ECE 586 – Fault Detection in Digital Circuits
Lecture 18 ATPG for SSFs IV

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

March 23, 2015
This lecture: 6.2.1, 6.2.2, 6.2.3, 6.4
Next lecture: 9.1, 9.2
Overview

Fault-Independent TG

Random TG

ATPG Systems
TG in a Decision Tree

- Each node represents a sub-problem to be solved.
 - Justify and Propagate.
- Each branch represents a solution.
 - Single solution – easy to handle.
 - Multiple solution – need to memorize and try all in the worse case.
 - No solution – we made a bad choice, need backtracking.
Maximum Implications Principle

- TG still runs for exponential time in the worse case though we may greatly speed-up it for practical cases.

- *Maximum implications principle:* perform as many implications as possible so that less (bad) decisions need to be made.

- The TG algorithm will be able to run very efficiently in practice for *most* cases.
The Implication Process

- **Inputs**
 - The current decision tree.
 - A node and a branch of it to try next.

- **Outputs**
 - Generate a new node by solving all sub-problems that have a single solution, including the newly generated sub-problems.
 - Update the queue of unsolved sub-problems accordingly.

- The queue of unsolved sub-problems can be further decomposed into two queues.
 - The D-frontier: gate whose output is x but have D or \overline{D} on its inputs.
 - The J-frontier: gate whose output is known but not implied by any input.
The Implication Algorithm

- Use a queue named *assignment queue* to maintain all newly generated sub-problems.
- For each iteration, we extract a sub-problem from the queue and try to solve it.
 - Return FAILURE if there is no solution.
 - Solve it if there is a single solution – this may generate more sub-problems that go to the assignment queue.
 - If there are multiple solutions, put the sub-problem into either the D-frontier or the J-frontier.
- If the assignment queue is empty and the D-frontier has a single element, we may apply unique D-drive to restart implication.
The \textit{D-Algorithm} (Abramovici et al., 1990)

\begin{verbatim}
D-alg()
begin
 if \textit{Imply_and_check()} = FAILURE then return FAILURE
 if (error not at PO) then
 begin
 if D-frontier = \O then return FAILURE
 repeat
 begin
 select an untried gate (G) from D-frontier
 c = controlling value of G
 assign \overline{c} to every input of G with value \(x\)
 if D-alg() = SUCCESS then return SUCCESS
 end
 until all gates from D-frontier have been tried
 return FAILURE
 end
 /* error propagated to a PO */
 if J-frontier = \O then return SUCCESS
 select a gate (G) from the J-frontier
 c = controlling value of G
 repeat
 begin
 select an input (j) of G with value \(x\)
 assign \(c\) to j
 if D-alg() = SUCCESS then return SUCCESS
 assign \overline{c} to j /* reverse decision */
 end
 until all inputs of G are specified
 return FAILURE
end
\end{verbatim}

(Abramovici et al., 1990)
Example: Step 1

▶ The D-frontier will contain three elements after the first implication.

(Fig. 6.24, Abramovici et al., 1990)
Example: Step 2

Try fault propagation through i via recursion.

No conflict after implication.

(Fig. 6.24, Abramovici et al., 1990)
Example: Step 3

- Try fault propagation through n via recursion.
 - Conflict found at k.

(Fig. 6.24, Abramovici et al., 1990)
Example: Step 4

Backtracking to Step 2 with n removed from the D-frontier.
Example: Step 5

- Try fault propagation through k via recursion.
- No conflict after implication.

(Fig. 6.24, Abramovici et al., 1990)
Example: Step 6

▶ Try fault propagation through n via recursion.
▶ Conflict found at m.

(Fig. 6.24, Abramovici et al., 1990)
Example: Step 7

Backtracking to Step 5 with n removed from the D-frontier.

(Fig. 6.24, Abramovici et al., 1990)
Example: Step 8

▶ Try fault propagation through m via recursion.
▶ Implication found \overline{D} at PO. DONE.

(Fig. 6.24, Abramovici et al., 1990)
Outline

Overview

Fault-Independent TG

Random TG

ATPG Systems
Motivation

- Fault-oriented algorithms could be very costly.
 - Need to traverse the decision tree.
 - Exponential time in the worst-case.
- Fault-independent TG
 - Derive a set of tests that detect a large set of SSFs.
 - Without targeting individual faults.
Motivation

- Fault-oriented algorithms could be very costly.
 - Need to traverse the decision tree.
 - Exponential time in the worst-case.
- Fault-independent TG
 - Derive a set of tests that detect a large set of SSFs.
 - Without targeting individual faults.
Critical paths for a test can be identified easily by critical path tracing.

- Half of the SSFs along a critical path can be detected by t.
- So it is desirable to generate a test with long critical paths.
- Algorithmic idea: starting from PO, justify critical values recursively.
Critical-Path TG

- Critical paths for a test can be identified easily by critical path tracing.
- Half of the SSFs along a critical path can be detected by t.
- So it is desirable to generate a test with long critical paths.
- Algorithmic idea: starting from PO, justify critical values recursively.
Critical paths for a test can be identified easily by critical path tracing.

Half of the SSFs along a critical path can be detected by t.

So it is desirable to generate a test with long critical paths.

Algorithmic idea: starting from PO, justify critical values recursively.
Critical paths for a test can be identified easily by critical path tracing.

Half of the SSFs along a critical path can be detected by t.

So it is desirable to generate a test with long critical paths.

Algorithmic idea: starting from PO, justify critical values recursively.
Figure 6.45 Example of critical-path TG

(Abramovici et al., 1990)
Discussions

- A critical output may result from multiple possible critical inputs.
- Similar to fault-oriented TG, we may use a decision tree to explore such possibilities, or solutions, systematically.
- However, each solution may or may not lead to a test.
 - Each solution leads to a test in fanout-free circuits.
 - In circuits with fanouts, conflicts may arise.
- Since our goal is to find multiple test vectors, we may continue the traversal even if a test is found.
 - Unlike fault-oriented TG where we stop after finding a test vector.
A critical output may result from multiple possible critical inputs.

Similar to fault-oriented TG, we may use a decision tree to explore such possibilities, or solutions, systematically.

However, each solution may or may not lead to a test.

Each solution leads to a test in fanout-free circuits.

In circuits with fanouts, conflicts may arise.

Since our goal is to find multiple test vectors, we may continue the traversal even if a test is found.

Unlike fault-oriented TG where we stop after finding a test vector.
A critical output may result from multiple possible critical inputs.

Similar to fault-oriented TG, we may use a decision tree to explore such possibilities, or solutions, systematically.

However, each solution may or may not lead to a test.

- Each solution leads to a test in fanout-free circuits.
- In circuits with fanouts, conflicts may arise.

Since our goal is to find multiple test vectors, we may continue the traversal even if a test is found.

- Unlike fault-oriented TG where we stop after finding a test vector.
A critical output may result from multiple possible critical inputs.

Similar to fault-oriented TG, we may use a decision tree to explore such possibilities, or solutions, systematically.

However, each solution may or may not lead to a test.

- Each solution leads to a test in fanout-free circuits.
- In circuits with fanouts, conflicts may arise.

Since our goal is to find *multiple* test vectors, we may continue the traversal even if a test is found.

- Unlike fault-oriented TG where we stop after finding a test vector.
Outline

Overview

Fault-Independent TG

Random TG

ATPG Systems
Quality Measures

- Consider N randomly generated test vectors.
 - We assume input vectors are uniformly distributed and independently generated – a test vector may appear twice.
- Testing quality: t_N.
 - Probability of the test vectors detect all detectable SSFs.
- N-step detection probability of fault f: d_N^f.
 - Probability of the test vectors detect f.
- Detection quality: $d_N = \min_{f \in SSF} d_N^f$.
- $t_N \leq d_N^f$ for any fault f, so $t_N \leq d_N$.
Consider N randomly generated test vectors.
- We assume input vectors are uniformly distributed and independently generated – a test vector may appear twice.

Testing quality: t_N.
- Probability of the test vectors detect all detectable SSFs.
- N-step detection probability of fault f: d^f_N.
- Probability of the test vectors detect f.

Detection quality: $d_N = \min_{f \in \text{SSF}} d^f_N$.
- $t_N \leq d^f_N$ for any fault f, so $t_N \leq d_N$.
Consider \(N \) randomly generated test vectors.
- We assume input vectors are uniformly distributed and independently generated – a test vector may appear twice.

Testing quality: \(t_N \).
- Probability of the test vectors detect all detectable SSFs.

\(N \)-step detection probability of fault \(f \): \(d^f_N \).
- Probability of the test vectors detect \(f \).

Detection quality: \(d_N = \min_{f \in \text{SSF}} d^f_N \).
- \(t_N \leq d^f_N \) for any fault \(f \), so \(t_N \leq d_N \).
Consider N randomly generated test vectors.
 - We assume input vectors are uniformly distributed and independently generated – a test vector may appear twice.

Testing quality: t_N.
 - Probability of the test vectors detect all detectable SSFs.

N-step detection probability of fault f: d^f_N.
 - Probability of the test vectors detect f.

Detection quality: $d_N = \min_{f \in SSF} d^f_N$.
 - $t_N \leq d^f_N$ for any fault f, so $t_N \leq d_N$.
Consider N randomly generated test vectors.

- We assume input vectors are uniformly distributed and independently generated – a test vector may appear twice.

Testing quality: t_N.

- Probability of the test vectors detect all detectable SSFs.

N-step detection probability of fault f: d^f_N.

- Probability of the test vectors detect f.

Detection quality: $d_N = \min_{f \in SSF} d^f_N$.

- $t_N \leq d^f_N$ for any fault f, so $t_N \leq d_N$.
Suppose we want to achieve $d_N > c$ for a given c.

- What N should be for n bits of input?

- For a fault f, $d^f_1 = \frac{|T_f|}{2^n}$.
 - T_f is the set of all tests detecting f.
 - So $1 - d^f_N = (1 - d^f_1)^N$.

- Let $d_{min} = \min_{f \in SSF} d^f_1 = \frac{\min_{f \in SSF} |T_f|}{2^n}$, then

 \[c \leq d_N = 1 - (1 - d_{min})^N. \]

So

\[N \geq \frac{\ln(1 - c)}{\ln(1 - d_{min})}. \]
Suppose we want to achieve $d_N > c$ for a given c.

What N should be for n bits of input?

For a fault f, $d_1^f = \frac{|T_f|}{2^n}$.

T_f is the set of all tests detecting f.

So $1 - d_N^f = (1 - d_1^f)^N$.

Let $d_{min} = \min_{f \in SSF} d_1^f = \frac{\min_{f \in SSF} |T_f|}{2^n}$, then

$$c \leq d_N = 1 - (1 - d_{min})^N.$$

So

$$N \geq \frac{\ln(1 - c)}{\ln(1 - d_{min})}.$$
Suppose we want to achieve \(d_N > c \) for a given \(c \).

- What \(N \) should be for \(n \) bits of input?

For a fault \(f \), \(d_1^f = \frac{|T_f|}{2^n} \).

- \(T_f \) is the set of all tests detecting \(f \).
- So \(1 - d_N^f = (1 - d_1^f)^N \).

Let \(d_{\text{min}} = \min_{f \in \text{SSF}} d_1^f = \frac{\min_{f \in \text{SSF}} |T_f|}{2^n} \), then

\[
c \leq d_N = 1 - (1 - d_{\text{min}})^N.
\]

So

\[
N \geq \frac{\ln(1 - c)}{\ln(1 - d_{\text{min}})}.
\]
What if we want to achieve $t_N > c$?

\[N \geq \frac{\ln(1-c) - \ln(k)}{\ln(1-d_{min})}. \]

- For k be the number of faults whose detection probability is in $[d_{min}, 2d_{min}]$.

How large is d_{min}?

\[d_{min} > \frac{1}{2^{n_{max}}}. \]

- n_{max} is the largest number of PIs feeding a PO in the circuits.
- Though this lower-bound is usually too conservative.
What if we want to achieve $t_N > c$?

$$N \geq \frac{\ln(1-c) - \ln(k)}{\ln(1-d_{min})}.$$

For k be the number of faults whose detection probability is in $[d_{min}, 2d_{min}]$.

How large is d_{min}?

$$d_{min} > \frac{1}{2^{n_{max}}}.$$

n_{max} is the largest number of PIs feeding a PO in the circuits.

Though this lower-bound is usually too conservative.
What if we want to achieve $t_N > c$?

$N \geq \frac{\ln(1-c) - \ln(k)}{\ln(1-d_{min})}$.

For k be the number of faults whose detection probability is in $[d_{min}, 2d_{min}]$.

How large is d_{min}?

$d_{min} > \frac{1}{2^n_{max}}$.

n_{max} is the largest number of PIs feeding a PO in the circuits.

Though this lower-bound is usually too conservative.
What if we want to achieve $t_N > c$?

$n \geq \frac{\ln(1-c) - \ln(k)}{\ln(1-d_{min})}$.

For k be the number of faults whose detection probability is in $[d_{min}, 2d_{min}]$.

How large is d_{min}?

$d_{min} > \frac{1}{2^{n_{max}}}$.

n_{max} is the largest number of PIs feeding a PO in the circuits.

Though this lower-bound is usually too conservative.
What if we want to achieve $t_N > c$?

$N \geq \frac{\ln(1-c) - \ln(k)}{\ln(1-d_{\text{min}})}$.

For k be the number of faults whose detection probability is in $[d_{\text{min}}, 2d_{\text{min}}]$.

How large is d_{min}?

$d_{\text{min}} > \frac{1}{2^{n_{\text{max}}}}$.

n_{max} is the largest number of PIs feeding a PO in the circuits.

Though this lower-bound is usually too conservative.
Outline

Overview

Fault-Independent TG

Random TG

ATPG Systems
Goal of ATPG Systems

- The fault coverage of the generated tests as high as possible.
- The cost of generating tests (i.e., the CPU time) as low as possible.
- The number of generated tests as small as possible.
Goal of ATPG Systems

- The fault coverage of the generated tests as high as possible.
- The cost of generating tests (i.e., the CPU time) as low as possible.
- The number of generated tests as small as possible.
Goal of ATPG Systems

- The fault coverage of the generated tests as high as possible.
- The cost of generating tests (i.e., the CPU time) as low as possible.
- The number of generated tests as small as possible.
Two-Phase ATPG System

Figure 6.65

(Abramovici et al., 1990)
Two-Phase Algorithms

```
repeat
  begin
    Generate_test(t)
    fault simulate t
    v = value(t)
    if acceptable(v) then add t to the test set
  end
until endphase1()  

repeat
  begin
    select a new target fault f
    try to generate a test (t) for f
    if successful then
      begin
        add t to the test set
        fault simulate t
        discard the faults detected by t
      end
  end
until endphase2()  
```

Figure 6.66 First phase

Figure 6.67 Second phase

(Abramovici et al., 1990)
Test Set Compaction

Since most test vectors are partially specified, we may use a single test vector to cover many of them.

The effectiveness of compaction depends on the choice of compaction algorithm.

- Static compaction: compact after all test vectors are generated.
- Dynamic compaction: after a partially specified vector is found for a fault, extend it immediately to detect more faults.

Experimental results show dynamic compaction is better.

- Smaller test sets and faster running time.

\[
\begin{align*}
 t_1 &= 01x \\
 t_2 &= 0x1 \\
 t_3 &= 0x0 \\
 t_4 &= x01 \\
 t_{12} &= 011 \\
 t_3 &= 0x0 \\
 t_4 &= x01 \\
 t_{13} &= 010 \\
 t_{24} &= 001.
\end{align*}
\]
Test Set Compaction

Since most test vectors are partially specified, we may use a single test vector to cover many of them.

The effectiveness of compaction depends on the choice of compaction algorithm.

- Static compaction: compact after all test vectors are generated.
- Dynamic compaction: after a partially specified vector is found for a fault, extend it immediately to detect more faults.

Experimental results show dynamic compaction is better.

- Smaller test sets and faster running time.

\[t_{12} = 011 \]
\[t_3 = 0x0 \]
\[t_4 = x01 \]

\[t_1 = 01x \]
\[t_2 = 0x1 \]
\[t_3 = 0x0 \]
\[t_4 = x01 \]
\[t_{13} = 010 \]
\[t_{24} = 001. \]
Since most test vectors are partially specified, we may use a single test vector to cover many of them.

The effectiveness of compaction depends on the choice of compaction algorithm.

- Static compaction: compact after all test vectors are generated.
- Dynamic compaction: after a partially specified vector is found for a fault, extend it immediately to detect more faults.

Experimental results show dynamic compaction is better.

- Smaller test sets and faster running time.

\begin{align*}
t_1 &= 01x \\
t_2 &= 0x1 \\
t_3 &= 0x0 \\
t_4 &= x01
\end{align*}

or

\begin{align*}
t_{12} &= 011 \\
t_3 &= 0x0 \\
t_4 &= x01 \\
t_{13} &= 010 \\
t_{24} &= 001.
\end{align*}
Summary

- Fault-independent and random TGs serve as low-cost alternatives to fault-oriented TG, though the quality of the test set is not as high.
- Overall, an ATPG system combines various TG techniques to achieve high coverage using a small test set with low computational cost.