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Abstract— Level-sensitive transparent latches are widely used
in high-performance sequential circuit designs. Under process
variations, the timing of a transparently latched circuit will adapt
random delays at runtime due to time borrowing. The central
problem to determine the timing yield is to compute the proba-
bility of the presence of a positive cycle in the latest latch tim-
ing graph. Existing algorithms are either optimistic since cy-
cles are omitted or require iterations that cannot be polynomially
bounded. In this paper, we present the first algorithm to compute
such probability based on block-based statistical timing analysis
that, first, covers all cycles through a structural graph traversal,
and second, terminates within a polynomial number of statistical
“sum” and “max” operations. Experimental results confirm that
the proposed approach is effective and efficient.

I. INTRODUCTION

Aggressive scaling down of feature sizes enables the man-

ufacturing of VLSI circuits with billions of transistors. As

devices and interconnects approach nanoscale, process varia-

tions, though previously ignorable, have become a critical is-

sue in VLSI fabrication that designers must fact at design time

since they will affect manufacturing yield and run-time relia-

bility of the circuits. Among the design characteristics affected

by process variations, circuit timing is addressed by many re-

search works of statistical static timing analysis (SSTA), as

reviewed in [1]. More specifically, block-based SSTA algo-

rithms, e.g. [2, 3], model device and interconnect delays as

probabilistic distributions instead of deterministic values, ex-

tend “sum” and “max” operations from deterministic values to

probabilistic distributions, and apply those operations follow-

ing the topological order in a directed acyclic graph represent-

ing the circuit, to compute the probabilistic distributions of the

signal arrival times and then the timing yield of the circuit. It

is clear that such approach is effective for combinational cir-

cuits and sequential circuits based on edge-triggered flip-flops

as their timing graphs are generally acyclic.

On the other hand, level-triggered transparent latches are

widely used in high performance circuits due to their low

overhead in timing, area, and power, in comparison to edge-

triggered flip-flops [4]. In those circuits, signals can propa-

gate through a few latches without being synchronized, which

enables time borrowing among multiple combinational stages.

Though time borrowing allows the circuit to adapt delay vari-

ations at run-time, it complicates timing verification even for

deterministic delays [5, 6, 7, 8].

To address the timing verification problem for general trans-

parently latched circuits under process variations, two ap-

proaches [9, 10] were proposed to estimate the timing yield.

In [9], a structural condition for deterministic delays is first

identified stating that a clock schedule is valid iff there is no

positive cycle in the latest latch timing graph and no negative

cycle in the earliest latch timing graph. Then the authors were

able to show that the key problem to compute timing yield is to

compute the probability that a graph with edge weights given

as random distributions has no positive cycle. They proposed

an algorithm to extract acyclic subgraphs from the graph such

that block-based SSTA techniques can be applied to estimate

the timing yield. As there are cases where cycles are missed so

the estimation is optimistic, multiple extractions must be per-

formed at random to ensure coverage. However, it is not clear

how the number of the extractions could be bounded to cover

most of, if not all, the cycles. In [10], the authors proposed to

directly extend the SMO algorithm [5, 6, 7] by incorporating

the statistical “sum” and “max” operations. To achieve algo-

rithmic convergence, a quantity called iteration mean is intro-

duced. However, as the convergence depends both on the cir-

cuit structure and on the accuracy of the statistical operations,

the number of the iterations cannot be bounded.

In this paper, we present the SGT-PC algorithm to compute

the probability that a graph with random edge weights has no

positive cycle in order to accurately calculate the timing yield

of transparently latched circuits under process variations. The

proposed algorithm is based on statistical “sum” and “max” op-

erations, and Chen and Zhou’s formulation [9]. The proposed

algorithm can cover all cycles through a structural graph traver-

sal, within a polynomial number (O(|V |2|E|)) of statistical op-

erations. Further more, we develop a decomposition technique

based on strongly connected components (SCCs) [11] to im-

prove the practical efficiency of the SGT-PC algorithm with-

out sacrificing accuracy, and a heuristic approach to limit the

region of graph traversal that allows designers to trade-off ac-

curacy with running time. The experiments with delays under

multivariate normal distribution [2, 3] show the proposed ap-

proach can generate more accurate results in less running time

in comparison to [9]. Note that the overall accuracy to com-

pute the timing yield depends on, first, the ability to cover all

cycles, and second, the accuracy of statistical operations. We

focus on the former in this paper but leave the latter to related

SSTA research works, e.g. [12].
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Fig. 1. Latch latest timing

The rest of paper is organized as follows. In Section II,

the problem formulation of Statistical Positive Cycle Detection
(SPCD) is introduced based on [9]. In Section III, the SGT-PC

algorithm is presented to solve the SPCD problem. In Sec-

tion IV, practical improvements for the SGT-PC algorithm are

developed. After experimental results are shown in Section V,

we conclude the paper in Section VI.

II. PROBLEM FORMULATION

In [9], Chen and Zhou extended Szymanski and Shenoy’s

work [7] to establish structural conditions for clock schedules

to be valid for transparently latched circuits. The conditions

are based on a conservative SMO formulation [5, 6] and can be

used for both deterministic and statistical timing verifications.

Details follow.

Let L be the set of the transparent latches in the circuit. A

clock schedule is the assignment of a clock signal pi to each

latch i ∈ L such that all clock signals should be of the same

clock period φ but can have different phases. Choosing an ar-

bitrary time frame of length φ, a clock signal p can be denoted

by its starting and ending time (sp, ep). Without loss of gener-

ality, assume sp < ep and let tp = ep − sp be the width of p.

For any pair of latches i and j, let Δij be the longest combina-

tional path delay from i to j and let δij be the shortest one. Let

Si and Hi be the setup and hold time of latch i respectively.

The clock schedule is valid iff there exist latest signal arrival

and departure time (Ai, Di), and earliest signal arrival and de-

parture time (ai, di), for each latch i, to satisfy the following

two sets of constraints, while the first set is illustrated in Fig. 1.

Latest timing constraints: (1)

Ai −Dj ≥ Δji − Epjpi , ∀j → i,

Di −Ai ≥ 0, Di ≥ c− tpi , −Ai ≥ Si − φ, ∀i ∈ L.

Earliest timing constraints: (2)

ai − dj ≤ δji − Epjpi , ∀j → i,

di ≤ φ− tpi , − ai ≤ −Hi, ∀i ∈ L.

Note that since (Ai, Di) and (ai, di) are in latch i’s local

time, i.e. starting at the falling edge of the clock signal, the

local time translator E is used to translate from one latch’s local

time to the other’s, which is defined as,

Epjpi

Δ=
{

epj
− epi

, if epj
> epi

,

φ + epj
− epi

, otherwise.

Clearly, Eq. (1) is a system of difference inequalities as there

are at most two variables per inequality, one with coefficient 1

and the other with coefficient−1. Based on the correspondence

between such a system and the longest path problem on a graph

[11], Chen and Zhou [9] proposed to construct the latest latch

timing graph corresponding to the latest timing constraints. To

be more specific, for each constraint x − y ≥ z in Eq. (1),

the vertices x and y are introduced to the graph for the vari-

ables, and an edge from x to y are introduced with weight z.

For the constraints where x or y is missing, the dummy vertex

O is introduced with the corresponding edges to represent the

reference time 0. Similarly, the earliest latch timing graph can

be constructed from the earliest timing constraints. Under pro-

cess variations, the quantities at the right-hand-side in Eq. (1)

and (2) become random variables. The timing yield of the cir-

cuit, which is defined as the probability that the clock schedule

is valid, is shown [9] to be equal to to the probability that the

latest latch timing graph has no positive cycle and the earliest

latch timing graph has no negative cycle. Due to the symmetry

between positive cycles and negative cycles (through negation

of edge weights), the following Statistical Positive Cycle De-
tection (SPCD) problem is formulated.

Problem 1 (Statistical Positive Cycle Detection)
Let G = (V,E) be a graph. For each edge (i, j) ∈ E, let
w(i, j) be the random edge weight. Assume that the joint dis-
tribution of w is known. Determine a random variable X and
its distribution such that G has a positive cycle iff X > 0.

The SPCD problem should be solved twice – once for the lat-

est latch timing graph and once for the earliest latch timing

graph with negated edge weights. Then the timing yield can

be computed as the probability that both random variables are

non-positive.

Chen and Zhou [9] proposed the PCycle algorithm to solve

the SPCD problem assuming that the edge weights follow mul-

tivariate normal distribution and thus the statistical “sum” and

“max” operations are available [2, 3]. Moreover, they found

that the SPCD problem for the earliest latch timing graph can

be directly solved through block-based SSTA techniques for

acyclic graphs [2, 3] because of its special structure. However,

as pointed out in [9], the PCycle algorithm may miss cycles and

thus is optimistic, i.e., it is possible that the obtained X ≤ 0 for

some process corner but G does have a positive cycle, even as-

suming that the statistical operations are perfectly accurate. We

will present in the next section our SGT-PC algorithm to solve

the SPCD problem that can cover all cycles, with the same as-

sumption as [9] for the edge weights distribution and the sta-

tistical operations. Note that both SGT-PC algorithm and the

PCycle algorithm can be applied to edge weights beyond mul-

tivariate normal distribution, as long as the statistical “sum”

and “max” operations with proper accuracy are available.

III. STRUCTURAL GRAPH TRAVERSAL BASED STATISTIC

POSITIVE CYCLE DETECTION

A. Algorithmic Idea

For a cycle c in G, let w(c) be the cycle weight, defined as

the summation of the edge weights along c, i.e.,

w(c) Δ=
∑

(i,j)∈c

w(i, j).
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For the SPCD problem, consider the approach to compute X
as the maximum of all the cycle weights, i.e.,

Xall
Δ= max

cycle c
w(c).

Since a positive cycle can be constructed by traversing another

positive cycle multiple times, it is straight-forward that Xall =
+∞ when G has a positive cycle. On the other hand, when G
has no positive cycle, we should have Xall ≤ 0. Therefore, it is

possible that the mean of Xall is unbounded and thus it is quite

difficult to approximate Xall directly with any distribution of

finite mean, which is usually the case for the available block-

based SSTA techniques, e.g. [2, 3].

From the formulation of the SPCD problem, it is clear that

any random variable X satisfying that X > 0 iff Xall > 0
would be a solution. Consider a positive cycle c in G. Recall

that a simple cycle is a cycle that traverses any vertex at most

once. Suppose that c can be decomposed into simple cycle(s)

c1, c2, . . ., cl. Then since

l∑
k=1

w(ck) = w(c) > 0,

there must exist some 1 ≤ k ≤ l such that w(ck) > 0, i.e. G
has a positive simple cycle. Therefore, after defining S to be

the set of simple cycles in G, we have the following lemma,

Lemma 1 Define

XS
Δ= max

c∈S
w(c).

Then XS > 0 iff Xall > 0.

The above lemma implies that XS is a solution of the SPCD

problem. Moreover, since a simple cycle contains at most |V |
vertices, S is a finite set. Therefore, in comparison to Xall, XS

can be approximated more accurately with available statistical

operations.

However, to compute XS by enumerating simple cycles ex-

plicitly, e.g. through depth-first-search [11], is computationally

prohibitive, since S may contain exponential number of cycles

in terms of |V |. To circumvent such difficulty, our algorithmic

idea is to identify a set of cycles S∗ that includes S such that

the maximum cycle weights of S∗, defined as,

XS∗
Δ= max

c∈S∗
w(c),

can be computed without explicitly enumerating the cycles.

The correctness of the idea is guaranteed by the following

lemma.

Lemma 2 If S ⊆ S∗, then XS∗ > 0 iff XS > 0.

B. The SGT-PC Algorithm

For a particular vertex i ∈ V , let Li be the set of cycles in

G that contain at most |V | vertices and traverse the vertex i
exactly once. As a simple cycle contains at most |V | vertices,

it is straight-forward that,

S ⊆ L
Δ=

⋃
i∈V

Li.

Subroutine VertexDist

Inputs
G = (V,E): the graph. i: a vertex in V .

Outputs
Xi: maximum cycle weight for cycles

passing i exactly once.

1 For all j ∈ V :

2 W 1
ij ←

{
max(i,j)∈E w(i, j), ∃(i, j) ∈ E,
−∞, �(i, j) ∈ E.

3 For k ← 2 to |V |:
4 For all j ∈ V :

5 W k
ij ← max(

v �=i
)
∧
(
(v,j)∈E

) W k−1
iv + w(v, j).

6 Xi ← max(W 1
ii, W

2
ii, . . . , W

|V |
ii ).

Fig. 2. The VertexDist subroutine.

Moreover, after defining Xi
Δ= maxc∈Li

w(c), we have,

XL = max
i∈V

Xi. (3)

Therefore, XL can be computed through applying the statistical

“max” operation to all Xi’s.

Consider a cycle c in Li. Assume that c is not a self-loop,

i.e. the cycle with exactly one edge from i to i. Then c must

be consisted of a path p from i to some vertex j that traverses i
only once at the head, and an edge from j to i. For j �= i and

1 ≤ k ≤ |V |, define W k
ij be the maximum path weight, i.e. the

summation of edge weights along the path, among the paths

from i to j that traverse i only once at the head and contain

exactly k edges. For 1 ≤ k ≤ |V |, define W k
ii be the maximum

cycle weight among the cycles that traverse i exactly once and

contain exactly k edges. Assuming the statistical “sum” and

“max” operations are available, we have,

W 1
ii = max

(i,i)∈E
w(i, i), (4)

W k
ii = max(

j �=i
)
∧
(
(j,i)∈E

)W k−1
ij +w(j, i),∀2 ≤ k ≤ |V |,(5)

Xi = max
1≤k≤|V |

W k
ii. (6)

In addition, W k
ij can be calculated recursively by dynamic pro-

gramming as follows.

W 1
ij = max

(i,j)∈E
w(i, j), (7)

W k
ij = max(

v �=i
)
∧
(
(v,j)∈E

)W k−1
iv +w(v, j),∀2 ≤ k ≤ |V |. (8)

Note that the above random variables should take the value−∞
if there is no operand for the “max” operations.

Based on Eq. (4) to (8), we design the VertexDist subroutine

as shown in Fig. 2 to compute Xi. In this subroutine, we apply

Eq. (4) and (7) in the loop on line 1, apply Eq. (5) and (8) in

the loop on line 4, and compute Xi on line 6 from Eq. (6).

An example illustrating the VertexDist subroutine is shown

in Fig. 3. For simplicity, deterministic edge weights are used

instead of random ones. It should be clear that the VertexDist

subroutine uses the statistical “sum” and “max” operations in-

stead of the deterministic ones. The example graph is shown

on the left, which has 4 vertices and 7 edges. The edge weights

8B-1

665



a b

cd

1

2
5

2

4

1 1

a b

2

c

3

d

4

vertex 

stage

1

3 4

6

7

10

2 2

11

9
5

Fig. 3. Compute Xa by VertexDist.

Algorithm SGT-PC

Inputs
G = (V,E): the graph.

Outputs
XL: maximum cycle weight in L

1 For all i ∈ V :

2 Xi ← VertexDist(G, i).
3 XL ← maxi∈V Xi.

Fig. 4. The SGT-PC algorithm.

are annotated on the edges. The subroutine traverses the graph

from vertex a in order to compute Xa. The progress of the

subroutine is shown on the right, where the stages in the loop

on line 3 are expanded into rows. In the first stage, since (a, b)
and (a, c) are the fanout edges from a, W 1(a, b) and W 1(a, c)
are computed as 1 and 2 respectively, and are annotated in the

figure. As there is no edge from a to a or d, W 1(a, a) and

W 1(a, d) are set as −∞, which are not shown for ease of pre-

sentation. This progress continues until |V | stages have been

explored. The Xi will take W 3
aa = 7, which is the weight of

the cycle a→ b→ c→ a.

We design the SGT-PC algorithm as shown in Fig. 4 by com-

bining the VertexDist subroutine with Eq. (3). The correctness

of the algorithm is stated in the following theorem.

Theorem 1 The SGT-PC algorithm generates a random vari-
able XL and its distribution such that G has a positive cycle iff
XL > 0.

Since statistical operations are used in SGT-PC, the com-

plexity of the SGT-PC algorithm depends on that of the sta-

tistical operations. Assume that it will take O(R) space for

each random variable and O(T ) time for each “sum” or “max”

operation. Consider the VertexDist subroutine. For the loop

on line 1, it takes at most O(|E|) operations. For the loop on

line 4, it can be implemented by traversing each edge exactly

once. So it will take O(|E|) operations. Line 6 requires O(|V |)
operations. Therefore, the time complexity for the VertexDist

subroutine is O(T |E||V |). On the other hand, although |V |2
random variables W k

ij are computed in the subroutine, at most

3|V | variables are required to be stored at any given time. To

be more specific, in the loop on line 3, only W k
ij’s and W k−1

ij ’s

are required and the W k′
ij ’s for all k′ < k − 1 and j �= i can be

discarded. Therefore, the space complexity for the VertexDist

subroutine is O(R|V |). Based on above discussions, we have

the following theorem.

Theorem 2 Assume that each random variable requires O(R)
storage and each “sum” or “max” operation requires O(T )
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Fig. 5. A graph with a path never traveling back to a.
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Fig. 6. Compute Xa in the SCC containing a.

time. Then the time complexity of the SGT-PC algorithm is
O(T |V |2|E|) and the space complexity is O(R|V |).

IV. PRACTICAL IMPLEMENTATION CONSIDERATIONS

A. Strongly Connected Components Decomposition

An observation of the SGT-PC algorithm is that the same

cycle may be counted multiple times when Xi’s are computed.

For example, consider the cycle a → b → c → a in Fig. 3.

It is counted for 3 times in the progress of computing Xa, Xb,

and Xc. A straight-forward method to avoid those extra com-

putations is to remove a and all the edges incident on a from

G once Xa is computed. Such a modification of the SGT-PC

algorithm will still be correct as any simple cycle containing a
is included in La already.

Further more, in the progress to compute Xi, if a path start-

ing from i never travels back to i, the path weight will not con-

tribute to Xi. Therefore, if such paths can be identified before

applying the VertexDist subroutine, they can be excluded to

speed-up the algorithm practically without affecting the cor-

rectness of the algorithm. For example, consider the graph

shown in Fig. 5. Starting from a, the paths containing d will

never travel back to a and thus the vertex d can be excluded

when computing Xa to save practical running time.

Since a path will travel back to its starting point iff all the

vertices along the path belong to a strongly connected com-

ponent (SCC) [11], we propose to decompose the graph into

SCCs before applying the VertexDist subroutine. Under such

decomposition, paths that will not travel back to its starting

point are eliminated from computation. Moreover, since paths

are limited to each SCC, the number of required stages on line 3

of the VertexDist subroutine, is the size of the SCC, which is

usually smaller than |V |. For the example shown in Fig. 5, we

perform SCC decomposition and identify the SCC containing

a before applying the VertexDist subroutine as shown in Fig. 6.

Clearly, we save more than half of the statistical operations.
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Algorithm SGT-PCSCC

Inputs
G = (V,E): the graph.

Outputs
X: maximum cycle weight

1 Q← ∅.
2 SCC-Enqueue(G, Q).
3 While Q �= ∅:
4 G′ ← Dequeue(Q).
5 i← any vertex in G′.
6 Xi ← VertexDist(G′, i).
7 SCC-Enqueue(G′ − i, Q).
8 X ← maxi∈V Xi.

Fig. 7. The SGT-PCSCC algorithm.

We design the SGT-PCSCC algorithm as shown in Fig. 7

to incorporate the above ideas. In this algorithm, a queue Q
of graphs is used to maintain the SCCs found in the progress

of the algorithm. For a given graph G′ and a queue Q, we as-

sume that the SCC-Enqueue subroutine will decompose G′ into

SCCs and put the SCCs into Q. As SCC decomposition can be

finished within O(|V |+ |E|) time and space [11], we have the

following theorem for the correctness and the complexity of the

SGT-PCSCC algorithm.

Theorem 3 The SGT-PCSCC algorithm generates a random
variable X and its distribution such that G has a positive
cycle iff X > 0. The time complexity of the algorithm is
O(T |V |2|E|) and the space complexity is O(R|V |).

Although the theoretical complexities of the SGT-PC and the

SGT-PCSCC algorithm are the same, we observed in our exper-

iments that the SCC decomposition contributes significantly to

the practical efficiency of the SGT-PCSCC algorithm. Though

the latest latch timing graph contains only one SCC at the be-

ginning, once a few vertices are removed after a few iterations,

the graph may be decomposed into many small SCCs, whose

maximum cycle weights can be computed efficiently.

B. Limiting Number of Traversal Stages

To cover all simple cycles in the VertexDist subroutine, all

cycles containing at most |V | vertices are considered in the

loop on line 3. We propose to explore the trade-off between

solution accuracy and running time by introducing a bound N
to the number of stages such that the loop on line 3 will exe-

cute at most min(N, |V |) times and thus some cycles could be

missed from the computation.

The motivation of such restriction is as follows. First of all,

if the missed cycle is not a simple cycle, then the solution accu-

racy will not be affected due to Lemma 2. Second, the SPCD

problem is formulated to verify the latest latch timing graph.

In such graph, a simple cycle containing more than N vertices

usually corresponds to a possible time borrowing across N/2
latches. As designers tend to manage the complexity of latch

timing by restricting time borrowing to only a few latches, it is

unlikely that a timing violation will happen across N/2 latches

and time borrowing will tolerate acceptable variations in long

cycles In such case, it should be up to the designers to deter-

mine the bound N for the number of traversal stages.

V. EXPERIMENTS

We derive the experimental circuits from the ISCAS89

benchmark. Each flip-flop is replaced by a pair of transpar-

ent latches defined as the front latch and the back latch. While

the front latches are kept at the locations of the flip-flops, the

back latches are moved into the combinational part of the cir-

cuit randomly while preserving the circuit functionality. A two-

phase clock consisting of a clock and its inversion is assigned

to the latches such that all the front latches are assigned the

original clock and all the back latches are assigned the inverted

clock. The gate delays are assumed to follow multivariate nor-

mal distribution and are determined as follows. First, we assign

each gate a nominal delay which is equal to the number of its

fanouts. Then, we assign a standard deviation to each gate that

is within 20 − 30% of its nominal delay. Assuming that each

gate has a unit size, a wire-length driven global placement is

performed by mPL6[13] to determine the rough positions of

each gate in a 4 × 4 grid of the chip area. We assume that

two gate delays are perfectly correlated if they are within a

same block. Otherwise, the covariance of two gate delays is

assigned to be inversely proportional to the distance of the two

grid centers. The latest latch timing graph is then generated by

applying block-based SSTA techniques [2, 3].

We implement our SGT-PCSCC algorithm with the statisti-

cal “sum” and “max” operations from [3] as gate delays are

assumed to follow multivariate normal distribution. For com-

parison, we implement the PCycle algorithm [9]. Both statisti-

cal operations from [2] and [3] were experimented for PCycle

but the ones from [2] generated more accurate results and thus

are used. To verify the accuracy of both SGT-PCSCC and the

PCycle algorithm, we implement an approach based on Monte

Carlo simulation and Bellman-Ford algorithm [11] to evaluate

the probability that the latest latch timing graph has no positive

cycle. For each graph, we run 10000 iterations of Monte Carlo

simulation and assume that the result is accurate. All codes are

implemented in C++, compiled by GCC version 3.4, and run

on a Linux PC with a 2.4GHz processor and 4.0GB memory.

The experimental results are compared in Table I. For cir-

cuits with a ∗ mark, we limited the number of traversal stages.

Clearly, our SGT-PCSCC algorithm generates more accurate

results in less running time in comparison to the PCycle al-

gorithm for most circuits, while both algorithms use much

less running time in comparison with Monte Carlo simulation.

On average, the error of the SGT-PCSCC algorithm is 0.21%,

while the error of the PCycle algorithm is 1.03%.

As the majority of the running time for both algorithms are

spent on statistical operations, we present in Table II the num-

ber of the statistical operations used for each circuit. It can be

seen that: for small circuits where the SGT-PCSCC algorithm

can guarantee to cover all cycles, the number of operations ex-

ecuted by the PCycle algorithm are not necessarily smaller al-

though cycles may be missed; for large circuits where both al-

gorithms may miss cycle, the SGT-PCSCC algorithm applies

the operations more effectively and achieves a better accuracy.
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TABLE I

COMPARISON OF PCYCLE, SGT-PCSCC , AND MONTE CARLO SIMULATION.

circuit PCycle SGT-PCSCC Monte Carlo

name |V | |E| yield% time(s) error% yield% time(s) error% yield% time(s)

s27 7 21 97.37 0.02 0.11 97.37 0.01 0.11 97.26 0.34

s208.1 27 113 99.16 0.08 0.54 98.90 0.02 0.28 98.62 3.45

s382 49 249 99.76 0.25 2.53 97.37 0.03 0.14 97.23 11.68

s420.1 50 283 98.37 0.25 -0.21 98.82 0.03 0.24 98.58 13.43

s526 53 263 94.96 0.27 0.05 94.81 0.12 -0.10 94.91 19.93

s832 83 336 97.99 0.57 -0.37 98.06 0.15 -0.3 98.36 26.99

s1196 127 391 97.77 0.76 -1.63 99.39 0.43 -0.01 99.40 68.34

s1423 159 2315 96.38 2.39 1.55 94.66 0.64 -0.17 94.83 246.14

s5378* 514 2697 97.19 26.06 1.15 96.37 3.16 0.33 96.04 1228.06

s13207* 1365 5714 97.92 197.20 1.93 96.15 38.28 0.16 95.99 7515.15

s13207.1* 1337 5673 99.93 204.94 1.05 98.98 35.66 0.10 98.88 7613.59

s15850* 1275 17901 98.38 542.25 0.80 98.19 47.05 0.61 97.58 15136.97

s35932* 3145 10838 97.12 977.72 -2.08 99.50 466.29 0.30 99.20 35704.76

s38417* 3419 34971 96.91 3083.51 -0.69 97.62 494.23 0.02 97.60 85445.45

s38514* 4253 26208 99.70 2906.01 0.70 99.31 968.06 0.34 98.97 93268.92

TABLE II

COMPARISON ON THE COUNT OF “SUM” AND “MAX” OPERATIONS FOR

PCYCLE AND SGT-PCSCC .

circuit PCycle SGT-PCSCC

name sum# max# sum# max#

s27 2173 856 765 249

s208.1 26352 16146 7235 2076

s382 102916 67148 24396 7633

s420.1 106078 72754 21036 7538

s526 116123 79674 152221 75059

s832 314128 200318 207288 73183

s1196 459642 261392 659943 202957

s1423* 6823K 5478K 741K 339K

s5378* 13900K 9193K 1849K 512K

s13207* 88255K 52408K 540K 103K

s13207.1* 95489K 57157K 1467K 277K

s15850* 267978K 211626K 23694K 10540K

s35932* 274623K 167203K 119737K 30157K

s38417* 1571896K 1278600K 6976K 2350K

s38584* 1377417K 970265K 84463K 18272K

VI. CONCLUSION

In this paper, we presented the SGT-PC algorithm to solve

the Statistical Positive Cycle Detection problem for statisti-

cal timing verification of transparently latched circuits. Based

on block-based statistical timing analysis techniques, the SGT-

PC algorithm was able to cover all cycles through a structural

graph traversal within O(|V |2|E|) number of statistical “sum”

and “max” operations. A decomposition technique based on

strongly connected components was developed to improve the

practical efficiency of the algorithm without sacrificing accu-

racy, and a heuristic approach to limit the region of graph

traversal was proposed to allow designers to trade-off accuracy

with running time. The proposed approach was confirmed by

the experimental results in comparison to previous works and

Monte Carlo simulation.

ACKNOWLEDGMENTS

This work is supported in part by the Educational and Re-

search Initiative Fund from Illinois Institute of Technology.

REFERENCES

[1] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical tim-

ing analysis: from basic principles to state of the art,” IEEE TCAD,

27(4):589–607, Apr. 2008.

[2] H. Chang and S. Sapatnekar, “Statistical timing analysis under spatial

correlations,” IEEE TCAD, 24(9):1467–1482, Sep. 2005.

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and

S. Narayan, “First-order incremental block-based statistical timing anal-

ysis,” in DAC, pp. 331–336, 2004.

[4] C. Ebeling and B. Lockyear, “On the performance of level-clocked cir-

cuits,” in Proc. Advanced Research VLSI, pp. 342–356, 1995.

[5] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “checkTc and minTc:

Timing verification and optimal clocking of synchronous digital circuits,”

in ICCAD, pp. 552–555, 1990.

[6] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Analysis and design

of latch-controlled synchronous digital circuits,” IEEE TCAD, 11(3):322–

332, Mar. 1992.

[7] T. G. Szymanski and N. Shenoy, “Verifying clock schedules,” in ICCAD,

pp. 124–131, 1992.

[8] N. Shenoy, “Timing issues in sequential circuits,” Ph.D. dissertation,

Dept. Elect. Eng. Comput. Sci., Univ. California, Berkeley, 1993.

[9] R. Chen and H. Zhou, “Statistical timing verification for transparently

latched circuits,” IEEE TCAD, 25(9):1847–1855, Sep. 2006.

[10] L. Zhang, J. Tsai, W. Chen, Y. Hu, and C. C.-P. Chen, “Convergence-

provable statistical timing analysis with level-sensitive latches and feed-

back loops,” in ASPDAC, pp. 941–946, 2006.

[11] T. H. Cormen, C. E. Leiserson, R. H. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed, The MIT Press, 2001.

[12] D. Sinha, H. Zhou, and N. Shenoy, “Advances in computation of the max-

imum of a set of Gaussian random variables,” IEEE TCAD, 26(8):1522–

1533, Aug. 2007.

[13] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “mPL6: enhanced

multilevel mixed-size placement,” in ISPD, pp. 212–214, 2006.

8B-1

668



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


