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ABSTRACT
Vectorless power grid verification is a formal approach to an-
alyze power supply noises across the chip without detailed
current waveforms. It is typically formulated and solved
as linear programs, which demand intensive computational
power, especially for large-scale power grids. In this paper,
we propose a constraint abstraction technique to reduce the
computation cost of vectorless verification. The boundary
condition of a subgrid is modeled by boundary constraints,
which enable efficient calculation of conservative bounds of
power supply noises in a divide-and-conquer manner. Ex-
perimental results show that the proposed approach achieves
significant speedup over prior art while maintaining good so-
lution quality.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Verification, Performance

Keywords
Power grid, voltage drop, vectorless verification

1. INTRODUCTION
As technology scaling continues, the performance and reli-

ability of integrated circuits become increasingly susceptible
to power supply noises, such as IR drops and Ldi/dt drops
in the on-chip power grid. Reduced supply voltage levels in
the grid can increase the gate delay, leading to timing vio-
lations and even logic failures. In order to ensure a reliable
chip design, it is indispensable to verify that the power grid
is robust, i.e., the power supply noises are acceptable for all
possible runtime situations.

Nowadays, it is common practice to verify power grids by
simulation. Typically, an equivalent RC/RLC circuit model
of the grid is extracted from the layout, and designers per-
form simulations to evaluate the power supply noises based
on the current waveforms drawn by the circuit. However,
simulation-based verification has the following limitations.
First, it is computationally prohibitive to simulate all pos-
sible current waveforms. In practice, some typical current
waveforms are used for verification. Such current waveforms
are either too pessimistic, or realistic but we are taking
the risk of missing some important corner case. Second,
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simulation-based approaches require detailed circuit imple-
mentation to provide the current waveforms, thus do not
allow power grid verification at an early design stage, when
grid correction can be easily incorporated.

To overcome these limitations, vectorless power grid ver-
ification was proposed in [13], and further studied in many
later works. Instead of enumerating all possible current
waveforms, it evaluates power supply noises based on partial
current specifications defined by current constraints. Grid
verification is often formulated as linear programs of finding
the worst-case power supply noises at each node. The ini-
tial study [13] considered the DC analysis model, and it was
extended to verify RC power grids in [8]. Since solving the
linear programs is very expensive, [3] proposed to generate
a reduced-size linear program for each node by using an ap-
proximate inverse technique; [17] and [19] designed convex
dual algorithms to solve the linear programs efficiently; [1]
utilized the dominance relations among nodal voltage drops
to reduce the number of linear programs to be solved; [12]
and [5] used macromodeling technique to simplify the linear
programs for efficient incremental verification. Besides, [6]
proposed to verify VDD network and ground network to-
gether with additional current conservation constraints in
order to consider the mutual effects in between.

Moreover, vectorless verification of RLC power grids was
proposed in [2]. A fast approach to compute conservative
bounds of power supply noises was proposed in [4], and tran-
sient current constraints were introduced in [20,21] for more
realistic noise predictions. In [7], the authors proposed hier-
archical power constraints to model current excitation, and
the resultant linear programs for vectorless verification can
be solved by a sorting-deletion algorithm efficiently. Model
order reduction was used in subsequent work [16] to further
reduce the cost of formulating the linear programs.

Despite these available approaches, the computation cost
of vectorless verification remains much higher than that of
power grid simulation. Typically, for full-chip power grid
verification, both the number of linear programs to be solved
and the size of each linear program are proportional to the
size of the grid. As a result, the computation cost increases
dramatically when the grid size becomes larger. Macromod-
eling is an effective technique to reduce the computation
cost for verifying large-scale power grids, but building the
macromodels can also be expensive, and relatively small per-
formance gain can be achieved as studied in [5].

In this paper, we consider vectorless verification of RC
power grids following previous studies [3, 17, 19], and pro-
pose to reduce the computation cost by constraint abstrac-
tion. Since a localized region of the power grid can be veri-
fied based on the boundary condition (i.e., the power supply
noises at the neighboring nodes), we propose novel bound-
ary constraints to define a partial specification of bound-
ary condition, and perform full-chip grid verification in a



divide-and-conquer manner to compute conservative bounds
of power supply noises. The boundary constraints provide a
high-level abstraction of the grid environment for the region
of interest, and enables dramatic performance gain by signif-
icantly reducing the computation cost for verification. Ex-
perimental results with both synthetic power grids and IBM
power grid benchmarks show that the proposed approach
achieves up to about 17X speedup over the prior art [19],
and the overestimation of power supply noises is reasonably
small. In particular, a power grid with 562K nodes can be
verified in about 1 hour.

The rest of the paper is organized as follows. The problem
formulation and previous approaches are introduced in Sec-
tion 2. The constraint abstraction approach is proposed in
Section 3. After experimental results are shown in Section 4,
we conclude the paper in Section 5.

2. PRELIMINARIES

2.1 Problem Formulation
Consider vectorless verification of power grids with an RC

model, where each branch of the grid is represented by a
resistor, and each node is connected to ground through a
capacitor. External power supplies are modeled as ideal
voltage sources connected to VDD pads, and some nodes
have current sources (to ground), which represent the cur-
rent drawn by the circuit. Let n be the number of nodes
(except VDD pads) in the grid, v(t) be the n × 1 vector of
time-varying voltage drops at nodes, and i(t) be the n × 1
vector of time-varying current sources connected to the grid
(the elements corresponding to the nodes without current
sources attached are constant 0s). Then the system equa-
tion of the grid can be written as

Gv(t) + Cv̇(t) = i(t), (1)

where G is the n×n conductance matrix, and C is an n×n
diagonal matrix of nodal capacitances.

The aforementioned model represents a VDD network of
the power gird. In fact, for the ground network, similar
model can also be built, and equation (1) still holds if v(t)
is redefined to be the vector of ground bounces. We refer to
voltage drops in the VDD network and ground bounces in
the ground network as voltage noises. Generally, the rela-
tionship between voltage noises v(t) and current excitations
i(t) always satisfies the system equation (1), and voltage
noises can be evaluated if some current specification is avail-
able.

We employ current constraints [13] to capture the feasible
set of current excitations, so that power grid can be ver-
ified without detailed current waveforms, i.e., a vectorless
approach. Specifically, two types of constraints are adopted:
local constraints and global constraints. Local constraints
define an upper bound on each current source,

0 ≤ i(t) ≤ IL, ∀t,

where IL ≥ 0 is an n×1 vector of peak current values. Global
constraints define upper bounds on the sums of groups of
current sources, and model the peak current drawn by circuit
blocks. Let m be the number of global constraints, then
global constraints can be expressed in matrix form as

U i(t) ≤ IG,∀t,

where U is an m × n incidence matrix consisting of 0s and

1s, and IG ≥ 0 is an m× 1 vector.
Vectorless verification can be performed for either DC

analysis model [13] or transient analysis model (with time
step ∆t) [8]. As identified in [19], the following maxVN-LCC
(maximum Voltage Noise under Linear Current Constraints)
problem is the key problem for vectorless verification of RC
power grids.

Problem 1 (maxVN-LCC). Consider an RC power grid
of n nodes with conductance matrix G and capacitance ma-
trix C. Let A = G for DC analysis model or A = G + C

∆t
for transient analysis model with time step ∆t. Given local
and global current constraints with parameters IL, IG, and
U , solve for each node 1 ≤ j ≤ n,

Maximize vj s.t. (2)

Av = i, 0 ≤ i ≤ IL, U i ≤ IG.

Here v and i are the decision variables of voltage noises and
current sources, respectively, and vj is the jth element of v.

As A is known to be an n× n symmetric positive definite
M-matrix, so that A is invertible, A−1 is also symmetric
and satisfies A−1 ≥ 0. Then the optimization problem (2)
can be decomposed into two sub-problems as follows:

I: Compute cj by solving Ax = ej , (3)

II: Maximize vj = cT
j i s.t. (4)

0 ≤ i ≤ IL, U i ≤ IG,

where cj is an n × 1 vector of coefficients, and ej is an
n × 1 vector of 0s except for its jth element being 1. It
is to be noted that cj is the jth column of A−1. The first
sub-problem is equivalent to power grid DC analysis with
current vector ej , and the second sub-problem is a linear
program.

2.2 Previous Approaches
Obviously, a direct and exact approach involves solving

sub-problems (3) and (4) with standard linear system solvers
(or accurate power grid analysis algorithms) and linear pro-
gramming (LP) solvers, respectively. However, such an ap-
proach consumes too much runtime to be practical for large-
scale power grids. In order to expedite full-chip power grid
verification, [3] proposed to compute an approximate cj with
small number of nonzero elements, so that the linear pro-
gram (4) can be much simplified and solved efficiently. Later
works [17, 19] proposed convex dual algorithms to solve the
linear program (4) fast, and utilized a random walk based
preconditioned conjugate gradient (PCG) power grid ana-
lyzer to calculate cj . The dual algorithms achieve significant
speedup over the standard LP solver, and the resultant veri-
fication approach provides better runtime efficiency than [3]
while ensuring better solution accuracy. However, as the
problem sizes of (3) and (4) are proportional to the number
of nodes in the power grid, the computation cost of these
approaches is often too high to enable time-efficient verifica-
tion of large-scale power grids. Hence, it is of great interest
to reduce the computation cost by exploring more efficient
techniques.

3. CONSTRAINT ABSTRACTION

3.1 Methodology



Figure 1: Illustration of conventional approaches
(left) and the proposed constraint abstraction ap-
proach (right) for verifying an internal node inside
a subgrid. The arrows represent the logical relation
between nodes.

Figure 2: A simple partitioned power grid.

Consider a localized region of the power grid, referred to as
a subgrid. For each subgrid, we refer to the nodes inside the
subgrid as internal nodes, the nodes which are outside the
subgrid but connected with some internal nodes as neigh-
boring nodes, and other nodes in the power grid as external
nodes.

As illustrated in Figure 1, conventional approaches verify
an internal node of a subgrid by considering the whole grid
structure, including all neighboring nodes, external nodes,
and the corresponding voltage supplies and current sources
attached. The corresponding problem sizes of (3) and (4)
increase as the size of the power grid increases. In order
to verify the subgrid efficiently, we propose to treat neigh-
boring nodes as uncertain voltage sources (see Figure 1),
which can be modeled by boundary constraints (detailed
in the next subsection) for realistic scenarios. As a result,
the subgrid can be verified based on proper boundary con-
straints, without involving the external grid structure explic-
itly. The resultant problem sizes are roughly equal to the
size of the subgrid, enabling significant reduction in compu-
tation cost. This approach is called constraint abstraction,
since boundary constraints provide a high-level abstraction
of the boundary condition of the subgrid.

3.2 Grid Partitioning & Boundary Constraints
We apply constraint abstraction for full-chip power grid

verification in a divide-and-conquer manner. As illustrated

in Figure 2, the grid is partitioned into several disjoint sub-
grids, which are split by a small set of global nodes (i.e., the
neighboring nodes of subgrids). Such a partition can be ob-
tained by using the power grid partitioning technique pro-
posed in [18]. Typically, a proper partition results in rel-
atively small number of global nodes, and most nodes are
internal nodes of subgrids.

For each subgrid, we use boundary constraints to model
its boundary condition, i.e., the voltage noises at its neigh-
boring global nodes, which are connected with the internal
nodes inside the subgrid. Let m̂ be the number of neighbor-
ing global nodes of a subgrid, and vex be the m̂ × 1 vector
of voltage noises at these nodes. Then the boundary con-
straints are represented as

0 ≤ vex ≤ v`, and
∑

1≤j≤m̂

vex,j ≤ vg, (5)

where vex,j is the jth element of vex, v` is an upper bound
vector on the voltage noises vex, and vg is an upper bound
on the sum of these voltage noises.

In practice, v` can be either the exact worst-case voltage
noises at neighboring global nodes, or some upper bounds,
which are computed by verifying global nodes. vg can be
computed by solving the following linear program.

Maximize
∑

1≤j≤m̂

vex,j s.t. (6)

Av = i, 0 ≤ i ≤ IL, U i ≤ IG.

Similar to solving the sub-problems (3) and (4) to compute
the worst-case voltage noise, we calculate a coefficient vector
to represent the objective function as an affine function of
current sources. This can be achieved by solving a linear
system Ax = eg, where eg is a vector of 0s except that its
elements corresponding to the neighboring global nodes are
set to 1. With such a coefficient vector in hand, the optimal
value of (6) can be obtained by solving a linear program like
(4). Here, the computation cost is equivalent to verifying a
node by solving (3) and (4).

Based on the above discussion, a partitioned power grid
can be verified in the following steps.

1. For each global node, compute its worst-case voltage
noise (or an upper bound of voltage noise).

2. For each subgrid, build boundary constraints, and then
evaluate the worst-case voltage noises at internal nodes
subject to boundary constraints.

In the first step, as there are only relatively small amount
of global nodes, previous methods [3,17,19] can be applied.
The verification of subgrids in the second step is detailed in
the next subsection.

3.3 Verification of Subgrids
As summarized in Problem 1, we need to evaluate the

worst-case voltage noises based on the generalized system
equation Av = i for both DC and transient models. Con-
sider a subgrid with n̂ internal nodes and m̂ neighboring
global nodes. The equation Av = i is reduced to

[Ain Aex]

[
vin

vex

]
= iin, (7)

where Ain is the n̂ × n̂ conductance matrix of the subgrid,
Aex is a non-positive n̂× m̂ matrix representing the conduc-
tance links between internal nodes and neighboring global



nodes, vin and iin are the vectors of voltage noises and cur-
rent sources at internal nodes, respectively.

Since Ain is also a symmetric positive definite M-matrix,
it is invertible, and A−1

in is symmetric and non-negative.
Then equation (7) can be rearranged as

vin = A−1
in iin −A−1

in Aexvex. (8)

Let vin,j be the jth element of vin, cin,j be the jth column of
A−1

in , and cex,j be the transpose of the jth row of −A−1
in Aex.

(Note that both cin,j and cex,j are non-negative, and cT
ex,j =

−cT
in,jAex.) We have

vin,j = cT
in,jiin + cT

ex,jvex, (9)

where the internal current vector iin is defined by local and
global current constraints, and the boundary condition vex

is restricted by boundary constraints.
As a result, the subgrid can be verified by solving the

following linear program for each internal node 1 ≤ j ≤ m̂.

Maximize vin,j = cT
in,jiin + cT

ex,jvex s.t. (10)

0 ≤ iin ≤ ÎL, Û iin ≤ ÎG,

0 ≤ vex ≤ v`,
∑

1≤j≤m̂

vex,j ≤ vg,

where ÎL, ÎG and Û are matrices for local and global current
constraints related to the subgrid. It is to be noted that the
decision variables iin and vex are independent, thus (10) can
be further decomposed into two linear programs and solved
separately.

Maximize cT
in,jiin s.t. 0 ≤ iin ≤ ÎL, Û iin ≤ ÎG, (11)

Maximize cT
ex,jvex s.t. 0 ≤ vex ≤ v`,

∑
1≤j≤m̂

vex,j ≤ vg. (12)

Lemma 1. Let v∗in,j be the exact worst-case voltage noise
at internal node j (i.e., the optimal value of the linear pro-
gram (2)), and v+

in,j be the worst-case voltage noise computed
through constraint abstraction (i.e., the optimal value of the
linear program (10)), then v∗in,j ≤ v+

in,j.

Proof. Let i∗in and v∗
ex be the local current vector in-

side the subgrid and the voltage noises at neighboring global
nodes corresponding to v∗in,j , respectively, so that

v∗in,j = cT
in,ji

∗
in + cT

ex,jv
∗
ex.

Let i+in and v+
ex be the optimal solution of (10), so that

v+
in,j = cT

in,ji
+
in + cT

ex,jv
+
ex.

Clearly, we have cT
in,ji

∗
in ≤ cT

in,ji
+
in, and cT

ex,jv
∗
ex ≤ cT

ex,jv
+
ex.

It follows that v∗in,j ≤ v+
in,j .

This verification approach derives an upper bound of volt-
age noise at each internal node inside the subgrid. The dif-
ference between the computed upper bound v+

in,j and the
exact worst-case voltage noise v∗in,j is called overestimation.
As we will show in the experimental results, the amount of
overestimation is very small, i.e., the computed voltage noise
bound is fairly tight and realistic.

Except for solving (6) to obtain vg, verifying the sub-
grid mainly involves computing A−1

in and −A−1
in Aex, and

solving the linear programs (11) and (12) for each inter-
nal node. By keeping the size of the subgrid within some

bound, the Cholesky decomposition of Ain can be computed,
and then A−1

in can be calculated row by row (or column by
column since A−1

in is symmetric) by solving a linear system
like (3) through forward and back substitutions. As Aex

is a sparse matrix representing the links between internal
nodes and neighboring global nodes, the matrix multipli-
cation −A−1

in Aex can be performed efficiently. In practice,
both A−1

in and −A−1
in Aex are not stored explicitly, their rows

(i.e., cT
in,j and cT

ex,j) are computed, used and discarded at
runtime. The linear program (11) can be solved by stan-
dard LP solvers if the subgrid size is within some reasonable
bound. As the linear program (12) only has one constraint
defining an upper bound of the sum of all variables, it can be
efficiently solved by sorting the coefficients in non-increasing
order, and setting the corresponding variable to be the max-
imum feasible value sequentially.

3.4 Analysis of Computation Cost
In this subsection, we present the computation advantage

of the proposed constraint abstraction approach over a direct
one. Since the computation for −A−1

in Aex and (12) can be
performed fairly efficiently, the major computation cost for
verifying a subgrid is to solve (6), to calculate A−1

in , and to
solve linear program (11) for each internal node. In contrast,
a direct approach computes A−1 (by solving (3)) and solves
linear program (4) for all the nodes.

Suppose the cost of computing the Cholesky decomposi-
tion is f1(N), the cost of one forward and one back substitu-
tion is f2(N), and the cost of solving a linear program (like
(4)) is f3(N), where N is the size of the matrix, and the
number of decision variables in the linear program. Typi-
cally, f3(N)� f1(N)� f2(N).

Consider a direct approach with Cholesky decomposition
for computing A−1. The total computation cost is given by

f1(n) + nf2(n) + nf3(n). (13)

Let n0 be the number of global nodes, nj , 1 ≤ j ≤ k be
the number of internal nodes inside each subgrid, where∑

0≤j≤k nj = n. The cost of verifying global nodes with

the direct approach is f1(n) + n0f2(n) + n0f3(n). For each
subgrid, the cost of solving (6) is f2(n) + f3(n), the cost of
computing A−1

in and solving linear program (11) is f1(nj) +
njf2(nj) + njf3(nj). Hence, the computation cost of the
proposed approach can be approximated as

f1(n) + (n0 + k)f2(n) + (n0 + k)f3(n)

+
∑

1≤j≤k

(
f1(nj) + njf2(nj) + njf3(nj)

)
. (14)

Expressions (13) and (14) provide a rough estimation of
computation costs based on the size of the power grid and
its subgrids. Generally, the time complexity of Cholesky
decomposition is O(N3), the time complexity of forward and
back substitutions is O(N2), and the complexity of linear
programming by standard solvers can be in even higher order
(e.g., O(N4)). In practice, the sparsity of the conductance
matrix A (as well as the constraint matrix U), combined
with efficient reordering, enables actual computation costs
to be less than such theoretical bounds, but the cost of the
direct approach still remains greater than quadratic. Hence,
the computation cost of the proposed approach will be much
smaller than that of the direct approach if the power gird is
partitioned properly.
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Figure 3: Runtime for verifying a synthetic power
grid “pg4000” (90, 643 nodes) with different rough
subgrid sizes (rss).

4. EXPERIMENTS

4.1 Experimental Setup
The proposed constraint abstraction approach has been

implemented in C++. hMETIS [10] is utilized to partition
the power grid into subgrids with relatively small number
of global nodes. We use a user-specified rough subgrid size
called rss to control the size of subgrids, and the number of
subgrids is calculated by round( n

rss
), where n is the number

of nodes (after merging nodes connected by shorts) in the
grid. The DualVN algorithm proposed in [19] is employed to
verify global nodes, and to solve the linear program (6) for
building boundary constraints, where its error tolerance for
solving linear programs is set to be 0.1mV. CHOLMOD [15]
and GotoBLAS2 [9] are employed to solve the involved linear
systems through Cholesky factorization, and MOSEK [14]
is used to solve the linear program (11) for verifying each
subgrid. We choose the simplex method of MOSEK, since
it is slightly faster than the interior point method for our
experiments.

For performance comparison, we implemented the DirectVN
algorithm of [19] by solving linear system (3) and linear pro-
gram (4) with CHOLMOD and MOSEK, respectively. The
DualVN algorithm [19] has also been implemented for verify-
ing the whole power grid, while linear system (3) is solved by
CHOLMOD. Experiments are carried out on a 64-bit Linux
server with 2.67GHz Intel Xeon X5650 processor and 64GB
memory. Although the server has 12 cores, only one core is
used for experiments.

We employ the synthetic power grids used in [19] for per-
formance tests, and also experiment with IBM power grid
benchmarks [11]. As IBM power grids have multiple net-
works, we choose to verify the ground network in our ex-
periments, while their VDD networks can be verified sepa-
rately. Local current constraints are extracted from the grid
description, and global current constraints are generated by
scaling down the total amount of current drawn by groups
of current sources. For each power grid, we specify 4 global
constraints in our tests.

4.2 Exploring Rough Subgrid Size
Since the computation cost of the proposed approach is

highly dependent on the sizes of subgrids as discussed in
Section 3.4, we experiment with different rough subgrid sizes
rss (ranging from 100 to 10K) for performance analysis.
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Figure 4: Solution accuracy of verifying a synthetic
power grid “pg4000” (90, 643 nodes) with different
rough subgrid sizes (rss). Emax/Eavg: the max-
imum/average overestimation of voltage noises in
mV.

Note that the actual sizes of most subgrids would be slightly
smaller than rss, because global nodes do not belong to any
subgrid. The total runtime of the proposed approach can
be roughly divided into three parts: the runtime to parti-
tion the power grid, the runtime to solve global nodes, and
the runtime to verify subgrids. Figure 3 plots these runtime
components for verifying a synthetic power grid with differ-
ent rss. As rss increases, both the number of subgrids and
the number of resultant global nodes decrease, so it takes
less runtime to partition the power grid, and to verify global
nodes. On the contrary, both the subgrid sizes and the total
number of internal nodes increase as rss, thus solving the
subgrids consumes more runtime when rss becomes larger.
Obviously, there is a tradeoff between the computation costs
of global nodes and subgrids. If the runtime for grid par-
titioning is sufficiently small, then the minimum runtime is
achieved at the best tradeoff point, where the runtime of
global nodes and the runtime of subgrids are roughly equal,
e.g., the optimal rss is 1K for the test case shown in Figure 3.

Recall that constraint abstraction results in overestima-
tion of the worst-case voltage noises as stated in Lemma 1.
We also evaluate the effects of different rss on the amount
of overestimation. As shown in Figure 4, both the maxi-
mum and the average overestimation increase when a larger
rss is specified. This phenomenon is due to the fact that the
boundary constraints become less effective when the subgrid
sizes become larger.

To determine a proper rss, both runtime and solution
accuracy need to be considered. Fortunately, the overesti-
mation for most rss settings are sufficiently small, so that
the rss which provides the best runtime efficiency can be
employed for production runs.

4.3 Performance Results
The performance data are presented in Table 1. The run-

time of DirectVN and DualVN are reported under columns
4 and 5 for performance comparison. The golden solution is
produced by DirectVN for analysis of overestimation. Since
DiretVN takes too much runtime to verify large power grids,
the reported data with ≈s are estimations from 1000 ran-
dom nodes. The DualVN algorithm is fairly efficient, and
can solve the largest grid “pg10000” with 562K nodes in 19
hours. The proposed constraint abstraction approach fur-
ther improves the runtime efficiency of vectorless verifica-



Table 1: Performance Results of the Proposed Constraint Abstraction Approach. n: the number of nodes
after merging the nodes connected by shorts; vmax: the maximum voltage noise across the grid in mV; rss:
rough subgrid size; n0: the number of global nodes; Emax/Eavg: the maximum/average overestimation of
voltage noises in mV; the runtime units “s”, “m”, “h” and “d” represent seconds, minutes, hours, and days,
respectively.

Power Grids DirectVN DualVN [19] Constraint Abstraction Speedup Relative to
Name n vmax Runtime Runtime rss n0 Emax Eavg Runtime DirectVN DualVN
pg1000 5875 46.31 2.66 m 15.40 s 200 546 2.32 0.42 6.57 s 24.31 2.35
pg2000 22939 39.91 53.47 m 2.52 m 500 1459 1.51 0.28 33.22 s 96.58 4.55
pg2500 35668 28.80 2.06 h 5.85 m 500 2287 0.94 0.16 1.00 m 123.61 5.85
pg3000 51195 43.63 4.83 h 12.27 m 500 3392 0.81 0.19 1.71 m 168.98 7.16
pg4000 90643 54.38 15.93 h 38.73 m 1000 4270 1.65 0.29 4.16 m 229.72 9.31
pg5000 141283 ≈45.91 ≈2.15 d 1.25 h 1000 6855 ≈1.02 ≈0.44 7.48 m ≈413.33 10.02
pg10000 562363 ≈23.11 ≈44.07 d 18.58 h 2000 19427 ≈1.88 ≈1.44 1.10 h ≈963.08 16.92
ibmpg1 10242 677.67 4.26 m 26.09 s 200 775 6.16 0.37 12.84 s 19.89 2.03
ibmpg2 65228 357.92 3.95 h 16.65 m 500 4513 5.00 0.44 2.45 m 96.90 6.81
ibmpg3 150687 ≈179.91 ≈3.47 d 1.29 h 1000 6853 ≈1.58 ≈0.42 8.93 m ≈559.49 8.70
ibmpg4 478094 ≈3.42 ≈14.12 d 15.37 h 2000 20103 ≈0.19 ≈0.12 1.24 h ≈273.33 12.40
ibmpg5 291382 ≈42.44 ≈19.51 d 6.13 h 1000 13674 ≈0.59 ≈0.12 29.29 m ≈959.33 12.56
ibmpg6 430337 ≈109.96 ≈55.97 d 12.47 h 2000 11975 ≈1.20 ≈0.57 46.27 m ≈1741.73 16.17

tion, achieving up to about 17X speedup over DualVN. As
a result, “pg10000” can be verified in about 1 hour. Gener-
ally, grid partitioning takes a few seconds to a few minutes
depending on the grid size and the number of desired sub-
grids. Most runtime of the proposed approach is spent on
solving global nodes and subgrids. Moreover, for most test
cases, the maximum overestimation is within 3mV, and the
average overestimation is much smaller than 1mV. In addi-
tion, it is worth noting that the proposed approach is more
effective when the grid size becomes larger, making it suit-
able for large-scale power grid verification.

The major merit of constraint abstraction is that it en-
ables significant reduction in computation cost with small
amount of overestimation. In practice, it can be used for
fast estimation of power supply noises across the chip. The
risky regions can be identified in small amount of runtime,
and then more accurate methods can applied if it is neces-
sary.

5. CONCLUSION
In this paper, we presented constraint abstraction for vec-

torless verification of power grids. Boundary constraints are
built to model the boundary condition of subgrids, enabling
efficient verification of power grids in a divide-and-conquer
manner. Experimental results confirmed the efficiency of the
proposed approach, and it may also be extended to transient
verification of RLC power grids.
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