ECE 586 – Fault Detection in Digital Circuits
Lecture 21 Design for Testability III

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

April 1, 2015
This lecture: 9.8 – 9.10
Next lecture: 10.1 – 10.5
Board-Level and System-Level DFT Approaches

Boundary-Scan Standards
System-Level Busses

Figure 9.34 System-level test using system bus

(Abramovici et al., 1990)
System-Level Scan Paths

(Abramovici et al., 1990)
Multiple Test Session

Together mode: Need $100 \times 12 = 1200$ cycles.

Separate mode: need $100 \times 8 + 20 \times 8 = 960$ cycles.

Overlapped mode: need $20 \times 12 + 80 \times 8 = 880$ cycles.

Figure 9.36 Testing using multiple test sessions

(Abramovici et al., 1990)
Multiple Test Session

Figure 9.36 Testing using multiple test sessions

(Abramovici et al., 1990)

- **Together mode**: Need $100 \times 12 = 1200$ cycles.
- **Separate mode**: need $100 \times 8 + 20 \times 8 = 960$ cycles.
- **Overlapped mode**: need $20 \times 12 + 80 \times 8 = 880$ cycles.
Multiple Test Session

Together mode: Need $100 \times 12 = 1200$ cycles.

Separate mode: need $100 \times 8 + 20 \times 8 = 960$ cycles.

Overlapped mode: need $20 \times 12 + 80 \times 8 = 880$ cycles.

Figure 9.36 Testing using multiple test sessions

(Abramovici et al., 1990)
Identity-transfer paths (I-Paths) are tested implicitly.

- Reduce both hardware overhead and impact on timing.
Identity-transfer paths (I-Paths) are tested implicitly.

- Reduce both hardware overhead and impact on timing.
In essence, registers/DFFs can be moved (retimed) together to simplify the scan design via I-Path.
Different partial scan designs may have different costs since the registers may have different widths.
Outline

Board-Level and System-Level DFT Approaches

Boundary-Scan Standards
Chip Architecture for IEEE 1149.1

(Fig. 9.45, Abramovici et al., 1990)
Test Bus Explained

- A processor specialized for testing.
- TCK: Test Clock.
- Datapath
 - TDI: Test Data Input.
 - TDO: Test Data Output.
- Controller: TAP
 - TMS: Test Mode Selector. Input to the TAP FSM.
Test Bus Explained

- A processor specialized for testing.
- **TCK**: Test Clock.
 - **Datapath**
 - **TDI**: Test Data Input.
 - **TDO**: Test Data Output.
 - **Controller**: TAP
 - **TMS**: Test Mode Selector. Input to the TAP FSM.
Test Bus Explained

- A processor specialized for testing.
- TCK: Test Clock.
- Datapath
 - TDI: Test Data Input.
 - TDO: Test Data Output.
- Controller: TAP
 - TMS: Test Mode Selector. Input to the TAP FSM.
Test Bus Explained

- A processor specialized for testing.
- TCK: Test Clock.
- Datapath
 - TDI: Test Data Input.
 - TDO: Test Data Output.
- Controller: TAP
 - TMS: Test Mode Selector. Input to the TAP FSM.
Board Configuration

(Fig. 9.47, Abramovici et al., 1990)
System Configurations

Figure 9.51 (a) Ring configuration (b) Star configuration

(Abramovici et al., 1990)
Normal mode: Mode_Control=0, send IN to OUT

Scan mode: ShiftDR=1, send SIN to SOUT

Capture mode: ShiftDR=0, save IN to QA

Update mode: Mode_Control=1, send QA to OUT
Boundary-Scan Cell Design

(Fig. 9.46(b), Abramovici et al., 1990)

- Normal mode: $\text{Mode_Control}=0$, send IN to OUT
- Scan mode: $\text{ShiftDR}=1$, send SIN to $SOUT$
- Capture mode: $\text{ShiftDR}=0$, save IN to Q_A
- Update mode: $\text{Mode_Control}=1$, send Q_A to OUT
Boundary-Scan Cell Design

▶ Normal mode: Mode_Control=0, send IN to OUT
▶ Scan mode: ShiftDR=1, send SIN to SOUT
▶ Capture mode: ShiftDR=0, save IN to QA
▶ Update mode: Mode_Control=1, send QA to OUT

(Fig. 9.46(b), Abramovici et al., 1990)
Boundary-Scan Cell Design

(Fig. 9.46(b), Abramovici et al., 1990)

- **Normal mode:** Mode_Control = 0, send IN to OUT
- **Scan mode:** ShiftDR = 1, send SIN to SOUT
- **Capture mode:** ShiftDR = 0, save IN to QA
- **Update mode:** Mode_Control = 1, send QA to OUT
External Test Mode

▶ Test interconnects and logic external to chips.

(Fig. 9.48, Abramovici et al., 1990)
Sample Test Mode

Sample I/O data during normal system operation.

(Fig. 9.49, Abramovici et al., 1990)
Test internal application logic.

(Fig. 9.50, Abramovici et al., 1990)
The challenge of board-level and system-level DFT approaches is to enable testing of the individual components and the whole system without reconfiguration of the interconnects.

Boundary-scan standards define the ways to access chips for testing (controllability and observability) in a programmable manner.