
Clustering for Processing Rate Optimization∗

Chuan Lin, Jia Wang, and Hai Zhou
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

Abstract

Clustering (or partitioning) is a crucial step between logic
synthesis and physical design in the layout of a large scale
design. A design verified at the logic synthesis level may
have timing closure problems at post-layout stages due to
the emergence of multiple-clock-period interconnects. Con-
sequently, a trade-off between clock frequency and through-
put may be needed to meet the design requirements. In this
paper, we find that the processing rate, defined as the prod-
uct of frequency and throughput, of a sequential system is
upper bounded by the reciprocal of its maximum cycle ratio,
which is only dependent on the clustering. We formulate the
problem of processing rate optimization as seeking an opti-
mal clustering with the minimal maximum-cycle-ratio in a
general graph, and present an iterative algorithm to solve
it. Since our algorithm avoids binary search and is essen-
tially incremental, it has the potential of being combined
with other optimization techniques. Experimental results
validate the efficiency of our algorithm.

1 Introduction

Circuit clustering (or partitioning) is often employed be-
tween logic synthesis and physical design to decompose a
large circuit into parts. Each part will be implemented as
a separate cluster that satisfies certain design constraints,
such as the size of a cluster. Clustering helps to provide the
first order information about interconnect delays as it classi-
fies interconnects into two categories: intra-cluster ones are
local interconnects due to their spatial proximity while inter-
cluster ones may become global interconnects after floor-
plan/placement and routing (also known as circuit layout).

Due to aggressive technology scaling and increasing op-
erating frequencies, interconnect delay has become the main
performance limiting factor in large scale designs. Industry
data shows that even with interconnect optimization tech-
niques such as buffer insertion, the delay of a global intercon-
nect may still be longer than one clock period, and multiple
clock periods are generally required to communicate such a
global signal. Since global interconnects are not visible at
logic synthesis when the functionality of the implementation
is the major concern, a design that is correct at the logic syn-
thesis level may have timing closure problems after layout
due to the emergence of multiple-clock-period interconnects.

∗This work was supported by the NSF under CCR-0238484.

This gap has motivated recent research to tackle the
problem from different aspects of view. Some of them resort
to retiming [14], which is a traditional sequential optimiza-
tion technique that moves flip-flops within a circuit without
destroying its functionality. It was used in [20, 4, 16, 19, 15]
to pipeline global interconnects so as to reduce the clock
period. Although retiming helps to relieve the criticality of
global interconnects, there is a lower bound of the clock peri-
ods that can be achieved because retiming cannot change the
latency of either a (topological) cycle or an input-to-output
path in the circuit. In case that the lower bound does not
meet the frequency requirement, redesign and re-synthesis
may have to be carried out.

One way to avoid redesign is to insert extra wire-pipelining
units like flip-flops to pipeline long interconnects, as done
within Intel [5] and IBM [13]. It can be shown that if the pe-
riod lower bound is determined by an input-to-output path,
pipelining can reduce the lower bound without affecting the
functionality. However, if the period lower bound is given
by a cycle, inserting extra flip-flops in it will change its func-
tionality.

C-slow transformation [14] is a technique that slows down
the input issue rate1 of the circuit to accommodate higher
frequencies. It was thus used in [17] to retain the function-
ality when extra flip-flops were inserted in cycles. In other
words, throughput was sacrificed (became 1/C) to meet the
frequency requirement.

Instead of slowing down the throughput uniformly over
the whole circuit, Latency Insensitive Design (LID) [2, 1],
on the other hand, employs a protocol that slows down the
throughput of a part of the circuit only when it is needed. As
a result, LID can guarantee minimal throughput reduction
while satisfying the frequency requirement.

We show in Section 2 that the aforementioned three ap-
proaches (retiming, pipelining with C-slow, and pipelining
with LID) can be unified under the same objective function
of maximizing the processing rate, defined as the product
of frequency and throughput, as illustrated in Figure 1. In
addition, the processing rate of a sequential system is upper
bounded by the reciprocal of the maximum cycle ratio of the
system, which is only dependent on the clustering. There-
fore, we propose an optimal algorithm that finds a clustering
with the minimal maximum-cycle-ratio.

The rest of this paper is organized as follows. Section 2
presents the problem formulation. Two previous works are

1The issue rate is defined as the number of clock periods between
successive input changes. An issue rate of 1 indicates that the inputs
can change every clock period.

Logic
Synthesis Clustering Placement

Floorplan/

&
Routing

Retiming

C-slow

LID

Processing
Rate

Pipelining&

Pre-layout Post-layout

Pipelining&

Figure 1: A logical and physical design flow.

reviewed in Section 3. Section 4 defines the notations and
constraints used in this paper. Our algorithm is elaborated
in Section 5, followed by the implementation details in Sec-
tion 6. We present some experimental results in Section 7.
Conclusions are given in Section 8.

2 Problem formulation

We consider clustering subject to a size limit for clusters.
More specifically, each gate has a specified size, as well as
each interconnect. We require that the size of each cluster,
defined as the sum of the sizes of the gates and the inter-
connects in the cluster, should be no larger than a given
constant A. Replication of gates is allowed, i.e., a gate may
be assigned to more than one cluster in the layout. When
a gate is replicated, its incident interconnects are also repli-
cated so that the clustered circuit is logically equivalent to
the original circuit. Figure 2 (taken from [18]) shows an
example of gate replication in a clustering.

a

b

c

(a)i (b)i
a

b

b b

c

o o

Figure 2: (a) An example circuit; (b) A clustering with 3
replicas of gate b.

Given a particular clustering c, we treat the replicas of
gates and the original ones distinctly and denote them all
as Vc. We use Ec to denote the set of interconnects among
Vc. The clustered circuit is represented as Gc = (Vc, Ec). In
order for the circuit to operate at a specified clock period
λ, additional wire-pipelining flip-flops are inserted. For all
cycle oc in Gc, let d(oc) denote the cycle delay, w(oc) and
wλ(oc) denote the number of flip-flops in oc before and af-
ter additional pipelining flip-flops are inserted, respectively.
Assuming w(oc) > 0, the cycle ratio of oc is defined as
φ(oc) = d(oc)/w(oc). Note that φ(oc) is defined using w(oc),
not wλ(oc). The maximum cycle ratio over all the cycles in
Gc is denoted as φc = maxoc∈Gc φ(oc).

We define processing rate as follows.

Definition 1 For a sequential system, processing rate is de-
fined as the length of processed input sequence per unit time.
In particular, it is the product of frequency and throughput
in a synchronous system.

The larger the processing rate, the better the sequential
system. Given the above definition, the approach of retim-

ing actually maximizes the processing rate by minimizing
the period while keeping the throughput. It is interesting
to notice that the approach of pipelining with C-slow trans-
formation also maximizes the processing rate for a specified
period by computing the least slowdown of the issue rate,
which is transformed into throughput reduction. As an al-
ternative, Latency Insensitive Design (LID) helps the clus-
tered circuit reach the maximum throughput for a specified
period. Therefore, all the three approaches can be unified
under the same objective function of maximizing the pro-
cessing rate.

It was shown in [3] that the maximum throughput ρλ of
an LID for a specified period λ can be computed as

ρλ = min
cycle oc∈Gc

w(oc)

wλ(oc)
.

On the other hand, the fact that the circuit can operate
at the specified period λ after the insertion of additional flip-
flops implies that wλ(oc)λ ≥ d(oc), i.e., 1

wλ(oc)
≤ 1

d(oc)/λ
,

∀cycle oc ∈ Gc. Substitute this into the formula of ρλ to get

ρλ ≤ min
oc∈Gc

w(oc)

d(oc)/λ
= min

oc∈Gc

λ

φ(oc)
=

λ

φc
.

It follows that the maximum processing rate of an LID is
upper bounded by 1

φc
since

max processing rate =
1

λ
· ρλ ≤

1

λ
· λ

φc
=

1

φc
.

It is also an upper bound of the maximum processing rate
obtained by the approach of retiming, as shown in [20]. In
other words, all the three approaches share the same upper
bound of their common objective.

To maximize the processing rate, one can either maxi-
mize the upper bound or try to achieve the upper bound.
They are equally important. However, since achieving the
upper bound requires further knowledge on physical design,
such as buffer and flip-flop allowable regions [8, 20] while
the upper bound itself is only dependent on the maximum
cycle ratio of the clustered circuit, we will consider how to
optimally cluster the circuit such that the upper bound is
maximized, or equivalently, the maximum cycle ratio is min-
imized.

In order to compute the maximum cycle ratio, we need
to know how to compute the delay of a cycle during clus-
tering. Although local interconnect delays can be obtained
using some delay models at synthesis, the delays of global in-
terconnects are not available until layout. Therefore during
clustering, we assume that each global interconnect induces
an extra constant delay D, e.g., if interconnect (u, v) with
delay d(u, v) is assigned to be inter-cluster, then its delay
becomes d(u, v) + D.

Since we want to minimize the maximum cycle ratio,
the path delays from primary inputs (PIs) to primary out-
puts (POs) can be ignored since they can be mitigated by
pipelining. This motivates us to formulate the problem in a
strongly connected graph.

Problem 1 (Optimal Clustering Problem)
Given a directed, strongly connected graph G = (V, E), where
each vertex v ∈ V has a delay d(v) and a specified size, and
each edge (u, v) ∈ E has a delay d(u, v), a specified size and
a weight w(u, v) (representing the number of flip-flops on
it), find a clustering of vertices with possible vertex replica-
tion such that: 1. the size of each cluster is no larger than

a given constant A; 2. each global interconnect induces an
extra constant delay D; 3. the maximum cycle ratio of the
clustered circuit is minimized.

We assume that all delays are integral2 and thus all cycle
ratios are rational. In addition, we assume that each gate
has unit size and the size of each interconnect is zero. Our
proposed algorithm can be easily extended to handle various
size scenarios.

3 Previous work

Pan et al. [18] proposed to optimally cluster a sequential cir-
cuit such that the lower bound of the period of the clustered
circuit was minimized with retiming. However, the period
lower bound may not come from a cycle ratio. In addition,
their algorithm needs to start from PIs, thus cannot be used
to solve our problem in a strongly connected graph. In this
sense, they solved a different problem, even though it looks
similar to ours.

Their problem was solved by binary search, using a test
for feasibility as a subroutine. For each target period, they
used a procedure called labeling computation to check the
feasibility. The procedure starts with label assignment 0 for
PIs and −∞ for the other vertices, and repeatedly increases
the label values until they all converge or the label value
of some PO exceeds the target period, for which the target
period is considered infeasible. For each vertex, the amount
of increase in its label is computed using another binary
search that basically selects the minimum from a candidate
set. Because of the nested binary searches, their algorithm is
relatively slow. In addition, the algorithm requires O(|V |2)
space to store a pre-computed all-pair longest-path matrix,
which is impractical for large designs. Cong et al. [9] im-
proved the algorithm by tightening the candidate set to
speed up the labeling computation, and by reducing the
space complexity to linear dependency. But the improved
algorithm still needs the nested binary searches.

Besides the difference in problem formulation, our algo-
rithm differs from theirs in two algorithmic aspects. Firstly,
our algorithm focuses on cycles, thus can work on any gen-
eral graph. Secondly, no binary search is employed in our
algorithm. As a result, our algorithm is efficient and essen-
tially incremental. Like [9], our algorithm does not need
pre-computed information on paths either.

Except for these differences, [18] revealed some impor-
tant results on clustering, which we review here to simplify
our notations.

• Each cluster has only one output, which is called the
root of the cluster. If there is a cluster with more than
one output, we can replicate the cluster enough times
so that each copy of the cluster has only one output.

• For each vertex in V , there is at most one cluster
rooted at it and its arrival time (defined in Section 4)
is no larger than the arrival times of its replicas.

• If u ∈ V is an input of the cluster rooted at v ∈ V ,
then the cluster rooted at v must not contain a replica
of u.

2This assumption is not really restrictive in practice because com-
puter works with rational numbers which we can convert to integers
by multiplying by a suitably large number.

4 Notations and constraints

For a particular clustering c and a path pc = u ; v in Gc, we
use w(pc) to represent the number of flip-flops on pc, which is
the sum of the weights of pc’s constituent edges. Similarly,
d(pc) represents the delay along pc, which is the sum of
the delays of pc’s constituent edges and vertices, except for
d(u). Note that the delay of an inter-cluster edge (u, v) ∈
Gc is d(u, v) + D. When a path actually forms a cycle oc,
w(oc) includes the weight of each edge in the cycle only once.
Similarly, d(oc) includes the delay of each edge and vertex in
the cycle only once. We assume in this paper that w(o) > 0
for all cycle o ∈ G, thus w(oc) > 0 for all cycle oc ∈ Gc. We
use φ(oc) to denote the cycle ratio of oc, and φc to denote
the maximum cycle ratio of Gc.

Since we only need to consider clusters rooted at the
vertices in V , at most one for each vertex, we use cv to
refer to the set of vertices that are included in the cluster
rooted at v ∈ V . Let iv ⊂ V be the set of inputs of cv and
rv ⊂ Vc−V be the set of replicas of v ∈ V . In the remainder
of this paper, when we say u ∈ cv (u 6= v), we mean that
the cluster rooted at v ∈ V contains a replica of u ∈ V .
For example, Figure 3(a) shows a circuit before clustering.
There are five vertices (a-e) and seven edges. Figure 3(b)
illustrates a clustering of the circuit with size limit A = 3,
where dashed circles represent clusters. For each cluster, the
vertex whose index is outside the cluster indicates the root.
For example, ca contains replicas of vertices c and e with
the input set ia = {d}.

(a)

a

b

c

d

e

(b)

a

a

a

a

ab
b

cc

c

d

e

e e

Figure 3: An example of clustering representation

We use a label t : V → < to denote the arrival time of the
vertex. To ease the presentation, we will extend the domain
of t to Vc to represent the arrival times of the replicas of
the vertices. Based on this, a clustering that satisfies the
cluster size requirement and has a maximum cycle ratio no
larger than a given rational value φ can be characterized as
follows.

t(v) ≥ 0, ∀v ∈ V (1)

t(v) ≤ t(v′), ∀v′ ∈ rv, v ∈ V (2)

t(v) ≥ t(u) + d(u, v) + d(v)− w(u, v)φ, (3)

∀(u, v) ∈ Ec, u, v ∈ cx, x ∈ V

t(v) ≥ t(u) + d(u, v) + D + d(v)− w(u, v)φ, (4)

∀(u, v) ∈ Ec, u ∈ ix, v ∈ cx, x ∈ V

|cv| ≤ A, ∀v ∈ V (5)

where (1)-(4) guarantee that the arrival times are all achiev-
able, and (5) is the cluster size requirement. In particular,
(2) ensures that the arrival time of v ∈ V is no larger than
the arrival times of its replicas.

Following the convention, (u, v) ∈ Ec is a critical edge
under φ iff it is intra-cluster with t(v) = t(u) + d(u, v) +

d(v) − w(u, v)φ, or it is inter-cluster with t(v) = t(u) +
d(u, v) + D + d(v)−w(u, v)φ. A critical path under φ refers
to a path whose constituent edges are all critical under φ.
Vertex u is a critical input of cv under φ iff u ∈ iv and v
can be reached by u through a critical path p = u→ x ; v
under φ where the sub-path x ; v is in cv. When a critical
path actually forms a cycle, it is then called a critical cycle.
Cycle oc is critical under φ iff d(oc) = w(oc)φ.

A legal clustering must satisfy (5). When the arrival
times of a legal clustering satisfy (1)-(4) under φ, it is called
a feasible clustering under φ. When a critical cycle is present
in a feasible clustering under φ, it is called a critical cluster-
ing under φ. A given φ is feasible iff there exists a feasible
clustering under φ. We must note that for a legal clustering,
its maximum cycle ratio is feasible. In fact, any value larger
than the maximum cycle ratio of a legal clustering is also
feasible.

Consider a feasible clustering c under φ. For all (u, v) ∈
E, it is either in Ec with u ∈ iv, or there is an edge (u′, v)
such that u′ ∈ ru. In either case, the following inequality is
true by (2)-(4).

t(v) ≥ t(u) + d(u, v) + d(v)− w(u, v)φ,∀(u, v) ∈ E (6)

The following lemma provides a lower bound for φ.

Lemma 1 A feasible φ is no smaller than the maximum
cycle ratio of G, denoted as φlb.

Proof: Since φ is feasible, then, by definition, there exists
a clustering c satisfying (1)-(5) under φ. Since (6) is im-
plied by (2)-(4), we have d(o) ≤ w(o)φ, for all cycle o ∈ G.
Therefore, φ ≥ φlb.

Define

∆(u, v, φ)
4
= max

p∈u;v in G

(
d(p)− w(p)φ

)
,∀u, v ∈ V

Lemma 1 ensures that ∆(u, v, φ) is well-defined on feasible
φ’s.

5 Algorithm

5.1 Overview

The optimal clustering problem asks for a legal clustering
with the minimal maximum-cycle-ratio. Since A > 0, the
clustering with each vertex being a cluster is certainly legal.
Starting from it, we will iteratively improve the clustering
by reducing its maximum cycle ratio until the optimality is
certified.

First of all, the maximum cycle ratio of a legal clustering
is feasible and can be efficiently computed using Howard’s
algorithm [6, 11]. Given a feasible φ, we show that, un-
less φ is already the optimal solution, a particular legal
clustering can be constructed whose maximum cycle ratio
is smaller than φ. The smaller φ can be obtained by ap-
plying Howard’s algorithm on the constructed clustering.
Therefore, we alternate between applying Howard’s algo-
rithm and constructing a better clustering until the minimal
φ is reached.

5.2 Clustering under a given φ > φlb

Given φ > φlb, if φ is feasible, we show in this section how
to construct a feasible clustering under φ, i.e., a clustering
satisfying (1)-(6) under φ, whose maximum cycle ratio is no
larger than φ.

We choose to first satisfy (1) and (6) because they are
independent on clustering, and iteratively update t(v) and
cv to satisfy (2)-(5) while keeping (1) and (6).

Let T denote the arrival time vector, i.e.,

T =
(
t(1), t(2), . . . , t(|V |)

)
.

A partial order (≤) can be defined between two arrival time
vectors T and T′ as follows.

T ≤ T′ 4= t(v) ≤ t′(v), ∀v ∈ V.

According to the lattice theory [12], if we treat assignment
t(v) = 0, ∀v ∈ V as the bottom element (⊥) and assignment
t(v) = ∞, ∀v ∈ V as the top element (>), then the arrival

time vector space <|V | becomes a complete partially ordered
set, that is, for all T ∈ <|V |, ⊥ ≤ T ≤ >.

To satisfy (1), we set t(v) = 0, ∀v ∈ V . Then we apply
Bellman-Ford’s algorithm [10], denoted as BF , on E to sat-
isfy (6) under φ. Bellman-Ford’s algorithm is guaranteed to
work as long as φ ≥ φlb.

The resulting arrival time vector is denoted as

T0 = BF (⊥, φ).

In fact, T0 is the least vector satisfying (1) and (6), as stated
in the following lemma.

Lemma 2 T0 ≤ T, for all T satisfying (1) and (6).

Proof: Suppose we have a T satisfying (1) and (6) with
t(v) < t0(v) for some v ∈ V . It follows that t0(v) > 0 since
t(v) ≥ 0 by (1). Bellman-Ford’s algorithm [10] guarantees
that there exists a path p = u ; v in G such that t0(u) = 0
and t0(v) = t0(u) + d(p) − w(p)φ. Since T satisfies (6), we
have t(v) ≥ t(u)+d(p)−w(p)φ = t(u)+t0(v) ≥ t0(v), which
contradicts t(v) < t0(v). Therefore, such a T does not exist
and the lemma is true.

In order to satisfy (2)-(5) while keeping (1) and (6), we

define transformation L : (<|V |,<)→ <|V | as follows.
For all v ∈ V , we will construct a new cluster c′v rooted

at v. The procedure starts with c′v = {v} and grows c′v
progressively by including one critical input at a time. Note
that when a vertex is put in c′v, its preceding vertex that
is outside c′v becomes an input of c′v. Let t(v) and t′(v)
denote the arrival time of v before and after cv is replaced
by c′v, respectively. The procedure will stop only when either
|c′v| = A or t′(v) ≤ t(v). If t′(v) < t(v), we keep t(v) and cv

unchanged; otherwise we update t(v) and cv with t′(v) and
c′v respectively. The resulting arrival time of v is denoted
as Lv(T, φ). The next lemma helps to identify the critical
input to be included at each time.

Lemma 3 For all x /∈ c′v, t′(v) ≥ t(x) + D + ∆(x, v, φ).
In particular, if u is a critical input of c′v, then t′(v) =
t(u) + D + ∆(u, v, φ).

Proof: For the sake of contradiction, we assume that
t′(v) < t(x) + D + ∆(x, v, φ) for some x /∈ c′v. Let px be
the path where ∆(x, v, φ) = d(px) − w(px)φ. Since x /∈ c′v,
there exists a vertex y ∈ i′v on px and the sub-path from y
to v has the form of y → z ; v, where z ; v is in c′v. By
(4), we have t′(v) ≥ t(y) + D + d(py)−w(py)φ. In addition,
t(y) ≥ t(x)+ d(px− py)−w(px− py)φ by (6). Thus, t′(v) ≥
t(x) + D + d(px)−w(px)φ = t(x) + D + ∆(x, v, φ), which is
a contradiction. Therefore, t′(v) ≥ t(x) + D + ∆(x, v, φ) for
all x /∈ c′v.

If c′v has a critical input u, then, by definition, there
exists a path p = u ; v such that t(u)+D+d(p)−w(p)φ =
t′(v). Since u /∈ c′v, we have t′(v) ≥ t(u) + D + ∆(u, v, φ),
thus d(p) − w(p)φ ≥ ∆(u, v, φ). On the other hand, d(p) −
w(p)φ ≤ ∆(u, v, φ) since ∆(u, v, φ) is the largest among all
paths from u to v. Therefore, d(p) − w(p)φ = ∆(u, v, φ),
which concludes our proof.

Define L(T, φ) as the arrival time vector when all the
Lv(T, φ)’s, ∀v ∈ V , are applied once, followed by Bellman-
Ford’s algorithm to ensure (6), expressed as

L(T, φ)
4
= BF

((
L1(T, φ),L2(T, φ), ...,L|V |(T, φ)

)
, φ

)
.

The following lemma shows that L is an order-preserving
transformation.

Lemma 4 For any T and T̄ satisfying (1) and (6), if T ≤
T̄, then L(T, φ) ≤ L(T̄, φ).

Proof: We first show that Lv(T, φ) ≤ Lv(T̄, φ), ∀v ∈ V .
For the sake of contradiction, we assume that Lv(T, φ) >

Lv(T̄, φ) for some v ∈ V . The procedure of Lv guarantees

that Lv(T, φ) = max
(
t′(v), t(v)

)
and Lv(T̄, φ) = max

(
t̄′(v), t̄(v)

)
.

Since t(v) ≤ t̄(v) by T ≤ T̄, we have t′(v) > t(v), oth-
erwise Lv(T, φ) = t(v) ≤ t̄(v) ≤ Lv(T̄, φ), which contra-
dicts the assumption that Lv(T, φ) > Lv(T̄, φ). In addi-
tion, since T satisfies (1) and (6), Lemma 2 ensures that
t(v) ≥ t0(v), where t0(v) is the arrival time of v in vec-
tor T0 = BF(⊥, φ). Thus, t′(v) > t0(v), which implies
that cluster c′v has a critical input u, otherwise the vertices
that have critical paths to v are all inside c′v and we have
t′(v) = t0(v), which is a contradiction. The existence of a
critical input u implies that |c′v| = A, otherwise u should
have been put in c′v since t′(v) > t(v). Let p be the path
where ∆(u, v, φ) = d(p) − w(p)φ. Figure 4(a) shows an ex-
ample of c′v.

(a) (b)

u u uv v
v

y y y

xxx

(c)

p

Figure 4: (a) Cluster c′v; (b) and (c) two cases of cluster c̄′v.

Now consider cluster c̄′v, there are two cases. Firstly,
u /∈ c̄′v. Thus there exists a vertex x ∈ p such that x ∈ ī′v,
as illustrated in Figure 4(b). Since x ∈ ī′v, we have t̄′(v) ≥
t̄(x)+D +∆(x, v, φ) by Lemma 3. Considering the moment
when x was about to be put in c′v, x was the critical input
and u /∈ c′v, thus t(x)+D+∆(x, v, φ) ≥ t(u)+D+∆(u, v, φ)
by Lemma 3. Together with t(x) ≤ t̄(x) (since T ≤ T̄), we
have t̄′(v) ≥ t(u) + D + ∆(u, v, φ) = t′(v).

Secondly, u ∈ c̄′v. Given that |c′v| = A and u is not in c′v,
we know that there exists a vertex y ∈ c′v such that y ∈ ī′v, as
shown in Figure 4(c). By the same argument, we can show
that t̄′(v) ≥ t̄(y) + D + ∆(x, v, φ) ≥ t(y) + D + ∆(x, v, φ) ≥
t(u) + D + ∆(u, v, φ) = t′(v).

In either case, we have max
(
t(v), t′(v)

)
≤ max

(
t̄(v),

t̄′(v)
)
, i.e., Lv(T, φ) ≤ Lv(T̄, φ), which is a contradiction.

Therefore, the assumption is wrong and Lv(T, φ) ≤ Lv(T̄, φ)
is true, ∀v ∈ V . It is easy to verify that L(T, φ) ≤ L(T̄, φ)
after applying Bellman-Ford’s algorithm.

We say that T is a fixpoint of L under φ if and only if
T = L(T, φ). The following theorem bridges the existence
of a fixpoint and the feasibility of φ.

Theorem 1 φ is feasible if and only if L has a fixpoint un-
der φ.

Proof: (→): If φ is feasible, then, by definition, there
exists a legal clustering c whose arrival time vector T satisfies
(1)-(4) and (6) under φ. We claim that Lv(T, φ) ≤ t(v),
∀v ∈ V . Otherwise, t′(v) > t(v) ≥ t0(v) for some v ∈ V ,
and c′v has a critical input u, as shown in Figure 4(a). We
can conduct a similar case study as Figure 4(b) and 4(c) to
show that t(v) ≥ t′(v), which is a contradiction. On the
other hand, t(v) ≤ Lv(T, φ) by the procedure of Lv(T, φ).
Therefore, Lv(T, φ) = t(v), ∀v ∈ V . Given that T satisfies
(6), applying Bellman-Ford’s algorithm gives T = L(T, φ),
i.e., T is a fixpoint of L under φ.

(←): If L has a fixpoint under φ, then, by the defini-
tion of L, the constructed clustering is legal and the arrival
time vector satisfies (1)-(4) and (6) under φ. Therefore, φ is
feasible.

In fact, according to the lattice theory [12], if L, defined
on a complete partially ordered set, has a fixpoint under φ,
then it has a least fixpoint Tφ, defined as(

Tφ = L(Tφ, φ)
)
∧

(
∀T : T = L(T, φ) : Tφ ≤ T

)
.

We use cφ to denote the clustering constructed by L(Tφ, φ).
In fact, if tφ(v) > t0(v), then there is a critical path from
u ∈ V to v with tφ(u) = t0(u). This is made precise in the
following lemma.

Lemma 5 If tφ(v) > t0(v), then there exists a sequence of
vertices xi ∈ V , i = 0, 1, ..., k − 1 such that t0(x0) = tφ(x0),
xk = v, and xi is a critical input of cluster cφ

xi+1 .

Proof: Since tφ(v) > t0(v), we know that cluster cφ
v has

critical inputs, otherwise the vertices that have critical paths
to v are all inside cφ

v and we have t0(v) = tφ(v), which is a
contradiction.

Suppose otherwise that such a sequence does not exist,
namely, all the critical paths terminating at v are actually
critical cycles, where each constituent vertex u ∈ V has
tφ(u) > t0(u) ≥ 0. Choose the one that contains all of them,
denoted as O. For the example in Figure 5, we will choose
O to be a ; e ; d ; c ; g ; f ; d ; c ; b ; a. Now

...

...

...

...

...

...

v
a

bc

d ef

g

Figure 5: Vertices that have critical paths to v.

consider any incoming edge of O (from a vertex outside of O
to a vertex in O), it must be non-critical, otherwise we can
trace back from this edge and find another critical cycle that
is not in O, which is a contradiction. Since the arrival times
of the vertices in O are all greater than zero, we can decrease
them simultaneously while keeping the arrival times of other
vertices unchanged until some incoming edge of O becomes

critical or the arrival time of some vertex in O is reduced
to zero. For either case, we obtain a fixpoint less than Tφ,
which is a contradiction. Therefore, the lemma is true.

To reach a fixpoint, iterative method can be used on
L. It starts with T0 as the initial vector, iteratively com-
putes new vectors from previous ones T1 = L(T0, φ), T2 =
L(T1, φ), . . . until it finds a Tn such that Tn = Tn−1. The
following lemma states that applying iterative method on
L will converge to its least fixpoint in a finite number of
iterations.

Lemma 6 If φ is feasible, applying iterative method on L
will converge to Tφ in a finite number of iterations.

Proof: Since we start with T = T0 ≤ Tφ, Lemma 4
ensures that T ≤ Tφ at each iteration. Therefore, if L con-
verges, the fixpoint has to be the least fixpoint. What re-
mains is to show that L is finitely convergent.

By Lemma 3 and 5, if tφ(v) > t0(v), then tφ(v) can be
written as

tφ(v) = t0(x0) +
∑

0≤i≤k−1

(
D + ∆(xi, xi+1, φ)

)
,

where xi ∈ V and xk = v. Given that each vertex in V has
at most one cluster rooted at it, we know that k ≤ |V |, thus
tφ(v) ≤ U , where U = (|V |− 1)D + |V |maxu,v∈V ∆(u, v, φ).

On the other hand, since φ is a rational number, it can
be expressed as p/q, where p and q are integers and q 6= 0. If
t(v) is increased during the iteration, the amount of increase
will be at least 1/q. Therefore, if L does not converge after
|V |Uq iterations, then there exists a vertex v ∈ V whose
t(v) > U ≥ tφ(v), which contradicts T ≤ Tφ, which con-
cludes our proof.

The next result is a corollary of Lemma 4-6.

Lemma 7
(
∀v ∈ V : t(v) > t0(v)

)
implies that φ is infea-

sible.

Proof: Suppose otherwise that φ is feasible. Then, by

Lemma 4 and 6, when Tφ is reached, we have
(
∀v ∈ V :

tφ(v) > t0(v)
)
, which contradicts Lemma 5. Therefore, φ is

infeasible.

5.3 Optimality checking

Given a legal clustering, its maximum cycle ratio φ is feasi-
ble. If φ is not optimal, then we can find a feasible φ′ < φ,
which is specified in the following lemma.

Lemma 8 Given that φ is the maximum cycle ratio of a
legal clustering, if φ is not optimal, then φ− 1/(|V |Nff)2 is
also feasible, where Nff is the maximum number of flip-flops
on any acyclic path in G.

Proof: Let o denote the cycle with the maximum cycle
ratio, that is, φ = d(o)/w(o). If φ is not optimal, it means
that there exists another legal clustering whose maximum
cycle ratio φ′ is smaller than φ. Let o′ be the cycle with
φ′ = d(o′)/w(o′). The difference between φ′ and φ can be
written as

φ−φ′ =
d(o)

w(o)
− d(o′)

w(o′)
=

d(o)w(o′)− d(o′)w(o)

w(o)w(o′)
≥ 1

w(o)w(o′)
,

since all delays are integers. In addition, since each vertex
in V has at most one cluster rooted at it, we know that

both w(o) and w(o′) are no larger than |V |Nff , where Nff

is the maximum number of flip-flops on any acyclic path
in G. Therefore, φ − φ′ ≥ 1/(|V |Nff)2. In other words,
φ− 1/(|V |Nff)2 is also feasible.

It implies that we can certify the optimality of φ by
checking the feasibility of φ−1/(|V |Nff)2. The algorithm for
finding the optimal φ is presented in Figure 6. It first com-
putes a feasible φ by treating each vertex as a cluster, and
computes a lower bound of φlb by Lemma 1. After that, it
checks the feasibility of φ− 1/(|V |Nff)2 by iterative method
on L. If L converges, it means that we find a better cluster-
ing whose maximum cycle ratio is at most φ − 1/(|V |Nff)2

and can be computed by Howard’s algorithm. The evidence

of
(
∀v ∈ V : t(v) > t0(v)

)
or the fact that φ is reduced

below φlb +1/(|V |Nff)2 immediately certifies the optimality
of the current feasible φ.

Algorithm Optimal clustering
Input: A directed graph G = (V, E), A, D.

Output: A clustering copt with φopt.

copt
v ← cv ← {v}, ∀v ∈ V ;

φopt ← φ← maximum cycle ratio of Gc;
φlb ← maximum cycle ratio of G;

While
(
φ ≥ φlb + 1/(|V |Nff)2

)
do

φ← φ− 1/(|V |Nff)2;
T← T0 ← BF (⊥, φ);

While

((
T 6= L(T, φ)

)
∧

(
∃v ∈ V : t(v) = t0(v)

))
do

T← L(T, φ);

If
(
∀v ∈ V : t(v) > t0(v)

)
then

break;
φ← maximum cycle ratio of Gcφ;

copt ← cφ; φopt ← φ;
Return copt and φopt;

Figure 6: Pseudocode of optimal clustering algorithm

The correctness of the algorithm is stated in the following
theorem.

Theorem 2 The algorithm in Figure 6 will terminate with
the optimal φ.

Proof: First of all, φ is reduced during the execution of the
outer while-loop in Figure 6. Since the amount of decrease
in φ is at least 1/(|V |Nff)2 after each loop, the algorithm will
terminate in (φub − φlb)|V |2N2

ff loops, or |V |3N2
ffD loops as

φub ≤ φlb + |V |D.
When it terminates, we have either φ < φlb+1/(|V |Nff)2,

or
(
∀v ∈ V : t(v) > t0(v)

)
under φ − 1/(|V |Nff)2. For the

first case, Lemma 8 ensures that φ is optimal, otherwise
φ− 1/(|V |Nff)2 is feasible, which contradicts Lemma 1. For
the second case, φ − 1/(|V |Nff)2 is infeasible by Lemma 7,
which, by Lemma 8, implies that φ is optimal. The optimal
φ and the corresponding clustering are recorded in φopt and
copt.

6 Implementation details

6.1 Implementation of Lv

Our implementation of Lv is similar to Cong et. al. [8].
To characterize critical inputs, we introduce another label

δ(u), ∀u ∈ V . Before the construction of c′v, we assign
δ(u) with −∞ for all u 6= v in V while δ(v) with 0. At
each time, the vertex u ∈ i′v with the largest t(u) + δ(u)
is identified. If t(u) + D + δ(u) ≤ t(v), the construction
is completed. Otherwise, we put it in c′v and update δ(x)

with max
(
δ(x), δ(u) + d(u) + d(x, u) − w(x, u)φ

)
, for all

(x, u) ∈ E. This procedure will iterate until either |c′v| = A
or the last vertex u identified has t(u) + D + δ(u) ≤ t(v).

To validate the above procedure, we need to show that
it is equivalent to Lv(T, φ), or equivalently, to show that it
can always identify the critical input of c′v. This is fulfilled
by the next lemma and corollary.

Lemma 9 For all u ∈ c′v, δ(u) = ∆(u, v, φ).

Proof: We prove it by induction on the size of c′v. At the
beginning, c′v = {v} and δ(v) = 0 = ∆(v, v, φ). Suppose
that the lemma is true for |c′v| ≤ k < A, we need to show
that the lemma is also true for |c′v| = k + 1. Therefore we
start with |c′v| = k and let u ∈ i′v be the vertex with the
largest t(u) + D + δ(u) > t(v).

We use p to denote the path where d(p) − w(p)φ =
∆(u, v, φ). Since u /∈ c′v, there exists a vertex x ∈ i′v
on p such that the sub-path from x to v has the form of
x → y ; v, where y ; v is in c′v. Let p1 and p2 be
the sub-path from u to x and from y to v, respectively.
Since d(p)− w(p)φ = ∆(u, v, φ), we have d(p1)− w(p1)φ =
∆(u, x, φ) and d(p2)− w(p2)φ = ∆(y, v, φ).

Given that u ∈ i′v is the vertex with the largest t(u) +
δ(u), we know that t(u) + δ(u) ≥ t(x) + δ(x). (6) ensures
that t(x) ≥ t(u) + d(p1) − w(p1)φ. On the other hand, we
have δ(x) ≥ δ(y) + d(x, y)−w(x, y)φ since we updated δ(x)
to be no less than δ(y)+d(x, y)−w(x, y)φ when y was put in
c′v. Further, δ(y) = ∆(y, v, φ) by the inductive hypothesis.
Consequently,

t(u) + δ(u)

≥ t(x) + δ(x)

≥
(
t(u) + d(p1)− w(p1)φ

)
+ δ(x)

≥
(
t(u) + d(p1)− w(p1)φ

)
+

(
δ(y) + d(x, y)− w(x, y)φ

)
=

(
t(u) + d(p1)− w(p1)φ

)
+

(
∆(y, v, φ) + d(x, y)− w(x, y)φ

)
=

(
t(u) + d(p1)− w(p1)φ

)
+(

(d(p2)− w(p2)φ) + d(x, y)− w(x, y)φ
)

= t(u) + d(p)− w(p)φ

= t(u) + ∆(u, v, φ),

or δ(u) ≥ ∆(u, v, φ). However, δ(u) ≤ ∆(u, v, φ) since
∆(u, v, φ) is the largest among all paths from u to v. There-
fore, δ(u) = ∆(u, v, φ).

Corollary 9.1 The vertex u ∈ i′v with the largest t(u)+D+
δ(u) ≥ t(v) is the critical input of c′v.

Proof: Suppose u is not a critical input. Let p denote the
path where d(p)− w(p)φ = δ(u). Since p is not critical, we
have t′(v) > t(u)+D+d(p)−w(p)φ = t(u)+D+δ(u) ≥ t(v).
It implies that c′v has a critical input x and a critical path
p′ : x → y ; v such that p′1 : y ; v is in c′v and t′(v) =
t(x) + D + d(p′) − w(p′)φ. In addition, t′(v) = t(x) + D +
∆(x, v, φ) by Lemma 3. Thus, ∆(x, v, φ) = d(p′) − w(p′)φ,
which implies that ∆(y, v, φ) = d(p′1)− w(p′1)φ.

On the other hand, since y ∈ c′v, we have δ(y) = ∆(y, v, φ)
by Lemma 9. Hence δ(x) ≥ δ(y) + d(x, y) − w(x, y)φ =
d(p′) − w(p′)φ = ∆(x, v, φ). Since ∆(x, v, φ) is the largest
among all paths from x to v, we have δ(x) = ∆(x, v, φ). It
follows that t(x)+D+δ(x) = t′(v) > t(u)+D+δ(u), which
contradicts that u is the input with the largest t(u) + δ(u).
Therefore, the lemma is true.

The pseudocode for computing Lv(T, φ) is given in Fig-
ure 7. It employs a heap Q for bookkeeping the vertices
u ∈ i′v whose t(u) + D + δ(u) > t(v). At each iteration, it
puts in c′v the input u ∈ Q with the largest t(u) + D + δ(u)
and updates δ(x) for each fanin of u that becomes an input
in i′v. In our implementation, we choose Fibonacci heap [10]
for Q.

Input: G = (V, E), A, D, T, φ, v ∈ V .
Output: t′(v), c′v.

δ(u)← −∞, ∀u ∈ V ; δ(v)← 0;
Q← {v}; c′v ← ∅; t′(v)← t(v);

While
(
(Q 6= ∅) ∧ (|cv| < A)

)
do

u← extract from Q with max t(u) + δ(u);
c′v ← c′v ∪ {u};
For e = (x, u) ∈ E with x /∈ c′v do

δ(x)← max(δ(x), δ(u) + d(u) + d(x, u)− w(x, u)φ);

If

(
(x /∈ Q) ∧

(
t(x) + D + δ(x) > t(v)

))
then

Q← Q ∪ {x};
t′(v)← max t(u) + D + δ(u) in Q, if Q 6= ∅;
Return t′(v) and c′v;

Figure 7: Pseudocode of Lv(T, φ)

6.2 Variations of L

In Section 5.2, L(T, φ) is obtained by applying all the Lv’s,
∀v ∈ V , once followed by Bellman-Ford’s algorithm. In
our implementation, all the Lv(T, φ)’s are not computed at
the same time. Intuitively, if previously computed Lv’s can
be taken into account in later computations of others, the
convergence rate may be accelerated.

This motivates our study on a variation of L, in which
later computations of Lv’s are based on previously computed
ones, and each computation of Lv is followed by Bellman-
Ford’s algorithm. Let Jv(T, φ) denote the vector after t(v)
is updated with Lv(T, φ), that is,

Jv(T, φ) =
(
t(1), ..., t(v − 1),Lv(T, φ), t(v + 1), ..., t(|V |)

)
.

Define

L̄(T, φ)
4
= BF

(
Ji|V |

(
...BF

(
Ji1(T, φ), φ

)
, ..., φ

)
, φ

)
,

where i1, ..., i|V | ∈ V . It can be seen that different evaluation

orders of V give different L̄’s. However, they all satisfy the
following relation.

Lemma 10 For any T ≤ Tφ satisfying (1) and (6) un-
der a feasible φ and any evaluation order of V , L(T, φ) ≤
L̄(T, φ) ≤ L̄(Tφ, φ) = Tφ.

Proof: Let L̄v(T, φ) denote the arrival time of v ∈ V in
L̄(T, φ). The definition of L̄(T, φ) implies that Lv(T, φ) ≤

L̄v(T, φ), ∀v ∈ V , independent of the evaluation order.
It follows that L(T, φ) ≤ L̄(T, φ). On the other hand,
since Lv(Tφ, φ) = tφ(v), we have Jv(T, φ) = Tφ, hence
L̄(Tφ, φ) = Tφ. What remains to show is L̄(T, φ) ≤ Tφ.

To this aim, we observe that BF
(
Jv(T, φ)

)
≤ Tφ, ∀v ∈ V ,

provided that T ≤ Tφ. Based on this, we can show by in-
duction that L̄(T, φ) ≤ Tφ. Therefore, the lemma is true.

As a corollary, the next result ensures that we can apply
iterative method on L̄ to reach Tφ.

Corollary 10.1 If φ is feasible, applying iterative method
on L̄ will converge to Tφ in a finite number of iterations,
independent of the evaluation order of V .

Proof: Since φ is feasible, L is finitely convergent by
Lemma 6. Let K be the number of iterations such that
LK(T0, φ) = Tφ. The corollary can be proved if we can
show that L̄K(T0, φ) = Tφ, or equivalently, LK(T0, φ) ≤
L̄K(T0, φ) ≤ L̄K(Tφ, φ).

The former part can be derived from Lemma 10 because

L̄K(T0, φ) ≥ L
(
L̄K−1(T0, φ)

)
≥ ... ≥ LK(T0, φ). The latter

part is also a consequence of Lemma 10 since T0 ≤ Tφ.

6.3 Reduced clustering representation

It was shown in [11] that Howard’s algorithm was by far
the fastest algorithm for maximum cycle ratio computation.
Given a clustered circuit Gc = (Vc, Ec) with edge delays and
weights specified, Howard’s algorithm finds the maximum
cycle ratio in O(Nc|Ec|) time, where Nc is the product of
the out-degrees of all the vertices in Vc. Since vertex repli-
cation is allowed, Nc and |Ec| could be |V |N and |V ||E|
respectively, where N is the product of the out-degrees of
the vertices in V .

To reduce the complexity, we propose a reduced cluster-
ing representation. For each cluster, we use edges from its
inputs to its output (root) to represent the paths between
them such that the delay and weight of an edge correspond
to the delay and weight of an acyclic input-to-output path.
Figure 8 shows the reduced representation of the clustered
circuit in Figure 3(b).

a b

c

d

e

Figure 8: The reduced clustering representation of Fig-
ure 3(b).

Let φr
c denote the maximum cycle ratio of the reduced

representation for clustering c. The following lemma for-
mulates the relation among φc, φr

c and the lower bound φlb

defined in Lemma 1.

Lemma 11 For any clustering c, φc = max(φr
c , φlb).

Proof: All the cycles in Gc can be classified into two
groups according to whether they contain an inter-cluster
edge or not. If a cycle contains only intra-cluster edges,
its maximum cycle ratio is upper bounded by φlb. If a cy-
cle contains inter-cluster edges, it is present in the reduced
representation and thus is upper bounded by φr

c .

One benefit of the reduced clustering representation is
that we can now represent the clustered circuit without ex-
plicit vertex replication, that is, using V instead of Vc. Let
Gr

c = (V, Er
c) denote the reduced representation for cluster-

ing c. We call an edge in Gr
c redundant if its removal will

not affect the maximum cycle ratio of Gr
c . The following

lemma provides a criterion to prune the redundant edges so
that Howard’s algorithm can find the maximum cycle ratio
of Gr

c more efficiently.

Lemma 12 Let c denote a feasible clustering under φ, Er
c

denote its reduced representation, e1 and e2 denote two edges
from u ∈ V to v ∈ V in Er

c , d(e1) and d(e2) denote their
delays respectively, and w(e1) and w(e2) denote their weights
respectively. If w(e1) ≥ w(e2) and d(e1)−w(e1)φ ≥ d(e2)−
w(e2)φ, then e2 can be pruned.

Proof: Since c is feasible under φ, we know that φ ≥
φc ≥ φr

c . If e2 is not involved in any cycle in Gr
c , then e2

can be safely pruned as it will not affect the computation
of the maximum cycle ratio. Otherwise, let o2 be a cycle
in Gr

c involving e2, and o1 be the cycle in Gr
c such that

o1 = {e1}∪ o2−{e2}. What remains to show is that if o2 is
a critical cycle under φr

c , so is o1.
By definition, if o2 is a critical cycle under φr

c , then
d(o2) − w(o2)φ

r
c = 0. Since o1 differs o2 in e1 only, we

have

d(o1)− w(o1)φ
r
c

= d(o2)− d(e2) + d(e1)−
(
w(o2)− w(e2) + w(e1)

)
φr

c

= d(e1)− w(e1)φ
r
c −

(
d(e2)− w(e2)φ

r
c

)
= d(e1)− w(e1)φ−

(
d(e2)− w(e2)φ

)
+

(
w(e1)− w(e2)

)
(φ− φr

c)

≥ 0,

provided that d(e1)−w(e1)φ ≥ d(e2)−w(e2)φ and w(e1) ≥
w(e2). On the other hand, d(o1) ≤ w(o1)φ

r
c since φr

c is the
maximum cycle ratio. Therefore, d(o1) = w(o1)φ

r
c , i.e., o1

is also a critical cycle under φr
c . This implies that we can

safely remove e2 and the resulting representation has the
same maximum cycle ratio as Gr

c .
In our implementation, we employ another two parame-

ters pd : V → {R} and pw : V → {Z} to record the path
delays and weights from the inputs of a cluster to its output,
respectively. More specifically, we set pw(u) = pd(u) = ∅,
∀u ∈ V , before Lv(T, φ) is about to be carried out for some
v ∈ V . After that, whenever a vertex u is put in c′v, we com-
pute the pd and pw values of its preceding vertices based on
pd(u) and pw(u), followed by pruning.

7 Experimental results

We implemented the algorithm in a PC with a 2.4 GHz Xeon
CPU, 512 KB 2nd level cache memory and 1GB RAM. To
compare with the algorithm in [18], we used the same test
files, which were generated from the ISCAS-89 benchmark
suite. For each test case, we introduced a flip-flop with
directed edges from each PO to it and from it to each PI so
that every PI-to-PO path became a cycle. As in [18], the
size and delay of each gate was set to 1, intra-cluster delays
were 0, and inter-cluster interconnects had delays D = 2.
The circuits used are summarized in Table 1. We also list
the maximum cycle ratio of the circuit before clustering in

Table 2: Optimal Maximum-cycle-ratio
Circuit A = 5%|V | A = 10%|V | A = 20%|V |

φopt #step time(s) φopt #step time(s) φopt #step time(s)
s208 13.00 4 0.20 11.00 4 0.09 10.00 3 0.04
s349 18.00 14 1.73 16.00 21 0.47 14.67 14 1.39
s420 14.00 3 0.33 13.00 3 0.34 12.00 2 0.00
s635 75.00 4 5.71 70.00 4 8.02 68.00 4 6.43
s838 17.00 3 0.69 16.00 2 0.01 16.00 2 0.01
s1196 26.00 3 2.86 25.00 3 3.40 24.00 2 0.02
s1423 55.00 3 2.77 53.00 2 0.07 53.00 2 0.06
s1512 23.78 15 166.36 22.50 8 0.79 22.50 8 0.68
s3330 14.33 11 11.34 14.00 10 1.82 14.00 10 1.82
s4863 30.25 8 133.54 30.00 5 3.85 30.00 5 3.70
s5378 21.00 3 0.94 21.00 3 0.73 21.00 3 0.73
s9234 38.00 3 3.78 38.00 3 2.98 38.00 3 2.98
s35932 27.00 4 48.13 27.00 4 47.79 27.00 4 46.59
s38584 48.00 2 21.92 48.00 2 21.90 48.00 2 21.46

Table 1: Sequential Circuits from ISCAS-89
Circuit |V | |E| Nff φlb

s208 104 183 2 10.00
s349 161 285 8 14.00
s420 218 385 2 12.00
s635 286 478 2 66.00
s838 446 789 2 16.00
s1196 529 1024 3 24.00
s1423 657 1170 6 53.00
s1512 780 1286 3 22.50
s3330 1789 2890 5 14.00
s4863 2342 4093 9 30.00
s5378 2779 4262 13 21.00
s9234 5597 6932 9 38.00
s35932 16065 28590 48 27.00
s38584 19253 33061 30 48.00

column φlb, which provides a lower bound of the solution by
Lemma 1.

Although theoretically the algorithm in Fig. 6 will reach
the exact solution without being provided a precision, we
have to consider the impact of floating point error intro-
duced by practical finite precision arithmetic, due to the
divisions involved in the maximum-cycle-ratio computation.
In our experiments, we set the error to be 0.001. Since
1/(|V |Nff) is generally smaller than 0.001, we set the preci-
sion of φopt to be 0.01.

For each circuit, we tested three size bounds: A is 5%,
10% and 20% of the number of gates. The results are shown
in Table 2. Since we approach the minimal maximum-cycle-
ratio by gradual reduction in the algorithm, we also report
the number of reductions for each scenario of A in column
“#step”. Column “time(s)” lists the running time in sec-
onds.

To compare the running time in [18], where the optimal
clock period is integral, we set the precision of φopt to be 1
and run the algorithm again for A = 5%|V |, 10%|V |, 20%|V |
respectively. The obtained φopt matches the result in [18] for
all the scenarios of A. The only running time information
given in [18] is the largest running time per step among
the three scenarios, which we list in Figure 3 under column
“[18]”. We then compute ours in column “presented”. Row
“arith” (“geo”) gives the arithmetic (geometric) mean of the
first 11 circuits. We must note that the running times listed

are already scaled to take into account the difference in CPU
frequencies between their machine and ours.

Table 3: Running Time Comparison with [18]
Circuit time/step (s)

[18] presented
s208 0.01 0.00
s349 0.19 0.02
s420 0.03 0.00
s635 0.10 0.03
s838 0.13 0.01
s1196 0.08 0.02
s1423 0.65 0.04
s1512 1.22 0.06
s3330 1.07 0.17
s4863 82.30 1.04
s5378 7.58 0.31
s9234 n/a 1.20
s35932 n/a 11.46
s38584 n/a 11.07
arith 19.39X 1
geo 12.78X 1

It can be seen that our algorithm takes much less time
per step than the algorithm in [18]. The improvements are
greater for larger circuits. The average speed-up is more
than one order of magnitude. In addition, for most of the
circuits, our algorithm finds the optimal solution in just a
few steps, which is generally less than the number of iter-
ations conducted in a binary search, which are not given
in [18].

8 Conclusion

Processing rate, defined as the product of frequency and
throughput, is identified as an important metric for sequen-
tial circuits. We show that the processing rate of a sequential
circuit is upper bounded by the reciprocal of its maximum
cycle ratio, which is only dependent on the clustering of
the circuit. The problem of processing rate optimization is
formulated as seeking an optimal clustering with minimal
maximum-cycle-ratio in a general graph. An iterative algo-
rithm is proposed that finds the minimal maximum-cycle-
ratio. Since our algorithm avoids binary search and is essen-
tially incremental, it has the potential to be combined with

other optimization techniques, such as gate sizing, budget-
ing, etc., thus can be used in incremental design method-
ologies [7]. In addition, since maximum cycle ratio is a fun-
damental metric, the proposed algorithm can be adapted to
suit other traditional designs.

References

[1] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L.
Sangiovanni-Vincentelli. A methodology for correct-by-
construction latency insensitive design. In ICCAD, 1999.

[2] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Latency insensitive protocols. In CAV, 1999.

[3] M. R. Casu and L. Macchiarulo. A new approach to latency
insensitive design. In DAC, 2004.

[4] C. Chu, E. F. Y. Young, D. K. Y. Tong, and S. Dechu. Retiming
with interconnect and gate delay. In ICCAD, pages 221–226,
2003.

[5] P. Cocchini. Concurrent flip-flop and repeater insertion for high
performance integrated circuits. In ICCAD, pages 268–273,
2002.

[6] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and
J.-P. Quadrat. Numerical computation of spectral elements in
max-plus algebra. In Proc. IFAC Conf. on Syst. Structure and
Control, Nantes, France, 1998.

[7] J. Cong, O. Coudert, and M. Sarrafzadeh. Incremental CAD. In
ICCAD, 2000.

[8] J. Cong, T. Kong, and D. Z. Pan. Buffer block planning for
interconnect-driven floorplanning. In ICCAD, pages 358–363,
1999.

[9] J. Cong, H. Li, and C. Wu. Simultaneous circuit partition-
ing/clustering with retiming for performance optimization. In
DAC, pages 460 – 465, 1999.

[10] T. H. Cormen, C. E. Leiserson, and R. H. Rivest. Introduction
to Algorithms. MIT Press, 1989.

[11] A. Dasdan, S. S. Irani, and R. K. Gupta. Efficient algorithms for
optimum cycle mean and optimum cost to time ratio. In DAC,
pages 37–42, 1999.

[12] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order. Cambridge, 1990.

[13] S. Hassoun and C. J. Alpert. Optimal path routing in single and
multiple clock domain systems. In ICCAD, pages 247–253, 2002.

[14] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Syn-
chronous Circuitry by Retiming. In Advanced Research in VLSI:
Proc. of the Third Caltech Conf., pages 86–116. Computer Sci-
ence Press, 1983.

[15] C. Lin and H. Zhou. Optimal wire retiming without binary
search. In ICCAD, pages 452–458, 2004.

[16] C. Lin and H. Zhou. Wire retiming for system-on-chip by fixpoint
computation. In DATE, pages 1092–1097, 2004.

[17] V. Nookala and S. S. Sapatnekar. A method for correcting the
functionality of a wire-pipelined circuit. In DAC, pages 570–575,
2004.

[18] P. Pan, A. K. Karandikar, and C. L. Liu. Optimal clock period
clustering for sequential circuits with retiming. IEEE TCAD,
17(6):489–498, June 1998.

[19] D. K. Y. Tong and E. F. Y. Young. Performance-driven register
insertion in placement. In ISPD, pages 53–60, 2004.

[20] H. Zhou and C. Lin. Retiming for wire pipelining in system-on-
chip. IEEE TCAD, 23(9):1338–1345, September 2004.

