
k-Throwbox Placement Problem in
Throwbox-Assisted Delay Tolerant Networks

Fan Li⇤ Zhiyuan Yin⇤ Shaojie Tang† Chao Zhang‡ Yu Cheng§ Yu Wang‡
⇤ School of Computer Science, Beijing Institute of Technology, Beijing, 100081, China.

† Naveen Jindal School of Management, University of Taxes at Dallas, Richardson, TX 75080, USA.
‡ Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

§ Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

Abstract—Recent advances in Delay Tolerant Networks (DTNs)
have overcome limitations in connectivity by relying on in-
termittent contacts between mobile nodes to deliver packets.
However, lack of rich contact opportunities still causes poor
delivery ratio and long delay of DTN routing. One of the
solutions to improve mobile DTN performance is to place
additional stationary nodes, called throwboxes, to create a greater
number of contact opportunities. In this paper, we study a
key optimization problem in a time-evolving throwbox-assisted
DTN: k-throwbox placement problem, to answer “where should
I put my k throwboxes to optimize the performance?”. We
model a time-evolving DTN as a weighted space-time graph
which includes both spacial and temporal information. We prove
that k-throwbox placement problem is NP-hard and propose a
set of greedy algorithms which can efficiently provide quality
solutions. One of the proposed algorithms can guarantee an
(1�1/e) approximation for the k-throwbox placement problem.
Simulation results based on random time-evolving DTNs and
real life DTN traces demonstrate the efficiency of the proposed
methods.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) have recently drawn much
attention from networking researchers due to the wide appli-
cations of these networks in challenging environments, such
as space communications, military operations, vehicular ad
hoc networks, mobile sensor networks, and pocket switched
networks. The intermittent connectivities in DTNs result in
the lack of instantaneous end-to-end paths, large transmission
delay and unstable network topology. These characteristics
pose new challenges in the design and deployment of DTNs.
Recent advances in DTN routing [1]–[3] have overcome
limitations in connectivity by relying on intermittent contacts
between mobile nodes to deliver packets. However, lack of rich
contact opportunities in many DTN applications (especially
with sparse deployments) still causes poor delivery ratio and
long delay of DTN routing.

One of the solutions to improve mobile DTN performance
is to place additional stationary nodes, called ThrowBoxes

The work of F. Li is partially supported by the National Natural Science
Foundation of China under Grant No. 61370192, 61432015 and 60903151, and
the Beijing Natural Science Foundation under Grant No. 4122070. The work
of Y. Cheng is supported in part by the US National Science Foundation under
grant CNS-1320736. The work of Y. Wang is supported in part by the US
National Science Foundation under Grant No. CNS-1050398, CNS-1319915,
and CNS-1343355, and by the National Natural Science Foundation of China
under Grant No. 61428203.

(TBs), to create a greater number of contact opportunities [4]–
[9]. Throwboxes are small, battery-powered, and inexpensive
devices equipped with wireless interfaces and storage. They
are usually stationary, and can relay data between mobile
nodes in a store-and-forward way. When two nodes pass by the
same location at different time, the throwbox acts as a relay,
creating a new contact opportunity. Throwboxes can operate
without communication with other throwboxes. Simulations
and real deployments [5]–[9] have demonstrated that intro-
ducing small number of throwboxes can indeed improve the
network performances and overall throughputs.

One of the key design problems in throwbox-assisted DTNs
is throwbox placement. Given a set of potential locations of
throwboxes and a budget to only deploy k throwboxes, we
need to find where to put these throwboxes to maximize their
benefits to the performance. General relay placement in static
wireless networks [10], [11] has been well studied. However,
in DTNs, the nodes are mobile and the network topology
evolves over time. These features bring new challenges and
make existing relay placement algorithms not suitable in
DTNs. To our best knowledge, there is not much study on
throwbox deployment except for [4], which is a joint throwbox
deployment and routing optimization problem. However, their
focus is only on the long term average capacity. Instead, in
this paper we study how to deploy throwboxes in a time-
evolving and predictable DTN so that the network reliability
is maximized.

In this paper, we model a time-evolving and predictable
DTN as a weighted space-time graph (defined in Section II)
which includes both spacial and temporal information about
the dynamic network. We assume that (1) the network topol-
ogy (contacts between nodes) could be known a priori or
can be predicted from historical tracing data; and (2) there
is a finite set of potential locations for throwboxes. We
then formally define the k-throwbox placement problem in
Section III: aiming to find places to put k throwboxes so
that the network reliability is maximized over time. We prove
that this problem is NP-hard. Thus, we then propose a set of
greedy algorithms in Section IV which can efficiently provide
quality solutions for this optimization problem. One of the
proposed algorithms can particularly guarantee an (1 � 1/e)
approximation ratio. We also conduct extensive simulations
over random time-evolving DTNs and real life DTN traces

978-1-4799-3512-3/14/$31.00 ©2014 IEEE

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

253

v
5

sp
ace

v
1

v
2

v
3

v
2

v
4

v
4 v

4 v
4

v
5 v

5
v

5

v
3

v
1

v
1

v
3

v
2

v
2

v
1

v
3

time
t=1 t=2 t=3 t=4

v
1

2

v
3

v
4

5

v

v

0

0

0

0

0

v
1

2

v
3

v
4

5

v

v

1

1

1

1

1

v
1

2

v
3

v
4

5

v

v

4

4

4

4

4

t=1 t=2 t=3 t=4

M
o

b
il

e
U

se
rs

T
h

ro
w

b
o

x
es

(a) (b)
Fig. 1. (a) Example of a time-evolving throwbox-assisted DTN (two green
nodes are throwboxes). (b) The corresponding space-time graph.

to demonstrate the efficiency of the proposed methods in
Section V. Finally, some discussions on possible variations of
the problem are provided in Section VI and a brief conclusion
is given in Section VII.

II. MODELS AND ASSUMPTIONS

How to model time-evolving networks has been studied
in both mobile ad hoc networks [12], [13] and DTNs [14],
[15]. In this paper, we adopt the space-time graph [12], [14]
to model the time-evolving DTNs, since it can capture the
evolving characteristics in both spacial and temporal spaces.

Assume that V
user

= {v1, · · · , vn} and V
throwbox

=

{v
n+1, · · · , vn+m

} be the set of all individual users (wireless
devices) and the set of all potential throwboxes in the network
over a period of time T . Here, time is divided into discrete and
equal time slots, e.g., {1, · · · , T}. We assume the throwboxes
can only be placed in a finite number of locations instead of
any places in the 2D plane. This is reasonable since in practice
throwboxes cannot be placed in any places due to existing
obstacles or high deployment costs to certain locations. Let
V = V

user

+ V
throwbox

be the whole set of all nodes.
Since the positions of individual nodes and the topology co-
evolve over time and we assume this information is known,
then a sequence of static graphs can be defined over V to
model the interactions among nodes in the time-evolving DTN.
Fig. 1(a) illustrates such an example with three mobile users
(in black) and two potential throwboxes (in green). Some
of the snapshots may not be connected at all even with all
throwboxes (e.g., the first and third snapshots in Fig. 1(a)).
This makes routing tasks over them very challenging.

We can then convert this sequence of static graphs into
a space-time graph G = (V, E), which is a directed graph
defined in both spacial and temporal spaces. Fig. 1(b) il-
lustrates the corresponding space-time graph of the same
network. In G, T + 1 layers of nodes are defined and each
layer has n + m nodes, thus the whole vertex set V =

{vt
j

|j = 1, · · · , n+m and t = 0, · · · , T} and there are
(n+m)(T+1) nodes in total. Two kinds of links (spacial links
and temporal links) are added between consecutive layers in
the edge set E . A temporal link

����!
vt�1
j

vt
j

(those horizontal links
in Fig. 1(b)) connects the same node v

j

across consecutive
(t�1)th and tth layers, which represents the node carrying the

message in the tth time slot. A spacial link
����!
vt�1
j

vt
k

represents
forwarding a message from one node v

j

to its neighbor v
k

in the tth time slot (i.e., v
j

and v
k

are within each other’s
transmission range in time slot t). In the figure, black links
are communication links among mobile users, while green
links are communication links with potential throwboxes. We
assume that all throwboxes have the capacity to buffer any
packet for any long time period, thus there exists temporal
links of throwboxes. By defining the space-time graph G, any
communication operation in the time-evolving network can be
simulated on this directed graph. Any space-time path from
v0
i

to v4
j

shows a particular DTN routing strategy to deliver
the packet from v

i

to v
j

in the network using 4 time slots.
A space-time graph G is connected over time period of T

if and only if there exists at least one directed path between
each pair of nodes (v0

i

, vT
j

) (i and j are in [1, n]). Hereafter,
we assume that the original space-time graph G is always
connected. This guarantees that the packet can be delivered
between any two nodes in the network over the period of
T . Note that a connected space-time graph does not require
connectivity in each snapshot.

To consider the reliability of lossy wireless links or inac-
curate link predictions, we also define a reliability probability
r(e) for each link e 2 E , which represents the probability of
a successful data transmission over link e. Here, we assume
that the reliability probability of each link can be obtained
through link estimation techniques at the link and physical
layers [16] or mobility prediction techniques [17]. Given the
reliability of each link, we can then define the reliability of a
path P or a structure H. Hereafter, we consider the reliability
for single-copy DTN routing where only one copy of each
message is propagated in the network. Thus, the resulting
propagation path of a message is basically a single space-
time path in G. Given a path P (u, v) connecting nodes u and
v, the reliability of P (u, v) is the product of reliability of all
links in that path. For a given topology H, we can define the
most reliable path PH

r

(u, v) as the path from u to v in H
with the highest reliability. Let rH(u, v) = ⇧

e2P

H
r (u,v)r(e)

be the reliability of path PH
r

(u, v). Then the reliability of the
topology H is defined as follows

r(H) = min

1i,jn

rH(v0
i

, vT
j

). (1)

Notice that when H is given, it is easy to calculate r(H) by
using any shortest path algorithms.

III. THROWBOX PLACEMENT PROBLEM

With the helps from throwboxes there will be more forward-
ing opportunities among devices, thus it increases the reliabil-
ity of the network. However, the deployment of throwboxes
has certain cost. Therefore, we limit the number of throwboxes
to a constant k due to fixed budget of the network operator. We
then need to decide where to put them while achieving the best
reliability. We now formally define the k-throwbox placement
problem over the weighted space-time graph model.

Definition 1: Given a connected and weighted space-time
graph G (with n mobile users and m potential throwboxes)

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

254

v
1

2

v
3

v
4

5

v

v

0

0

0

0

0

v
1

2

v
3

v
4

5

v

v

1

1

1

1

1

v
1

2

v
3

v
4

5

v

v

4

4

4

4

4

t=1 t=2 t=3 t=4

M
o

b
il

e
U

se
rs

T
h

ro
w

b
o

x
es

Fig. 2. Select one throwbox (marked as blue).

and a constant k (k  m), the aim of k-throwbox placement
problem is to find a space-time graph H with n mobile
users and k throwboxes (such as Fig. 2 with one selected
throwbox), which is a subgraph of G, such that H’s reliability
is maximized.

This newly defined throwbox placement problem is different
from traditional relay node placement problems [10], [11],
since the network is not static but evolves over time. It is also
different from the topology design (TD) problems [18], [19],
which aim to build a sparse subgraph while guaranteeing the
connectivity or reliability. In TD, arbitrary links from any node
at any time slot can be removed. To prove the NP-hardness of
the k-throwbox placement problem, we will use the following
theorem.

Theorem 1: For a submodular function f , if f only takes
non-negative values and is monotone, finding a k-element set
A for which f(A) is maximized is an NP-hard optimization
problem [20], [21].

Consider an arbitrary function f(A) that maps subsets of a
finite ground set U to non-negative real numbers. We say that
f is submodular if it satisfies a natural diminishing returns
property: the marginal gain from adding an element to a set A
is at least as high as the marginal gain from adding the same
element to a superset of A. Formally, a submodular function
satisfies

f(A [{v})� f(A) � f(B [{v})� f(B),

for all elements v and all pairs of sets A ✓ B. Next, we prove
that the reliability function r(H) is submodular.

Lemma 1: The reliability function r(H) is non-negative,
monotone, and submodular.

Proof: Non-negative property is obvious. Let H0 and H00

be two subgraphs of G which include selected sets A and B
of throwboxes, respectively. Assume that A ✓ B, i.e., H0 ✓
H00 and H00 uses additional throwboxes other than H0. Since
all subgraphs use n mobile users, hereafter, we only use the
throwboxes set in the reliability function. Thus, r(A) = r(H0

)

and r(B) = r(H00
), then the equation r(A [{v}) � r(A)

denotes the reliability increase due to add a new throwbox v
to A. Obviously, it is non-negative value, since adding one
more throwboxes can increase the reliability. This implies that
reliability function r is a monotone function. Now consider
r(B [{v}) � r(B), which is the reliability increase due to
adding the throwbox v to B. Any improvement of reliability

is associated with an original path in H00. If the improved
path does not use any throwboxes which is in B but not in
A, then the same level of improvement should also occur for
A (i.e., r(A [{v}) � r(A) = r(B [{v}) � r(B)). If the
improved path does use some throwboxes which are not in
A, then the improvement over B is much less than A (i.e.,
r(A[{v})� r(A) > r(B[{v})� r(B)) since r(B) � r(A).
Therefore, overall r(A [{v}) � r(A) � r(B [{v}) � r(B)

and r is submodular.
By combining Theorem 1 and Lemma 1, the following

theorem about NP-hardness of the k-throwbox placement
problem immediately follows:

Theorem 2: The k-throwbox placement problem is NP-
hard.

IV. THROWBOX PLACEMENT ALGORITHMS

Since the k-throwbox placement problem is NP-hard, in this
section, we propose a set of different heuristics to carefully
select throwbox placements to maximize the reliability. Once
again, we assume that the space-time graph G = (E ,V),
including n mobile users and m potential throwboxes over
time period of T , is given as the input. Let N and M denote
the total number of nodes and links in graph G (i.e., |V|
and |E|), respectively. Notice that N = (n +m)(T + 1) and
M = O((n+m)

2T).

A. General Greedy Frameworks: Adding or Removing One
Throwbox Per Round

Finding the optimal solutions for throwbox optimization
problem by exploring all possible combinations of throwbox
selection is very challenging and time consuming, thus, our
greedy frameworks simply make a single throwbox choice
in each round by adding or removing one throwbox from
the network. The procedure will guarantee to terminate after
at most k or m � k rounds, which is much more efficient
than exponential brute force algorithm. The detailed general
frameworks are given in Algorithm 1 and Algorithm 2.

The first algorithm (GrdAddTBs) starts with a space-time
graph H only including mobile users (v1, v2, · · · , vn). Then
it greedily adds in more throwboxes until k throwboxes are
selected. The second algorithm (GrdDelTBs) starts with the
original space-time graph G with all throwboxes selected, and
gradually deletes throwboxes until only k throwboxes are left.
In both algorithms, during the process, it greedily selects
one single throwbox in each round based on certain criteria
(we will introduce different criteria in the next subsection).
Hereafter, we generalize such greedy selection of a single
throwbox v

i

from a set of throwboxes V
x

based on cur-
rent space-time graph H as a function GreedySelect(V

x

,H)

with v
i

as its output. Let us denote the time complexity
of GreedySelect() as X. Both GrdAddTBs and GrdDelTBs
can obviously satisfy the number of throwboxes requirement
(or reliability requirement) of H. The time complexities of
GrdAddTBs and GrdDelTBs are O(kX) and O((m � k)X),
respectively.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

255

Algorithm 1 Greedy - Adding Throwboxes (GrdAddTBs)
Input: the original space-time graph G (including potential

throwbox set V
throwbox

), a constant k.
Output: the selected throwbox set V

selected�throwbox

and the
corresponding new space-time graph H.

1: H G � {V
throwbox

} and V
selected�throwbox

= ;
2: while |V

selected�throwbox

| < k do
3: Greedily select a throwbox v

i

from all unselected
throwboxes V

throwbox

� V
selected�throwbox

, i.e., v
i

=

GreedySelect(V
throwbox

� V
selected�throwbox

,H)

4: H H+ {v
i

}
5: V

selected�throwbox

 V
selected�throwbox

+ {v
i

}
6: return V

selected�throwbox

and H

B. Greedy Heuristics: How to Pick the Best Throwbox
Now we are ready to describe two different criteria for the

GreedySelect(): based on node degrees or reliability changes,
to select the best throwbox in each round to be added in or
removed from the network.

Based on Node Degrees: Each throwbox may bring new
contact and forwarding opportunities to the mobile users in
the network. One way to measure such improvement over
connectivity of a throwbox v

i

is its total node degree added to
the network, i.e., d(v

i

) =

P
T

t=1(d(v
t

i

)), where d(vt
i

) denotes
the number of links from/to vt

i

to/from other mobile users
at time slot t + 1 or t. In each greedy iteration, we simply
add the throwbox with largest d(v

i

) (or remove the throwbox
with smallest d(v

i

)). The intuition behind it is trying to use
the throwboxes with better connectivities (larger node degree
over time) to improve the reliability among mobile users.
The time complexity of GreedySelect based on node degrees
is O(mDT) where D is the maximum node degree of a
throwbox at time t or t + 1. Clearly D is bounded by 2n.
Thus, the time complexity is O(mnT).

Based on Reliability Changes: More directly, we can
use the reliability changes due to adding or removing throw-
box, i.e., r(v

i

) = r(H + {v
i

}) � r(H) for GrdAddTBs or
r(v

i

) = r(H)� r(H � {v
i

}) for GrdDelTBs. In each greedy
iteration, we simply add the throwbox with largest reliability
improvement r(v

i

) (or remove the throwbox with the smallest
deduction r(v

i

)). Obviously, this metric is more direct to our
optimization goal or constraint than node degrees. The time
complexity of this method is around O(mn(M + N logN))

if m rounds of n times of Dijkstra’s algorithm are used. In
terms of complexity, in the worst case, this could be much
larger than those based on node degrees.

Hereafter, we use postfixes -D and -R to represent which
greedy criterion is used by the general framework. For ex-
ample, GrdAddTBs-D or GrdAddTBs-R denotes the greedy
algorithm which uses node degree metric or reliability change
metric to select a throwbox to be added in each round.

C. Performance Guarantee of GrdAddTBs-R
It is always nice to have performance guarantee for some

simple greedy heuristics. However, it is not always an easy

Algorithm 2 Greedy - Deleting Throwboxes (GrdDelTBs)
Input: the original space-time graph G (including potential

throwbox set V
throwbox

), a constant k.
Output: the selected throwbox set V

selected�throwbox

and the
corresponding new space-time graph H.

1: H G and V
selected�throwbox

= V
throwbox

2: while |V
selected�throwbox

| > k do
3: Greedily select a throwbox v

i

from V
selected�throwbox

,
i.e., v

i

= GreedySelect(V
selected�throwbox

,H)

4: H H� {v
i

}
5: V

selected�throwbox

 V
selected�throwbox

� {v
i

}
6: return V

selected�throwbox

and H

case to prove any approximation ratio. Fortunately, as we
have proved in Lemma 1, the reliability function r(H) is non-
negative, monotone, and submodular. Submodular functions
have a number of nice properties. One of them is a result
from [20], [21], summarized as the following theorem.

Theorem 3: For a non-negative, monotone submodular
function f , let S be a set of size k obtained by selecting
elements one at a time, each time choosing an element that
provides the largest marginal increase in the function value.
Let S⇤ be a set that maximizes the value of f over all k-
element sets. Then f(S) � (1� 1/e) · f(S⇤

); in other words,
S provides an (1� 1/e)-approximation.

Notice that our k-throwbox placement problem is exactly
the type of problem described in Theorem 3. Theorem 3 and
Lemma 1 together imply:

Theorem 4: GrdAddTBs-R (Algorithm 1 with greedy met-
ric based on reliability changes) guarantees an (1 � 1/e)
approximation for the k-throwbox placement problem.

V. SIMULATIONS

To evaluate our proposed algorithms for k-throwbox place-
ment problem, we have conducted extensive simulations over
randomly generated time-evolving networks and real DTNs
extracted from realistic contact traces [22]. We implement and
test the following algorithms:

• GrdAdd(Del)TBs-D: greedy algorithms adding/deleting
throwboxes based on node degrees.

• GrdAdd(Del)TBs-R: greedy algorithms adding/deleting
throwboxes based on reliability changes.

• GrdAdd(Del)TBs-Ra: greedy algorithms randomly
adding/deleting throwboxes.

• OPT: the optimal solution for throwbox optimization
problem obtained by brute force method.

Here for reference purposes we include two randomized
algorithms (GrdAdd(Del)TBs-Ra) where a randomly selected
throwbox is added or deleted in each round. The performance
metrics are the reliability of resulting network (i.e., r(H)) and
the actual running time of each method.

A. Simulations on Random Time-evolving Networks
We first test our algorithms on randomly generated net-

works. We generate a sequence of static random graphs with

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

256

1 3 5 7 9

0.143

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of throwboxes

re
lia

b
ili

ty

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

OPT

No Throwbox

1 3 5 7 9
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

number of throwboxes

ru
n
n
in

g
 t
im

e
(m

s)

GrdAddTBs−R
GrdAddTBs−D
GrdAddTBs−Ra
GrdDelTBs−R
GrdDelTBs−D
GrdDelTBs−Ra
OPT

(a) r(H) (b) running time
Fig. 3. Results on random networks (n = 20, m = 10).

3 6 9 12 15

0.156

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

number of throwboxes

re
lia

b
ili

ty

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

No Throwbox

3 6 9 12 15
0

50

100

150

200

250

number of throwboxes

ru
n
n
in

g
 t
im

e
(s

)

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

(a) r(H) (b) running time
Fig. 4. Results on random networks (n = 50, m = 20).

3 6 9 12 15

0.216

0.3

0.35

0.4

0.45

0.5

0.55

number of throwboxes

re
lia

b
ili

ty

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

No Throwbox

3 6 9 12 15
0

50

100

150

200

250

number of throwboxes

ru
n
n
in

g
 t
im

e
(s

)

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

(a) r(H) (b) running time
Fig. 5. Simulation results on networks from Infocom 2006 trace data [22]
(n = 40 and m = 20 static throwboxes).

n+m nodes (n mobile users and m potential throwboxes) over
T = 10 time slots. For each static snapshot, the link between
two mobile users or one mobile user and one throwbox is
randomly inserted based on a probability p. Clearly, the larger
value of p is, the denser the network is. For each link e
we then randomly generate its reliability r(e) in a range
[r

min

, r
max

]. We test different settings of these parameters
in our simulations, and the discoveries and conclusions are
consistent. Due to space limit, we only report the results for
the following setting. We set p = 0.11, r

min

= 0.3, and
r
max

= 0.6 for links between a pair of mobile users; and set
p = 0.22, r

min

= 0.6, and r
max

= 1.0 for links between
a mobile user and a throwbox. Obviously, throwboxes are
usually more reliable than normal mobile devices. Finally, we
generate the weighted space-time graph based on the sequence
of static graphs. For each setting, we generate 100 random
time-evolving networks and report average performances of
our proposed algorithms.

We first run our algorithms on random networks with n

mobile users and m throwboxes (i.e., n = 20 and m = 10),
and let k range from 1 to 9. For these small networks, we
are able to find the optimal solution OPT with brute force
algorithm. Fig. 3(a) shows the reliabilities achieved by each
algorithm with different number of throwboxes. It is clear that
with more throwboxes a higher reliability can be achieved.
The straight blue line at the bottom shows the reliability of
the network without any throwboxes (i.e., V

user

). Fig. 3(b)
also plots the running time of each algorithm. Note that OPT
needs to search

�
m

k

�
times to find the optimal throwboxes

deployment, thus when the number of throwbox is 5, its
running time is the longest. Via these two figures, we can con-
clude: (1) Brute force algorithm can find the optimal solution
with maximum reliability but the running time is the largest
among all methods; (2) Both random algorithms (GrdAddTBs-
Ra and GrdDelTBs-Ra) perform poorly in terms of achieved
reliability; (3) GrdAddTBs-R and GrdDelTBs-R can achieve
the best reliability among all proposed methods and almost
match the OPT , which confirms our theoretical analysis
on approximation ratio; (4) GrdAddTBs-D and GrdDelTBs-
D achieve the same reliability since they are based on the
same degree order. Although they cannot achieve the same
level of reliability with those based on reliability changes,
their running time are much less than those of GrdAddTBs-R
and GrdDelTBs-R. Thus there is a tradeoff between network
reliability and time complexity. We also test the performance
of proposed algorithms in larger random networks (n = 50

and m = 20) to discover the scalability of our algorithms.
Here, we do not obtain the OPT since the running time of
bruce force algorithm is too long for these large networks.
Fig. 4 shows the results. We can draw the similar conclusions
with the previous smaller networks. Overall, GrdAddTBs-R
and GrdDelTBs-R can achieve the highest reliability.

B. Simulations on Real DTN Tracing Data

Taking advantages of public wireless tracing data, we also
test our algorithms over a realistic contact trace dataset: the
Infocom 2006 trace data [22]. This data set includes Bluetooth
sightings by groups of users (i.e., 78 participants) carrying
iMotes for four days during Infocom 2006 conference in
Barcelona, Spain. In addition, 20 stationary iMotes were de-
ployed throughout the hotel, with more powerful batteries and
extended radio ranges. For this set of simulation, we randomly
choose 40 mobile users from the 78 mobile iMotes, and
treat 20 stationary iMotes as 20 potential static throwboxes.
We generate 30 random time-evolving networks, and report
average performances of our proposed algorithms. The relia-
bilities of links are randomly generated as we did for random
networks. Fig. 5 shows the results. All the conclusions are
consistent with those from random network experiments and
confirm our theoretical analysis. Methods based on reliability
changes (GrdDelTBs-R and GrdAddTBs-R) perform very well
in solving the optimization problem.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

257

3 6 9 12 15

0.207

0.3

0.35

0.4

0.45

0.5

0.55

number of throwboxes

re
lia

b
ili

ty

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

No Throwbox

Fig. 6. Simulation results r(H) on networks from Infocom 2006 trace data
[22] (n = 40 and m = 20 mobile throwboxes).

VI. VARIATIONS ON TYPES OF THROWBOXES

Mobile Throwboxes: So far we only consider static throw-
boxes. Static throwboxes may help with increasing contact
opportunities at certain time, however, they might be idle in
other time slots. If throwboxes can move, they can change to
better places during their idle time slots. Thus, it is possible to
introduce mobile throwboxes into DTN to further increase the
contact opportunities. Our model and proposed methods can
be directly applied to mobile throwboxes, since the space-time
graph only describes the contact relationship among mobile
users and throwboxes. As long as the future contact can be
predicted, no change is needed to handle mobile throwboxes.
Fig. 6 shows a set of results from experiments over Infocom
traces [22], where 20 mobile devices are chosen as throwboxes
instead. Results confirm that mobile throwboxes can also
significantly improve the reliability and our proposed methods
work well in such scenario too.

Throwboxes with Short-Memory: In our model, we as-
sume that each throwbox can hold any amount of packets for
any duration of time period. In practice, a throwbox device
may have capacity to hold only certain amount of packets
or have limited energy resource so that it can only hold
packets for certain duration. One of the extreme cases is that
throwboxes can only hold the packet within each time slot, in
other words, they cannot buffer the packets longer than one
time slot. Our weighted space-time graph can easily handle
this case by setting the reliabilities of every temporal link of
all throwboxes to zero. Fig. 7 shows results for such setting
in random time-evolving networks. Again, our algorithms can
handle this scenario well, too.

VII. CONCLUSION

Recent studies have shown the enhancement of DTN per-
formances with throwboxes. This paper investigates a key
problem, throwbox placement, in a time-evolving throwbox-
assisted DTN modeled by a weighted space-time graph. The
k-throwbox placement problem is formally introduced and
shown to be NP-hard. A set of greedy algorithms which can
efficiently provide quality solutions are then proposed. We
show the efficiency of the proposed methods through extensive
simulations over both random time-evolving DTNs and real
life DTN traces.

1 3 5 7 9

0.149

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of throwboxes

re
lia

b
ili

ty

GrdAddTBs−R

GrdAddTBs−D

GrdAddTBs−Ra

GrdDelTBs−R

GrdDelTBs−D

GrdDelTBs−Ra

OPT

No Throwbox

Fig. 7. Results on random networks (n = 50, m = 20) with short-memory
throwboxes.

REFERENCES

[1] P. Hui, J. Crowcroft, and E. Yonek, “Bubble rap: Social-based forward-
ing in delay tolerant networks,” in Proc. of ACM MobiHoc, 2008.

[2] C. Liu and J. Wu, “Scalable routing in delay tolerant networks,” in Proc.
of ACM MobiHoc, 2007.

[3] V. Erranmilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation
forwarding,” in Proc. of ACM MobiHoc, 2008.

[4] W. Zhao, Y. Chen, M. Ammar, M. Corner, et al., “Capacity enhancement
using throwboxes in DTNs,” in Proc. of IEEE MASS, 2006.

[5] N. Banerjee, M. D. Corner, and B. N. Levine, “Design and field ex-
perimentation of an energy-efficient architecture for DTN throwboxes,”
IEEE/ACM Transactions on Networking, 18(2):554–567, 2010.

[6] M. Ibrahim, A.Al Hanbali, et al., “Delay and resource analysis in
MANETs in presence of throwboxes,” Perf. Eva., 64(9):933-947, 2007.

[7] B. Gu and X. Hong, “Latency analysis for thrown box based message
dissemination,” in Proc. of IEEE GLOBECOM, 2010.

[8] M. Ibrahim, P. Nain, and I. Carreras, “Analysis of relay protocols for
throwbox-equipped DTNs,” in Proc. of WiOPT, 2009.

[9] B. Gu and X. Hong, “Capacity-aware routing using throw-boxes,” in
Proc. of IEEE GLOBECOM, 2011.

[10] E. L. Lloyd and G. Xue, “Relay node placement in wireless sensor
networks,” IEEE Transactions on Computers, 56(1):134–138, 2007.

[11] X. Cheng, D.-Z. Du, L. Wang, and B. Xu, “Relay sensor placement in
wireless sensor networks,” Wireless Networks, 14(3):347–355, 2008.

[12] S. Merugu, M. Ammar, and E. Zegura, “Routing in space and time in
networks with predictable mobility,” Tech. Rep. GIT-CC-04-07, 2004.

[13] J. Monteiro, A. Goldman, and A. Ferreira, “Performance evaluation of
dynamic networks using an evolving graph combinatorial model,” in
Proc. of IEEE WIMOB, 2006.

[14] C. Liu and J. Wu, “Routing in a cyclic mobispace,” in Prof. of ACM
MobiHoc, 2008.

[15] L. Arantes, A. Goldman, and M. V. D. Santos, “Using evolving graphs to
evaluate DTN routing protocols,” in Proc. of ACM ExtremeCom, 2009.

[16] N. Baccour, et al., “Radio link quality estimation in wireless sensor
networks: A survey,” ACM TOSN, 8(4), 2012.

[17] W. Su, S.-J. Lee, and M. Gerla, “Mobility prediction in wireless
networks,” in Proc. of IEE MILCOM, 2000.

[18] M. Huang, S. Chen, et al., “Topology control for time-evolving and
predictable delay-tolerant networks,” in IEEE MASS, 2011.

[19] M. Huang, S. Chen, et al., “Topology design in time-evolving delay-
tolerant networks with unreliable links,” in IEEE Globecom, 2012.

[20] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, “Location of bank
accounts to optimize float: An analytic study of exact and approximate
algorithms,” Management Science, 23(8), 1977.

[21] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions-I,” Mathematical Program-
ming, 14(1):265–294, 1978.

[22] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD trace set cambridge/haggle/imote (v. 2009-05-29),” Down-
loaded from http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote.

Globecom 2014 - Ad Hoc and Sensor Networking Symposium

258

