

matrix of compatible dimension. In the above, γk ∈ {0, 1}
represents whether the measurement packet is dropped or not

in step k, i.e., γk = 1 if successfully received and γk = 0
otherwise. P[γk = 0] characterizes the packet loss rate.

Let tI and tB represent the idle and busy periods of the

channel, respectively. We assume that [8]

ΓI(t) = 1− e−αt and ΓB(t) = 1− e−βt.

Thus, E[tB ] =
1
β

, E[tI ] =
1
α

and the idle and busy probabil-

ities are pI = β
α+β

and pB = α
α+β

, respectively. Define η as

the probability that the channel will keep idle for at least tx
period of time conditioned on that it is currently idle. We have

η =
1

pI

∫ 0

−∞
P[an idle period begins] [1− ΓI(tx − t)] dt

=
1

pI

∫ ∞

0

1
1
α
+ 1

β

[1− ΓI(tx + t)] dt

= α

∫ ∞

0

e−α(tx+t)dt = e−αtx .

We assume that the sensing time τ is bounded within [0, τ̄ ]
and is much smaller than both E[tB ] and E[tI ]. Therefore, the

channel state does not change during spectrum sensing (almost

surely), and henceforth we can treat the sensing period as a

point in time. The sampling period Ts ≫ max(E[tB ],E[tI ]),
so that the packet drop rate in the current sampling period

is irrelevant with that in previous steps. Based on this, the

measurement packet drop rate, i.e., P[γk = 0], also can be

deemed time-independent.

Before transmitting a packet, the sensor must check the

channel state and transmit packet only when the channel is

available (in idle state). We adopt the energy detection [8] as

our spectrum sensing method. Let sc be the sensing outcome

and define following two probabilities1.

pd = P[sc = ‘idle’|channel is idle]

= Q
(

(1− ǫd)
√
τW

)

, (3)

pf = P[sc = ‘idle’|channel is busy]

= Q
(

(1− ǫf )
√
τW

)

, (4)

where ǫd > ǫf > 0, W is the channel bandwidth, and Q(z) :=
1√
2π

∫∞
z

e−
τ2

2 dτ . In the following, pd and pf are called the

correct and false detection probabilities, respectively.

After sensing, the sensor will transmit packet only if the

sensing result indicates an idle channel (we call this event a

successful sensing). Thus, the transmission probability is

ptx = pIpd + pBpf =
1

α+ β
(βpd + αpf ). (5)

Define a sequence of variables {θk ∈ {0, 1}}k≥1 as

θk =

{

1, sense the channel in step k,

0, otherwise.
(6)

1In energy detection, whether the channel is idle is judged based on
whether the detected energy is below a threshold Eth, referring to [8] for
more details. Here, for simplicity, when the channel is idle, we assume
Eth = ǫdτWσ2

n where σn is the channel noise power; otherwise, we assume
Eth = ǫf τW (σ2

s + σ2
n) with σ2

s as the received signal power.

Let Θ := {k|θk = 1}, which is called the spectrum sensing

schedule. In this paper, we restrict our attention to strict

periodical spectrum sensing, i.e., Θ = Θn := {0, n, 2n, . . .} =
{ki|ki = in, i ∈ N

+∪{0}}, where n represents the reciprocal

of the sensing frequency.

A. Problem Formulation

Let es and etx denote the amounts of energy consumed

by the sensor for conducting spectrum sensing in a unit time

and transmitting a measurement packet (assume all packets

are of the same length), respectively. If θk = 1, the average

amount of energy consumed by the sensor in kth step is

ϕs = τes+ptxetx. Therefore, under schedule Θn, the average

energy consumption in a single step is

ϕ̄ =
1

n
ϕs =

1

n
(τes + ptxetx). (7)

The estimation performance can be characterizes by the

error covariance Pk|k−1. For ease of exposition, hereafter, we

let Pk := Pk|k−1. Based on the estimation process above, we

can see that Pk is a function of the random variable γk; hence

it is both random and time-varying and may not converge

along an infinite horizon. Therefore, we consider the long-

time average of the expected Pk, i.e., 1
L

∑L
k=1 E[Pk], where

L is a sufficiently large number. We aim to bound this average

value below a user defined threshold P̄ . With this constraint,

our optimization problem can be formulated as follows.

Problem 1: Find the optimal schedule Θn and spectrum

sensing time τ to
⎧

⎪

⎨

⎪

⎩

min
n,τ

ϕ̄ = 1
n
(τes + ptxetx)

s.t. 1
L

∑L
k=1 E[Pk] ≤ P̄

0 ≤ τ ≤ τ̄.

(8)

As can be seen, Problem 1 is a mixed integer nonlinear

programming. Note that, through the joint optimization, the

sensing energy and transmission energy are balanced.

III. MAIN RESULTS

A. Estimation Stability

To satisfy the constraints in (8), the sequence {E[Pk]} must

be stable, i.e., E[Pk] < ∞, ∀k ≥ 1. For any k ≥ 1, if θk = 1,

based on the estimation process above, we have

Pk = APk−1A
T +Q

− γkAPk−1C
T (CPk−1C

T +R)−1CPk−1A
T

= (1− γk)APk−1A
T +Q

+ γkA(P−1
k−1 + CTR−1C)−1AT

= (1− γk)APk−1A
T +Q+ γkAΥk−1A

T , (9)

where Υk−1 = (P−1
k−1 + CTR−1C)−1 is upper-bounded by

(CTR−1C)−1 (notice that C has full column rank) [7].

Otherwise, θk = 0, which is similar to the case that the

measurement packet gets lost. Then, Pk = APk−1A
T + Q.

Consider the schedule Θn. We have

Pki−1 = APki−2A
T +Q = . . .

= An−1Pki−1(A
T )n−1 +

n−2
∑

t=0

AtQ(AT )t. (10)
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Substituting the above equation into (9) yields

Pki
= (1− γki

)AnPki−1(A
T )n + (1− γki

)
n−1
∑

t=1

AtQ(AT )t

+Q+ γki
AΥki−1A

T , (11)

E[Pki
] = (1− γ)An

E[Pki−1 ](A
T )n + (1− γ)

n−1
∑

t=1

AtQ(AT )t

+Q+ γAE[Υki−1]A
T , (12)

where γ is the successful packet reception rate under θk = 1,

which can be calculated by

γ = P[γk = 1|θk = 1, sc,k = ‘idle’]

= pIηpd =
β

α+ β
pde

−αtx , (13)

where sc,k is the spectrum sensing result. Since n is a finite

constant, the stability of {E[Pk]} is equivalent to that of

the original sequence {E[Pki
]}. Moreover, since Υki−1 is

bounded by a constant, the stability of {E[Pki
]} is further

equivalent to that of {Xki
|Xki

= (1 − γ)AnXki−1(A
T )n +

∑n−1
t=0 AtQ(AT )t}. Therefore, it is easy to obtain the follow-

ing condition which is both necessary and sufficient for the

stability of {E[Pk]}.

Theorem 1: ∀ n ≥ 1, {E[Pk]} is stable if and only if

(1− γ)λ2n
max(A) < 1, (14)

where λmax(·) is the maximum eigenvalue of a square matrix.

Since pd ≤ 1, (13) indicates that γ ≤ β
α+β

e−αtx < β
α+β

.

Therefore, an upper bound of n can be obtained based on (14)

as follows.

n ≤ n̄1 =

{

⌈ ln(α+β)−lnα

2 ln(λmax(A)) ⌉ − 1, if λmax(A) > 1

∞, otherwise.
(15)

B. Problem Approximation

As shown in (9), since Pk−1 appears in the inverse term of

Υk−1, E[Pk] will depend on all possible values of the sequence

{γk}k≥1. Moreover, E[Pk] may not necessarily converge. As

a result, it is mathematically difficult to obtain the long-term

average of E[Pk]. Therefore, we resort to an upper bound of

E[Pk] to sufficiently satisfy the constraint in Problem 1. Based

on Theorem 4 in [3], we have

E[Pk] = E[−γkAPk−1C
T (CPk−1C

T +R)−1CPk−1A
T ]

+ E[APk−1A
T +Q]

≤− γAE[Pk−1]C
T (CE[Pk−1]C

T +R)−1CE[Pk−1]A
T

+AE[Pk−1]A
T +Q. (16)

Define a sequence {Yk} with

Yk = AYk−1A
T +Q

− θkγAYk−1C
T (CYk−1C

T +R)−1CYk−1A
T . (17)

Then, E[Pk] ≤ Yk if we let Y0 = P0. Lemma 1 characterizes

the sequence {Yk}; its proof is omitted due to limited space.

Lemma 1: If (14) holds, ∃Ȳ (γ, n) > 0 such that

lim
L→∞

1

L

L
∑

k=1

Yk = Ȳ (γ, n). (18)

Ȳ (γ, n) is monotonically decreasing as either γ increases or

n decreases. Furthermore, for a sufficiently large L,

1

L

L
∑

k=1

E[Pk] ≤
1

L

L
∑

k=1

Yk → Ȳ. (19)

Based on Lemma 1, the constraint in Problem 1 can be

approximated as Ȳ (γ, n) ≤ P̄ . Due to the monotonicity of

Ȳ (γ, n) in γ, it is equivalent to say that γ ≥ γ(n) where γ(n)
is the unique solution of γ to Ȳ (γ, n) = P̄ . On the other

hand, since γ ≤ β
α+β

e−αtx , the inequality Ȳ ( β
α+β

e−αtx , n) ≤
Ȳ (γ, n) ≤ P̄ yields another upper bound on n:

n ≤ n̄2 = max

{

ñ
∣

∣Ȳ

(

β

α+ β
e−αtx , ñ

)

≤ P̄

}

< ∞. (20)

Therefore, we get an approximation of Problem 1 as below.

Problem 2: Find the optimal schedule Θn and spectrum

sensing time τ to
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
Θn,τ

ϕ̄ = 1
n
(τes + ptxetx)

s.t. γ ≥ γ(n)
n ≤ n̄ = min{n̄1, n̄2}
0 ≤ τ ≤ τ̄.

(21)

C. Optimal Solution Analysis

Given any n, Problem 2 reduces to a subproblem with τ
as the only decision variable. Since n < n̄, the optimal n∗

and τ∗ can be obtained by solving n̄ such subproblems. In

the following, we analyze the optimal solution τ∗n under any

given n. Let ρ = α
β

. We focus on that ρ < 1, while the

case that ρ ≥ 1 can be analyzed in the same way. For ease of

analysis, we assume τ is continuous. Given n, the subproblem

has following properties.

∂γ

∂τ
=

(1− p1)
√
W

2
√
2πτ

(ǫd − 1)e−
(1−ǫd)2

2 Wτ (22)

∂ϕ̄

∂τ
=

1

n

(

es +
etx

√
W

2(1 + ρ)
√
2πτ

f(ǫd, ǫf , τ)

)

(23)

f(ǫd, ǫf , τ) �(ǫd − 1)e−
(1−ǫd)2

2 Wτ

− ρ(1− ǫf )e
− (1−ǫf )2

2 Wτ . (24)

Depending on the values of ǫd and ǫf (note that ǫf < ǫd),

the shapes of the γ and ϕ̄ curves are described as follows.

1) If either ǫd ≥ 1 and ǫf ≥ 1 or ρ ≤ ǫd−1
1−ǫf

≤ 1 and ǫf < 1,

it is easy to see that ∂γ
∂τ

≥ 0 and ∂ϕ̄
∂τ

≥ 0, which means that

both γ and ϕ̄ are increasing as τ increases. This corresponds

to case 1 as shown in Fig. 1(a).

2) If ǫd−1
1−ǫf

> 1 and ǫf < 1, since e−
(1−ǫd)2

2 Wτ <

e−
(1−ǫf )2

2 Wτ , f(ǫd, ǫf , τ) varies from positive infinite to a

negative value and finally converges to 0. Depending on the
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Sensing time τ

Packet reception rate γ
Energy consumption ϕ̄

(a) Case 1

Sensing time τ

(b) Case 2

Sensing time τ

(c) Case 3

Sensing time τ

(d) Case 4

Fig. 1. Illustrations of the optimal τ under different ǫd and ǫf .

parameters such as es and etx, the shape of ϕ̄ will be in the

form of either case 1 or case 2 as shown in Fig. 1(b).

3) If 0 ≤ ǫd − 1 < ρ(1 − ǫf ), one can verify that
∂2

∂2τ
f(ǫd, ǫf , τ) > 0; hence, ∂ϕ̄

∂τ
increases from negative

infinite to a positive value. Therefore, as shown in Fig. 1(c),

ϕ̄ is a convex function.

4) Otherwise, ǫd < 1. Then, ǫf < 1 either. Consequently,
∂γ
∂τ

< 0 and ∂
∂τ

f(ǫd, ǫf , τ) < 0. As shown in Fig. 1(d), the

objective function is convex.

As shown in the figure, in case 1, the optimal τ∗n is the

smaller one between τ̄ and the point where γ = γ(n). In

the other cases, let τn,ϕ̄ and τn,γ be the solution points for
∂ϕ̄
∂τ

= 0 and γ = γ(n), respectively. In case 2, τ∗n is among

{0, τn,ϕ̄, τn,γ , τ̄}. In the other cases, τ∗n ∈ {τn,ϕ̄, τn,γ , τ̄}.

IV. SIMULATION RESULTS

In our simulations, we consider a linear system (1) with

A =

[

1.05 0
1 0.9

]

, C = I , Q = I and R = 0.8I , where I

is the 2-by-2 identity matrix. The sensor samples the system

every Ts = 1 second and the transmission time of each

measurement packet is tx = 50ms. The wireless channel has

bandwidth W = 2Mbps, noise power σn = 1 and signal-

to-noise ratio −3dB. The default average busy and idle rates

for the channel are α = 5 and β = 20, respectively. Other

parameters are: ǫd = 1.2, τ̄ = 20ms, es = etx = 100. The

estimation performance requirement is set as P̄ = Ȳ (0.7, 6),
where Ȳ (γ, n) is defined in Lemma 1.

The optimal solutions of Problem 2 are depicted in Fig.

2. In the left figure, we vary the channel idle probability

pI by gradually increasing β. The results show that, under

a certain n, the optimal sensing time τ∗ drops quickly as

the idle probability increases, which in turn results in the

decrease of the average energy consumption ϕ̄. In fact, as

the channel quality becomes better, less sensor energy will

be wasted for conduction unsuccessful sensing and collided

transmissions. Meanwhile, when pI increases from 0.3 to

1, the optimal n increases piecewise, which means that the

sensor conducts spectrum sensing and packet transmission

less frequently. Therefore, generally speaking, the energy

consumption decreases as pI increases.

The right figure demonstrate the optimal solutions under

varying etx/es. As etx increases, i.e., the transmission energy

becomes to dominate the total energy ϕ̄, the sensor’s best

strategy becomes to transmit data less frequently but more

reliably in order to avoid collision and save energy. Therefore,

it will use a larger n and spend more sensing time to increase

the sensing accuracy, which are clearly shown in Fig. 2(b).

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4
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n∗

ϕ̄∗

(a)

0 2 4 6 8 10
0

5

10

15

20

25

30

35

etx/es

τ∗ (ms)
n∗

ϕ̄∗

(b)

Fig. 2. Optimal solutions under varying pI and etx/es.

V. CONCLUSION

We have studied the energy efficient spectrum sensing prob-

lem for remote state estimation and formulated it as a mixed

integer nonlinear programming problem. Both analytical and

simulation results of the optimal solutions of the spectrum

sensing time τ∗ and period n∗ have been provided. We showed

that, as pI increases, n∗ increases piecewise and the resulted

energy consumption decreases. On the other hand, both n∗ and

τ∗ increase piecewise as etx increases. Our future directions

include extending the idea to multiple channel and multiple

sensor scenarios.
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