
Deterministic Random Walk Preconditioning
for Power Grid Analysis

Jia Wang
Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago, IL 60616, USA

ABSTRACT
Iterative linear equation solvers depend on high quality pre-
conditioners to achieve fast convergence. For sparse sym-
metric systems arising from large power grid analysis prob-
lems, however, preconditioners generated by traditional in-
complete Cholesky factorizations are usually of low quality,
resulting in slow convergence. On the other hand, although
preconditioners generated by random walks are quite effec-
tive to reduce the number of iterations, it takes considerable
amount of time to compute them in a stochastic manner. In
this paper, we propose a new preconditioning technique for
power grid analysis, named deterministic random walk, that
combines the advantages of the above two approaches. Our
proposed algorithm computes the preconditioners in a deter-
ministic manner to reduce computation time, while achiev-
ing similar quality as stochastic random walk precondition-
ing by modifying fill-ins to compensate dropped entries. We
have proved that for such compensation scheme, our algo-
rithm will not fail for certain matrix orderings, which oth-
erwise cannot be guaranteed by traditional incomplete fac-
torizations. We demonstrate that by incorporating our pro-
posed preconditioner, a conjugate gradient solver is able to
outperform a state-of-the-art algebraic multigrid precondi-
tioned solver on public IBM power grid benchmarks for DC
power grid analysis, while potentially remaining very effi-
cient for transient analysis.

1. INTRODUCTION
Power supply noise is a critical issue that must be ad-

dressed in modern chip designs since it may affect impor-
tant design metrics including timing and power consump-
tion [1, 29, 6, 14]. Modeling devices as current sources and
power distribution networks with parasitics as RLC grids,
power grid analysis [6, 24] leverages circuit simulation tech-
niques to estimate such noises for designers to take further
actions. Though the power grid analysis problems have been
extensively studied, it remains extremely challenge to build
efficient power grid analysis tools to match the increasing
complexity associated with power delivery [25].

The key problem of power grid analysis is to solve the
following sparse system of linear equations for noise vector

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA
Copyright c©2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

x given system matrix A and excitation vector b:

Ax = b. (1)

In this paper, we consider DC analysis and transient analy-
sis when there is no mutual inductance and thus assume A
to be a nonsingular symmetric diagonally dominant matrix
with nonpositive off-diagonal elements [2], which also implies
that A is symmetric positive definite. Although the above
system could be solved by direct methods like Cholesky fac-
torization [10, 3], since the exact factors are large in size,
such methods are only suitable when there is ample mem-
ory and when the system should be solved for many excita-
tion vectors. The state-of-the-art researches on power grid
analysis can be separated in two groups. The efforts of the
first group lead to efficient algorithms that can obtain ap-
proximated solutions by exploiting structures of the power
grid, e.g. hierarchical analysis [34], multigrid [24, 16, 30, 38,
39, 7], random walks [26, 19], Poisson solver [28], frequency
domain methods [35, 13], and model order reduction tech-
niques [31, 17, 18]. The second group [2, 37, 27, 8, 33, 32,
4, 36], which attracts a lot of interests recently due to the
demand to accurately characterize the static and dynamic
behaviors of power grids [20, 21], utilize iterative solvers,
especially preconditioned conjugate gradient (PCG), to fur-
ther improve the solution accuracy.

It is well-known that the quality of the preconditioners has
a huge impact on the performance of the iterative solvers.
We are particularly interested in stochastic random walk
preconditioning [27] as we observed that for public IBM
power grid benchmarks [25, 20], on average the l2 norm
of the residue is reduced by half per PCG iteration, which
leads to much less iterations than those recently reported
for traditional incomplete Cholesky (IC) factorizations and
various other preconditioning techniques [32, 4, 36]. More-
over, since the preconditioner itself is an approximated root-
free Cholesky (LDLT) factorization of the system matrix,
each PCG iteration is less involving than algebraic multi-
grid (AMG) preconditioning [33]. As pointed out by the
authors [27], the superior quality comes from the fact that
the columns of L are computed independently so that errors
will not accumulate as in traditional IC/ILU precondition-
ers. However, since to compute the columns independently
requires to perform Monte Carlo simulations on the power
grid, even when the walks are extensively reused [27], it
takes much more time than other techniques [23, 15, 36]
that compute the factorizations in a rather deterministic
manner. Stochastic random walk preconditioning is there-
fore not suitable when the system is only solved for a few
times, e.g. for DC analysis.

In this paper, we propose a new preconditioner, named de-

terministic random walk (DRW), that overcomes the above
difficulty while achieving similar quality compared to stochas-
tic random walk preconditioning. Our key observation is
that if the columns of L are computed sequentially, a ran-
dom walk can be decomposed into a few random walks whose
probabilities are either easily known or already computed.
This enables us to avoid Monte Carlo simulations, result-
ing in a deterministic algorithm that computes L efficiently.
As our algorithm will usually locate more entries in L than
stochastic random walk, we propose to keep only the largest
few in absolute value per column to maintain the sparsity of
L, and to compensate the dropped ones by decreasing the
remaining ones. Such compensation scheme differs our pre-
conditioner from various traditional IC/ILU preconditioners
[23, 12, 22] where the off-diagonal elements of L are only al-
lowed to be increased or dropped (increased to 0) in order to
guarantee the correctness of the algorithm forA being a sym-
metric M-matrix. As a comparison, by leveraging random
walks, we are able to prove the correctness of our algorithm
when more flexible dropping and compensation schemes are
adopted for certain matrix orderings. Our proposed pre-
conditioner also differs from hierarchical random walks [26,
19]. They explicitly approximate the possibly dense Schur
complement after partial factorization by Monte Carlo sim-
ulations, while we implicitly factor the Schur complement
without actually generating it first.

We demonstrate that a PCG solver using our proposed
DRW preconditioner can efficiently explore the trade-offs
between the preconditioner size, the time to compute the
preconditioner, and the time to solve a problem iteratively.
Using similar preconditioner sizes as stochastic random walk
preconditioning, we reduce the time to compute the precon-
ditioner by 3.9× and the time to solve a problem iteratively
by 2.4× on public IBM power grid benchmarks [25, 20],
which is essential for efficient transient analysis. On the
other hand, by using a preconditioner size similar to that of
A, we further reduce the time to compute the preconditioner
without degrading its quality dramatically. This leads to an
efficient solver for DC analysis that is able to outperform
the state-of-the-art AMG-PCG solver PowerRush [33].

The rest of this paper is organized as follows. Incomplete
factorizations and stochastic random walk preconditioning
are reviewed in Section 2. Our proposed DRW precondi-
tioner is presented in Section 3. After experimental results
are discussed in Section 4, Section 5 concludes the paper.

2. PRELIMINARIES

2.1 Matrices and Graphs
For a n × 1 vector x, we denote its ith element by xi for

1 ≤ i ≤ n, and a vector obtained from its ith to jth elements
by xi:j . For a n × n matrix X, we denote its element on
the row i and the column j by xi,j for 1 ≤ i ≤ n and
1 ≤ j ≤ n. The submatrix of X spanning the rows i1 to
i2 and the columns j1 to j2 is denoted by Xi1:i2,j1:j2 . For
ease of presentation, we opt to omit :i2 or :j2 if i1 = i2 or
j1 = j2 respectively. We define D(X) to be the diagonal of
X, i.e. diag(x1,1, x2,2, . . . , xn,n). We say that X is column-
wise diagonally dominant if xk,k ≥

P
i 6=k |xi,k|, ∀k, and that

X is unit lower triangular if xk,k = 1 and X1:k−1,k = 0, ∀k.
We define the extended matrix graph of X to be a weighted

directed graph G∗X = (V ∗X , E
∗
X , w

∗
X). The vertex set V ∗X

consists of the vertices 1, 2, . . . , n corresponding to the rows

A =

264 3 −1 −1 −1
−1 1 0 0
−1 0 2 0
−1 0 0 1

375

Figure 1: A matrix and its extended matrix graph

and columns of X and an additional vertex n + 1. For any
xi,j 6= 0 where i 6= j, an edge (j, i) is introduced to E∗X with
the weight w∗X(j, i) = −xi,j . For any k satisfying xk,k 6=P

i 6=k xi,k, an edge (k, n + 1) is introduced with the weight

w∗X(k, n + 1) = xk,k −
P

i6=k xi,k. Similarly, an edge (n +

1, k) is introduced with the weight w∗X(n + 1, k) = xk,k −P
j 6=k xk,j if that weight is not zero. An example system

matrix A and its extended matrix graph is shown in Fig. 1.

2.2 Incomplete LDLT Factorizations
We then review incomplete Cholesky factorization in its

root-free forms, i.e. incomplete LDLT factorization, because
of its close relationship to random walk based precondition-
ing techniques studied in [27] and in this paper.

Let n be the dimension of the system matrix A. Since
A is symmetric positive definite (s.p.d.), it is well known

[10] that there exists a unit lower triangular matrix L̂ and a

diagonal matrix D̂ with all diagonal elements being positive
such that A = L̂D̂L̂T . Since A is also a M-matrix (a matrix
where the elements in its inverse are all nonnegative), its
incomplete LDLT factorization does exist [23] and can be
computed iteratively for k = 1, 2, . . . , n as follows,

dk,k = ak,k −
k−1X
j=1

lk,jdj,j lk,j , (2)

li,k = 0 or
1

dk,k
(ai,k −

k−1X
j=1

lk,jdj,j li,j), ∀k < i ≤ n. (3)

The choices in Eq. (3) are determined by the dropping scheme,
e.g. [15]. According to [22], the relationship between the ex-
act and the incomplete LDLT factorizations is,

dk,k ≥ d̂k,k > 0, 0 ≥ li,k ≥ l̂i,k, 0 ≥ dk,kli,k ≥ d̂k,k l̂i,k. (4)

Eq. (4) indicates that the error due to dropped entries will
accumulate and lead to a systematic difference between the
exact and the incomplete factorizations, which will cause in-
complete Cholesky preconditioners to perform unfavorably
in a PCG solver. An intuitive idea to correct such differ-
ence is to decrease both dk,k and li,k during factorization for
compensation. However, if one attempts to do so within the
factorization process outlined by Eq. (2) and (3), there is no
guarantee that the computation could proceed, i.e. dk,k 6= 0,
and there is no guarantee that the obtained factorization will
remain s.p.d., i.e. dk,k > 0.

2.3 Stochastic Random Walk Preconditioning
We slightly modify the definition of random walks from

[27] so that the outcome of stochastic random walk precon-
ditioning will be an approximated LDLT factorization of A.

Consider the matrix T = AD(A)−1, i.e. the matrix ob-
tained from A by dividing its column k by ak,k for every k. A
random walk can be defined in its extended matrix graph G∗T
treating edge weights as transition probabilities. Let k

C
; i

be the set of random walks from k to i whose internal ver-

tices satisfy the condition C for 1 ≤ k ≤ n and 1 ≤ i ≤ n+1.
Since A is symmetric nonsingular, n + 1 is reachable from

any other vertex. This implies that
Pn+1

i=k+1 Pr[k
≤k
; i] = 1

and that the expectation, denoted by Ek, of the number of

times that one random walk in
Sn+1

i=k+1 k
≤k
; i passes k is

finite. The following relationship to the exact LDLT factor-
ization of A has been established in [27],

d̂k,k =
ak,k

Ek
, l̂i,k = −Pr[k ≤k

; i], ∀1 ≤ k < i ≤ n. (5)

Based on Eq. (5), one can obtain an approximated LDLT

factorization of A via Monte Carlo simulations. The follow-
ing properties of D̂ and L̂ are preserved for D and L.

Observation 1. Diagonal elements of D are positive, off-
diagonal elements of L are nonpositive, and L is column-
wise diagonally dominant.

Moreover, when L and D are compared to the outcome of
incomplete LDLT factorization as described in Eq. (4), an
immediate advantage is that there is no systematic difference
since estimations of the probabilities and expectations could
be either larger or smaller than their exact values, and there
is no error accumulation.

However, the fundamental difficulty of stochastic random
walk preconditioning is that the length of a random walk
cannot be bounded, and thus the algorithm only terminates
in a probabilistic sense even when one bounds the number
of Monte Carlo simulations. For example, for the system
shown in Fig. 1, a random walk starting from 4 could pass
the edges 1→ 2 and 2→ 1 for unbounded number of times
before finally reaching 5. In the extreme case when there are
“traps” in the system [26], e.g. when the weights of the edges
1→ 2 and 2→ 1 are much larger compared to others, it will
take excessive time to compute the preconditioner. In order
to overcome such difficulty, one may partition the system
[34] and use hierarchical random walks [26, 19] to generate
a macromodel of the global grid before applying stochastic
random walk preconditioning. However, since the macro-
model essentially is an approximation of the Schur comple-
ment after partial factorization, to compute and to store it
explicitly could be very costly.

3. PRECONDITIONING WITH DETERMIN-
ISTIC RANDOM WALKS

3.1 Structure of Random Walks
We propose to circumvent the difficulty in bounding the

lengths of the random walks by computing their probabilities
iteratively after decomposing them into shorter ones.

First of all, we show that the probabilities and expecta-
tions in Eq. (5) can be obtained from another set of random
walks, which we believe to be more fundamental. Consider

a random walk r ∈ k ≤k
; i for 1 ≤ k < i ≤ n+ 1. If r passes

k for more than once, i.e. r /∈ k <k
; i, then we can decom-

pose r into two walks r1 and r2 such that r1 ∈ k
<k
; k and

r2 ∈ k
≤k
; i. Therefore, Pr[k

≤k
; i] = Pr[k

<k
; i] + Pr[k

<k
;

k]Pr[k
≤k
; i]. Since any vertex can reach n + 1, we must

have
Pn+1

i=k Pr[k
<k
; i] = 1 and Pr[k

<k
; k] < 1. The follow-

ing lemma holds.

Lemma 1. ∀1 ≤ k < i ≤ n+ 1,

Pr[k
≤k
; i] =

Pr[k
<k
; i]

1− Pr[k <k
; k]

.

On the other hand, recall that Ek is the expectation of

the number of times that a random walk in
Sn+1

i=k+1 k
≤k
; i

passes k. The aforementioned decomposition also implies

that Ek = 1 ·
Pn+1

i=k+1 Pr[k
<k
; i] + (1 +Ek)Pr[k

<k
; k], which

simplifies to Lemma 2.

Lemma 2. ∀1 ≤ k ≤ n,

Ek =
1

1− Pr[k <k
; k]

.

Lemma 1 and 2, together with Eq. (5), show that one can

factor A by computing Pr[k
<k
; i] for all 1 ≤ k ≤ i ≤ n,

though further decompositions are necessary to eliminate
Monte Carlo simulations.

Consider a set of independent random walks Nk such that

all random walks in
Sn+1

i=k k
<k
; i should start with. Let the

vector p be the probability of the random walks in Nk that

stop at a specific vertex, i.e. pi = Pr[k
<k
; i ∩ Nk] for 1 ≤

i ≤ n. A random walk r ∈ k <k
; i −Nk can be decomposed

into two random walks r1 ∈ Nk and r2, where r1 stops and

r2 starts at certain j. Then j < i and r2 ∈ j
<k
; i. The walk

r2 can be further decomposed into m walks, one each from

j1
≤j1
; j2, j2

≤j2
; j3, . . ., jm−1

≤jm−1
; jm, and jm

≤jm
; i, for

certain 1 ≤ m < k and j = j1 < j2 < · · · < jm < k. For
example, the random walk 4 → 1 → 2 → 1 → 3 → 1 →
3 → 5 in Fig. 1 is decomposed into 4 random walks 4 → 1,
1→ 2, 2→ 1→ 3, and 3→ 1→ 3→ 5. Therefore,

Pr[k
<k
; i]=pi+

k−1X
m=1

X
j1<j2<···<jm<k

Pr[jm
≤jm
; i]

“m−1Y
t=1

Pr[jt
≤jt
; jt+1]

”
pj1

= pi +

k−1X
m=1

(−L̂i,1:k−1)(I − L̂1:k−1,1:k−1)
m

p1:k−1.

Since I− L̂1:k−1,1:k−1 is a k−1 × k−1 lower triangular
matrix whose diagonal elements are all 0, we have,

Lemma 3. ∀1 ≤ k ≤ i ≤ n,

Pr[k
<k
; i] = pi − L̂i,1:k−1L̂

−1
1:k−1,1:k−1p1:k−1.

Clearly, if one choose a Nk such that the vector p can
be computed without performing Monte Carlo simulations,
then Lemma 1, 2, and 3 eliminate the need to simulate not
only a random walk of unbounded number of steps but all
of them. That motivates us to call our proposed technique
deterministic random walk.

3.2 The Proposed Preconditioner
Based on Eq. (5) and Lemma 1, 2, and 3, we design the

deterministic random walk (DRW) algorithm that computes
an approximated LDLT factorization of A. As shown in
Fig. 2, the DRW algorithm depends on the choice of the
random walk sets Nk and the function f that models the
dropping and compensation scheme. Note that we do not
explicitly initialize L and D since the elements that should
be stored will all be computed in the algorithm.

Algorithm Deterministic Random Walk
Inputs
A :the system matrix.
Nk:sets of random walks for 1 ≤ k ≤ n.
f :dropping and compensation scheme.

Outputs
A diagonal matrix D and a unit lower triangular
matrix L.

1 For k = 1 to n:
2 Compute p from Nk and A.
3 For i = k to n:
4 qi ← pi − Li,1:k−1L

−1
1:k−1,1:k−1p1:k−1.

5 dk,k ← ak,k(1− qk).
6 Lk+1:n,k ← −f(qk, qk+1, . . . , qn).

Figure 2: The DRW algorithm.

While it is difficult to quantitatively measure the differ-
ences between L and D generated by the DRW algorithm
and their exact values, we should at least guarantee that the
properties in Observation 1 are preserved for the correctness
of the algorithm. We develop a set of conditions that various
components of the DRW algorithm should satisfy as follows.
First of all, we have proved the following lemma that states
the properties of qi’s with some assumptions on the part of
L that is already computed.

Lemma 4. When reaching line 5 of the DRW algorithm, if
li,j ≤ 0, ∀(1 ≤ j < k) ∧ (j < i ≤ n) and

Pn
i=j+1(−li,j) ≤ 1,

∀1 ≤ j < k, then

qi ≥ pi ≥ 0, ∀k ≤ i ≤ n, and

nX
i=k

qi ≤
nX

i=1

pi ≤ 1.

The above lemma also implies that qk ≤
Pn

i=1 pi−
Pn

i=k+1

qi ≤
Pk

i=1 pi. Therefore, to guarantee dk,k on line 5 to be

positive, it is sufficient to require
Pk

i=1 pi < 1. Recall that
the vertex n + 1 is reachable from any other vertex in G∗T .
We can achieve so by reordering the rows and columns of A
(and thus T) such that there exists an edge (k, i) for some
i satisfying k < i ≤ n + 1 in G∗T . Since the columns of L
are computed using f , the invariants of L as required by
Lemma 4 can be maintained by choosing a proper f . Over-
all, the following theorem defines a set of sufficient condi-
tions for the correctness of the DRW algorithm.

Theorem 1. Assume that ∀1 ≤ k ≤ n, there exists an
edge (k, i) for some k < i ≤ n+1 in G∗A. If f returns a vector
whose elements are all nonnegative and the summation of
them are no more than 1, then the DRW algorithm will not
fail. Moreover, all diagonal elements of D are positive, L
is column-wise diagonally dominant, and all its off-diagonal
elements are nonpositive.

It is worthwhile to mention here the For loop line 3 can
be reorganized to facilitate sparse matrix operations. Let q
be a vector where q1:k−1 = L−1

1:k−1,1:k−1p1:k−1 and qk:n is
computed as line 4. Then we have

q =

„
L1:k−1,1:k−1 0
Lk:n,1:k−1 I

«−1

p. (6)

In other words, q can be obtained from p by a partial for-
ward substitution on L up to the first k−1 columns. Since it
is reasonable to assume p to be sparse and L is also sparse,
such computation can be done very efficiently without visit-
ing all the k−1 columns leveraging the algorithm proposed in

[9]. To be more specific, one should first perform a depth-
first search in the extended matrix graph of L1:k−1,1:k−1,
starting from the vertices corresponding to the nonzero ele-
ments in p1:k−1 and stopping at k, to obtain a topological
ordering of the reachable vertices, and then follow such or-
dering to use the columns of L.

Our DRW algorithm shares some similarities with incom-
plete LDLT factorization, e.g. both compute a column of
L using the columns that are already computed. We em-
phasize the two algorithm are quite different, even if the
function f in the DRW algorithm is chosen to be the same
as the dropping scheme in Eq. (3). Obviously, both Eq. (2)
and (3) use not only L1:n,1:k−1 but also D1:k−1, though our
DRW algorithm only depends on L1:n,1:k−1. Such difference
make our algorithm not sensitive to the error in the D ma-
trix. On the other hand, Eq. (3) indicates that the column
k of L is computed from the columns of L corresponding to
the nonzero elements in Lk,1:k−1. Although such columns
should be the same as the columns corresponding to the
aforementioned set of reachable vertices in our algorithm
when the factorizations are exact, they are different when
elements are dropped from L. We observed that our al-
gorithm will usually locate more columns than incomplete
LDLT factorization, which should appear in an exact fac-
torization, resulting in a better approximation at the cost of
more computation time. We believe that such cost is what
one has to pay in order to achieve better quality via a more
flexible dropping and compensation scheme.

3.3 Implementation Details
There are many ways to implement the various compo-

nents of the DRW algorithm while still satisfying the re-
quirements in Theorem 1. Here we present our choices when
implementing the DRW algorithm for power grid analysis.

We reorder A to a Reverse Cuthill-McKee ordering (RCM)
[5] before applying the DRW algorithm. This ordering is ob-
tained by first starting a breadth-first search in G∗A from the
vertex n + 1 treating all edges as undirected, and then re-
arranging the vertices in the reversed order that they are
discovered. Clearly, since n+ 1 is reachable from any other
vertices in G∗A, we can guarantee that any vertex k 6= n+ 1
in the rearranged graph G∗A has a neighbor i > k. We also
observed from our experiments that such an ordering does
achieve its original goal to benefit memory access patterns
for sparse matrix vector product operations, which may jus-
tify its usage over variants of minimum degree ordering.

We choose Nk to be the set of all the one-step random
walks from k. The p on line 2 of the DRW algorithm is
computed directly from A1:n,k. Note that we store the whole
matrix A to make such computation simple instead of only
storing half of A as A is symmetric. Other choices of Nk

may improve the quality of the preconditioner, though we
have not found it to be necessary since they will also cost
more time to compute the preconditioner.

We specify the dropping and compensation scheme in two
levels – globally and per column. Globally, two parameters
should be provided: a filling factor γ specifying the desired
ratio of the number of the nonzero off-diagonal elements in L
to that in A, and a keep tolerance δ such that any element of
L whose absolute value is larger should always be kept. We
do not actually tune these parameters in our experiments.
The parameter γ is used to constraint the size, and thus the
memory usage, of the preconditioner. The parameter δ is

Table 1: Results Comparison for DC Analysis
statistics DRW (γ = 1) PowerRush [33]

name n nnzA tsol Err. tsol Err.
×103 ×106 (s) (uV) (s) (uV)

ibmpg3 285 1.51 1.10 14/2 2.20 70/12
ibmpg4 953 4.05 2.92 5/1 2.94 230/29
ibmpg5 540 2.69 3.09 6/1 2.34 60/12
ibmpg6 834 4.13 5.25 6/1 5.92 90/12
ibmpgnew1 531 2.92 2.51 9/1 4.51 70/12
ibmpgnew2 531 2.92 2.53 10/2 4.49 70/12
total 17.41 50/8 22.40 590/90

always set to 0.05 as a safe guard in case the probabilities of
the random walks are distributed evenly. Our experimental
results are not sensitive to the value of δ unless it is too
small, e.g. 0.001. Column-wise, we compute Γ as the number
of nonzero off-diagonal elements for the column by assuming
that the remaining nonzero off-diagonal elements should be
distributed evenly across the remaining ones, or at least 2.
For the function f , we first replace all but the largest Γ
elements in qk+1, qk+2, . . . , qn by 0. If any element being
replaced is larger than δ, we will replace it back. Let the
resulting elements be q′k+1, q

′
k+2, . . . , q

′
n. The function f will

return the compensated vector as,

f(qk, qk+1, . . . , qn) =

Pn
i=k+1 qiPn
i=k+1 q

′
i

` q′k+1

1− qk
,
q′k+2

1− qk
, . . . ,

q′n
1− qk

´
,

i.e. the dropped elements are added to the remaining ones
proportionally. Note that if all the inputs are 0, f will simply
return 0. Overall, our dropping scheme is a direct extension
of that in [15], while the compensation scheme, though in-
tuitive, cannot be applied there directly.

4. EXPERIMENTAL RESULTS
We implement our DRW algorithm with a PCG solver in

C++ to solve power grid analysis problems. For comparison,
we implement in our solver the incomplete LDLT factoriza-
tion as described in Section 2.2 using the data structure
proposed by [15]. Moreover, the binary library for stochas-
tic random walk preconditioning [27] and the source code of
the direct solver CHOLMOD [3] are also integrated to our
solver. Our solver is built by GCC version 4.3 and we run
all the experiments on a 64-bit Linux workstation with a
2.4GHz Intel Q6600 processor and 8GB memory. Note that
only one core is used for all the experiments.

We first validate our proposed DRW preconditioner and
our PCG solver using public IBM power grid benchmarks
for DC analysis [25, 20]. We set γ to 1 to reduce the time
to compute our preconditioner and terminate the PCG it-
erations when the l2 norm of the residue is reduced to 10−3

of its original value. The results of the largest 6 circuits are
reported in Table 1 and are compared against the state-of-
the-art AMG-PCG solver PowerRush [33]. Similar to [33],
we preprocess the SPICE netlist to treat resistances less than
10−6Ω as shorts. In Table 1, we first show the dimension of
A (“n”) and the number of nonzero elements in A (“nnzA”).
Then, for each solver, we show the total solving time in sec-
onds (“tsol”) and the maximum/average errors to the golden
solution in uV (“Err.”). For our PCG solver with DRW pre-
conditioning, the column “tsol” includes the time to reorder
A, to compute the preconditioner, to perform PCG itera-
tions, and to compute the maximum/average errors. For
PowerRush, the two columns are obtained from Table 1 in

[33] and we compensate for the different processors used for
the experiments by scaling down the total solving time using
a factor of 2.13

2.40
. Although different processor microarchitec-

tures may also affect the solving times, we believe that the
comparison is reasonably fair so that we can conclude our
PCG solver with DRW preconditioning can generate results
with better accuracy in less time than PowerRush.

The memory usage of our DRW preconditioner can be
calculated from the numbers of nonzero elements in L, de-
noted by nnzL. For 4-byte integer indices and 8-byte floating
point values, to store both L and D requires 12nnzL bytes of
memory. We observed that nnzL faithfully follow the setting
γ = 1 for the experiments shown in Table 1, i.e. they are al-
most the same as the values in the column “nnzA”, and thus
the maximum memory usage for our DRW preconditioner is
less than 50MB for all benchmarks.

We then compare our DRW preconditioner to three other
preconditioners and report the results in Table 2. The first
one is stochastic random walk [27]. We only use their library
to generate the preconditioners since we found their solver
to be always slower than ours. The second is the incomplete
LDLT factorization implemented by us. We use the same
matrix ordering and the same dropping scheme as our DRW
algorithm without compensation. The third one is obtained
from our DRW preconditioner by removing the compensa-
tion scheme, and thus named DRW-NC (No Compensation).
The parameter γ for incomplete LDLT factorization, DRW-
NC, and DRW are all set to 1.7 to match the total number
of nonzero elements in L across all benchmarks as gener-
ated by stochastic random walk preconditioning. The PCG
solver solves the same 100 random vectors for all the precon-
ditioners and is terminated when the l2 norm of the residue
is reduced to 10−6 of its original value. For each precon-
ditioner, we report the number of nonzero elements in L
(“nnzL”), the time to compute the preconditioner (“tpre”),
the average time to solve the problem in the PCG solver
(“tpcg”), and the average number of PCG iterations (“#it.”).
It can be seen that the maximum memory usage for our
DRW preconditioner is less than 80MB.

The results in Table 2 indicate that with a proper choice
of the dropping scheme, incomplete LDLT factorization can
be quite effective to precondition power grid analysis prob-
lems. Our DRW preconditioner is able to achieve an ad-
ditional 1.7× reduction in both the number of PCG itera-
tions and the time to solve the problem, mostly due to the
compensation scheme; otherwise, the preconditioners gen-
erated by DRW-NC are marginally better than those gen-
erated by incomplete LDLT factorization. On the other
hand, for stochastic random walk preconditioning, although
the number of PCG iterations is 20% less than our DRW
preconditioner, it takes much more time to actually solve
the problems in a PCG solver. We found that this is due
to the matrix ordering used internally by the stochastic ran-
dom walk code – compared to the RCM ordering used by the
other three preconditioners, this ordering has incurred con-
siderable amount of overhead when performing the sparse
matrix vector product operations in the PCG solver. Over-
all, compared to stochastic random walk preconditioning,
our proposed DRW preconditioner requires 3.9× less time
to compute and reduces the time to solve the problem by
2.4×.

Finally, we study the impact of memory usage to solver ef-
ficiency among a few solvers and report the results in Table 3

Table 2: Results Comparison for Different Preconditioners

Stochastic Random Walk Incomplete LDLT (γ=1.7) DRW-NC (γ=1.7) DRW (γ=1.7)
name nnzL tpre tpcg #it. nnzL tpre tpcg #it. nnzL tpre tpcg #it. nnzL tpre tpcg #it.

×106 (s) (s) ×106 (s) (s) ×106 (s) (s) ×106 (s) (s)
ibmpg3 2.22 10.45 1.27 18 2.36 0.37 0.75 25 2.36 1.23 0.70 23 2.37 1.38 0.53 17
ibmpg4 6.92 26.41 5.93 20 6.22 0.92 4.48 51 6.22 20.07 4.27 49 6.22 22.21 1.84 21
ibmpg5 4.15 25.71 3.04 21 4.19 0.56 2.49 52 4.19 2.54 2.44 49 4.20 2.68 1.70 34
ibmpg6 6.29 43.85 5.95 22 6.41 0.88 4.81 61 6.41 2.47 4.64 57 6.41 2.62 3.40 42
ibmpgnew1 4.45 18.11 3.70 19 4.59 0.74 2.05 29 4.59 3.36 1.91 27 4.59 3.79 1.22 17
ibmpgnew2 4.44 18.21 3.58 20 4.59 0.76 2.05 29 4.59 3.38 1.91 27 4.59 3.78 1.22 17
total 28.47 142.73 23.47 119 28.36 4.22 16.63 246 28.36 33.05 15.87 233 28.37 36.47 9.91 149
ratio 3.91 2.37 0.80 0.12 1.68 1.66 0.91 1.60 1.57 1.00 1.00 1.00

Table 3: Results Comparison for Different Solvers
Total of All 6 Circuits

solver nnzL tpre tpcg #it.
×106 (s) (s)

Stochastic Random Walk
quality = 0.6 24.8 84.47 28.17 161

Incomplete LDLT (γ=1.0) 18.2 2.44 23.75 428
Stochastic Random Walk 28.5 142.73 23.47 119

Incomplete LDLT (γ=1.7) 28.4 4.22 16.63 246
DRW (γ=1.0) 18.2 5.85 12.77 229
DRW (γ=1.7) 28.4 36.47 9.91 149

CHOLMOD [3] 221.8 61.50 0.87 –

with the rows sorted according to the time to solve the prob-
lem. Three of the solvers are based on the preconditioners in
Table 2 excluding DRW-NC. Another three solvers are ob-
tained by reducing the memory usage of the preconditioners.
For DRW and incomplete LDLT factorization, we reduce γ
to 1.0. For stochastic random walk preconditioning, we set
the parameter quality to 0.6 as recommended by the authors
of [27]. Results of the direct solver CHOLMOD [3] are also
reported, though the three columns should be interpreted
as the number of nonzero elements in the exact Cholesky
factor, the time to compute the factor, and the time to solve
the problem directly, i.e. to perform a pair of forward/back
substitutions. For Table 3, we can see that CHOLMOD
is the best choice when there is ample memory and when
the factor can be reused to solve many problems, e.g. for
transient analysis. However, if the exact factors cannot be
held in memory due to large problem sizes, or if the system
is only solved for very few times, our proposed DRW pre-
conditioning technique together with a PCG solver will be
the best – even with a memory usage similar to that of the
original system, the preconditioners generated by our DRW
algorithm lead to less PCG iterations and less solving times
than incomplete factorizations with much more fill-ins, and
are thus suitable for both DC and transient analysis’.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we presented the deterministic random walk

preconditioning technique for power grid analysis via precon-
ditioned conjugate gradient solvers. Compared to stochas-
tic random walk preconditioning, our proposed algorithm
computed the preconditioners in a deterministic manner to
reduce computation time. Compared to incomplete factor-
izations, our proposed algorithm leveraged a compensation
scheme to improve preconditioner quality while maintain-
ing correctness. Solvers built on top of our proposed pre-
conditioner were able to outperform other state-of-the-art
iterative solvers for DC and transient power grid analysis’.

While this paper focuses on symmetric matrices, our pro-

posed DRW algorithm could be used to compute approx-
imated LDUT factorizations for asymmetric matrices di-
rectly or following the same idea to handle them in [27].
The requirement of nonpositive off-diagonal elements could
also be removed via a transformation described in [11]. Fur-
ther evaluations are required to extend our work to such
cases.

6. REFERENCES
[1] H. Chen and D. Ling. Power supply noise analysis

methodology for deep-submicron VLSI chip design. In
DAC, pages 638–643, 1997.

[2] T.-H. Chen and C. C.-P. Chen. Efficient large-scale
power grid analysis based on preconditioned
Krylov-subspace iterative methods. In DAC, pages
559–562, 2001.

[3] Y. Chen, T. A. Davis, W. W. Hager, and
S. Rajamanickam. Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and
update/downdate. ACM Transactions on
Mathematical Software, 35(3):22:1–22:14, Oct. 2008.

[4] C.-H. Chou, N.-Y. Tsai, H. Yu, C.-R. Lee, Y. Shi, and
S.-C. Chang. On the preconditioner of conjugate
gradient method – a power grid simulation
perspective. In ICCAD, pages 494–497, 2011.

[5] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In ACM National
Conference, pages 157–172, 1969.

[6] A. Dharchoudhury, R. Panda, D. Blaauw,
R. Vaidyanathan, B. Tutuianu, and D. Bearden.
Design and analysis of power distribution networks in
PowerPC microprocessors. In DAC, pages 738–743,
1998.

[7] Z. Feng and P. Li. Multigrid on GPU: Tackling power
grid analysis on parallel SIMT platforms. In ICCAD,
pages 647–654, 2008.

[8] Z. Feng, X. Zhao, and Z. Zeng. Robust parallel
preconditioned power grid simulation on GPU with
adaptive runtime performance modeling and
optimization. IEEE TCAD, 30(4):562–573, Apr. 2011.

[9] J. R. Gilbert and T. Peierls. Sparse partial pivoting in
time proportional to arithmetic operations. SIAM
Journal on Scientific and Statistical Computing,
9(5):862–874, Sept. 1988.

[10] G. H. Golub and C. F. Van Loan. Matrix
Computations. The Johns Hopkins University Press,
3rd edition, 1996.

[11] K. D. Gremban. Combinatorial Preconditioners for
Sparse, Symmetric, Diagonally Dominant Linear

Systems. PhD thesis, Carnegie Mellon University,
1996.

[12] I. Gustafsson. A class of first order factorization
methods. BIT, 18(2):142–156, June 1978.

[13] X. Hu, W. Zhao, P. Du, A. Shayan, and C.-K. Cheng.
An adaptive parallel flow for power distribution
network simulation using discrete fourier transform. In
ASPDAC, pages 125–130, 2010.

[14] Y.-M. Jiang and K.-T. Cheng. Analysis of
performance impact caused by power supply noise in
deep submicron devices. In DAC, pages 760–765, 1999.

[15] M. T. Jones and P. E. Plassmann. An improved
incomplete Cholesky factorization. ACM Transactions
on Mathematical Software, 21(1):5–17, Mar. 1995.

[16] J. Kozhaya, S. Nassif, and F. Najm. A multigrid-like
technique for power grid analysis. IEEE TCAD,
21(10):1148–1160, Oct. 2002.

[17] Y.-M. Lee, Y. Cao, T.-H. Chen, J. Wang, and C.-P.
Chen. HiPRIME: hierarchical and passivity preserved
interconnect macromodeling engine for RLKC power
delivery. IEEE TCAD, 24(6):797–806, June 2005.

[18] D. Li, S.-D. Tan, and B. McGaughy. ETBR: Extended
truncated balanced realization method for on-chip
power grid network analysis. In DATE, pages 432–437,
2008.

[19] P. Li. Power grid simulation via efficient
sampling-based sensitivity analysis and hierarchical
symbolic relaxation. In DAC, pages 664–669, 2005.

[20] Z. Li, F. Liu, R. Balasubramanian, and S. Nassif. TAU
2011 power grid analysis contest. In TAU Workshop,
2011.

[21] Z. Li, F. Liu, R. Balasubramanian, and S. Nassif. TAU
2012 power grid simulation contest. In TAU
Workshop, 2012.

[22] T. Manteuffel. An incomplete factorization technique
for positive definite linear systems. Mathematics of
Computation, 34(150):473–497, Apr. 1980.

[23] J. Meijerink and H. van der Vorst. An iterative
solution method for linear systems of which the
coefficient matrix is a symmetric M–matrix.
Mathematics of Computation, 31(137):148–162, Jan.
1977.

[24] S. Nassif and J. Kozhaya. Fast power grid simulation.
In DAC, pages 156–161, 2000.

[25] S. R. Nassif. Power grid analysis benchmarks. In

ASPDAC, pages 376–381, 2008.

[26] H. Qian, S. Nassif, and S. Sapatnekar. Power grid
analysis using random walks. IEEE TCAD,
24(8):1204–1224, Aug. 2005.

[27] H. Qian and S. S. Sapatnekar. Stochastic
preconditioning for diagonally dominant matrices.
SIAM Journal on Scientific Computing,
30(3):1178–1204, Mar. 2008.

[28] J. Shi, Y. Cai, W. Hou, L. Ma, S.-D. Tan, P.-H. Ho,
and X. Wang. GPU friendly fast poisson solver for
structured power grid network analysis. In DAC,
pages 178–183, 2009.

[29] G. Steele, D. Overhauser, S. Rochel, and S. Z.
Hussain. Full-chip verification methods for DSM power
distribution systems. In DAC, pages 744–749, 1998.

[30] H. Su, E. Acar, and S. Nassif. Power grid reduction

based on algebraic multigrid principles. In DAC, pages
109–112, 2003.

[31] J. Wang and T. Nguyen. Extended Krylov subspace
method for reduced order analysis of linear circuits
with multiple sources. In DAC, pages 247–252, 2000.

[32] J. Yang, Y. Cai, Q. Zhou, and J. Shi. Fast poisson
solver preconditioned method for robust power grid
analysis. In ICCAD, pages 531–536, 2011.

[33] J. Yang, Z. Li, Y. Cai, and Q. Zhou. PowerRush: A
linear simulator for power grid. In ICCAD, pages
482–487, 2011.

[34] M. Zhao, R. Panda, S. Sapatnekar, and D. Blaauw.
Hierarchical analysis of power distribution networks.
IEEE TCAD, 21(2):159–168, Feb. 2002.

[35] S. Zhao, K. Roy, and C.-K. Koh. Frequency domain
analysis of switching noise on power supply network.
In ICCAD, pages 487–492, 2000.

[36] X. Zhao, J. Wang, Z. Feng, and S. Hu. Power grid
analysis with hierarchical support graphs. In ICCAD,
pages 543–547, 2011.

[37] Y. Zhong and M. Wong. Fast algorithms for IR drop
analysis in large power grid. In ICCAD, pages
351–357, 2005.

[38] Z. Zhu, B. Yao, and C.-K. Cheng. Power network
analysis using an adaptive algebraic multigrid
approach. In DAC, pages 105–108, 2003.

[39] C. Zhuo, J. Hu, M. Zhao, and K. Chen. Power grid
analysis and optimization using algebraic multigrid.
IEEE TCAD, 27(4):738–751, Apr. 2008.

