
Exploring Adjacency in Floorplanning

January, 2009

1 / 28

Hai Zhou
Fudan University, China

Northwestern University, USA

Jia Wang
Illinois Institute of Technology

Chicago, Illinois, USA



Outline

Overview of Floorplanning

Constrained Adjacency Graph

Whitespace Reduction

Experiments

Conclusions

2 / 28



Floorplanning

I Determine the locations and shapes of modules
I Various objectives and constraints

I Realize adjacency relations
I Modules communicating with each other should be close to

each other.
I Relevant algorithms are quite complicated.

I Place modules without overlap
I Usually optimize floorplans through simulated annealing (SA)
I Time consuming

3 / 28



Floorplanning

I Determine the locations and shapes of modules
I Various objectives and constraints

I Realize adjacency relations
I Modules communicating with each other should be close to

each other.
I Relevant algorithms are quite complicated.

I Place modules without overlap
I Usually optimize floorplans through simulated annealing (SA)
I Time consuming

3 / 28



Floorplanning

I Determine the locations and shapes of modules
I Various objectives and constraints

I Realize adjacency relations
I Modules communicating with each other should be close to

each other.
I Relevant algorithms are quite complicated.

I Place modules without overlap
I Usually optimize floorplans through simulated annealing (SA)
I Time consuming

3 / 28



Floorplan with Adjacency Graph

[Kozminski et al. 1984], [Bhasker et al. 1988], [Lai et al. 1988]
I Common floorplan flow with adjacency graphs

I Start with structure graph, most likely derived from
interconnects

I Planarize and properly triangulate in order to transform the
graph into an adjacency graph, i.e. one with a rectangular dual

I Construct the rectangular dual, i.e. a floorplan of rooms, each
contains a module

I Not widely used today
I Although complexities of algorithms are usually O(n), practical

implementations are quite complicated (e.g. compared to
sequence-pairs)

I Large whitespace when the shapes of modules are not flexible,
e.g. hard modules

4 / 28



Floorplan with Adjacency Graph

[Kozminski et al. 1984], [Bhasker et al. 1988], [Lai et al. 1988]
I Common floorplan flow with adjacency graphs

I Start with structure graph, most likely derived from
interconnects

I Planarize and properly triangulate in order to transform the
graph into an adjacency graph, i.e. one with a rectangular dual

I Construct the rectangular dual, i.e. a floorplan of rooms, each
contains a module

I Not widely used today
I Although complexities of algorithms are usually O(n), practical

implementations are quite complicated (e.g. compared to
sequence-pairs)

I Large whitespace when the shapes of modules are not flexible,
e.g. hard modules

4 / 28



Floorplan with Adjacent Relations

I Many floorplan approaches capture adjacent relations partially.
I Mosaic floorplans, e.g. CBL [Hong et al. 2000] and TBS

[Young et al. 2003]
I A floorplan of rooms
I Allow T-junction to slide – not all adjacent relations are

captured

I Adjacent Constraint Graph (ACG) [Zhou et al. 2004] Linear
Constraint Graph (LCG) [Wang et al. 2008]

I Capture adjacent relations by removing redundancies in
constraint graphs

I They are still constraint graphs.

5 / 28



Floorplan with Adjacent Relations

I Many floorplan approaches capture adjacent relations partially.
I Mosaic floorplans, e.g. CBL [Hong et al. 2000] and TBS

[Young et al. 2003]
I A floorplan of rooms
I Allow T-junction to slide – not all adjacent relations are

captured

I Adjacent Constraint Graph (ACG) [Zhou et al. 2004] Linear
Constraint Graph (LCG) [Wang et al. 2008]

I Capture adjacent relations by removing redundancies in
constraint graphs

I They are still constraint graphs.

5 / 28



Floorplan with Adjacent Relations

I Many floorplan approaches capture adjacent relations partially.
I Mosaic floorplans, e.g. CBL [Hong et al. 2000] and TBS

[Young et al. 2003]
I A floorplan of rooms
I Allow T-junction to slide – not all adjacent relations are

captured

I Adjacent Constraint Graph (ACG) [Zhou et al. 2004] Linear
Constraint Graph (LCG) [Wang et al. 2008]

I Capture adjacent relations by removing redundancies in
constraint graphs

I They are still constraint graphs.

5 / 28



Our Contribution: Constrained Adjacency Graph (CAG)

I Propose Constrained Adjacency Graph (CAG) to extend
previous adjacency graph approaches by introducing explicit
adjacency constraints

I Derive sufficient and necessary conditions for CAG

I Present a linear complexity algorithm to construct floorplans
from CAG

I Propose to use CAG for general floorplans through packing

I Present an iterative algorithm for CAG to improve general
floorplans in area without changing the adjacency relations
dramatically

6 / 28



Outline

Overview of Floorplanning

Constrained Adjacency Graph

Whitespace Reduction

Experiments

Conclusions

7 / 28



Dissected Floorplan and Adjacency Graph

I Dissected floorplan
I The floorplan area is dissected into rectangular rooms.
I Each room accommodates a module.
I No four rooms share a common point.

I Adjacency graph
I Planar graph. Each face is a triangle.
I No simple definition – algorithmically defined

[Kozminski et al. 1984], [Bhasker et al. 1988]

I One adjacency graph may correspond to multiple dissected
floorplans.

8 / 28



Dissected Floorplan and Adjacency Graph

I Dissected floorplan
I The floorplan area is dissected into rectangular rooms.
I Each room accommodates a module.
I No four rooms share a common point.

I Adjacency graph
I Planar graph. Each face is a triangle.
I No simple definition – algorithmically defined

[Kozminski et al. 1984], [Bhasker et al. 1988]

I One adjacency graph may correspond to multiple dissected
floorplans.

8 / 28



Dissected Floorplan and Adjacency Graph

I Dissected floorplan
I The floorplan area is dissected into rectangular rooms.
I Each room accommodates a module.
I No four rooms share a common point.

I Adjacency graph
I Planar graph. Each face is a triangle.
I No simple definition – algorithmically defined

[Kozminski et al. 1984], [Bhasker et al. 1988]

I One adjacency graph may correspond to multiple dissected
floorplans.

8 / 28



Constrained Adjacency Graph (CAG)

I Constrained Adjacency Graph
I Introduce explicit adjacency constraints to edges

I Directed vertical edge
I Between two rooms sharing horizontal border
I From bottom to top

I Directed horizontal edge
I Between two rooms sharing vertical border
I From left to right

9 / 28



Neighbor Condition for CAG

I vi ’s are the rooms to the top of v .

I vi is the bottom-most left neighbor of vi+1.

I vi+1 is the bottom-most right neighbor of vi .

I Apply to other borders of v .

10 / 28



Corner Condition for CAG

I v ’s bottom-left corner is not on the boundary of the floorplan
iff it has both bottom and left neighbors.

I b: left-most bottom neighbor of v
I t: bottom-most left neighbor of v

I l is the top-most left neighbor of b, or

I b is the right-most bottom neighbor of l .

I Apply to other corners.

11 / 28



Sufficient and Necessary Conditions for CAG

I Necessary conditions for a graph to be a CAG
I Neighbor and Corner conditions must hold for all vertices.
I They are necessary conditions.

I Sufficient condition for a graph to be a CAG
I Neighbor and Corner conditions are sufficient.
I Prove by constructing a dissected floorplan from a graph when

the conditions hold

12 / 28



Construct Dissected Floorplan from CAG

I Compute horizontal and vertical positions for rooms separately
I For example, compute horizontal positions

I Intuition: when deciding the horizontal position for a room,
the horizontal positions of all its left neighbors should be
computed already

I Perform depth-first-search (DFS) on vertical edges, visiting
neighbors from left to right

I Sort the vertices according to their DFS discovery time

13 / 28



Construct Dissected Floorplan from CAG (Cont.)

I Compute horizontal position for each room following the order

I Overall time complexity and space complexity: both O(n)

14 / 28



Outline

Overview of Floorplanning

Constrained Adjacency Graph

Whitespace Reduction

Experiments

Conclusions

15 / 28



Packing of Dissected Floorplans

I Rooms could be much larger than the modules because of the
required adjacencies.

I If two rooms occupy a same horizontal interval, there is a
vertical path in CAG separating them.

I Fix horizontal positions
I Use vertical edges to pack, i.e. as constraint relations
I Adjacent relations are kept.
I Called V-packing, similarly there is H-packing

I CAG are extended to handle general floorplans.

16 / 28



Packed Dissected Floorplan

I The floorplan after V-packing may have large whitespace
along the horizontal direction

I Intuition: a dissected floorplan has small whitespace if
H-packing won’t change it

I Therefore, after V-packing, the floorplan has little whitespace

I H-packed dissected floorplan
I Will not change after H-packing
I Similarly there are V-packed dissected floorplans.
I How to obtain?

17 / 28



Packed Dissected Floorplan

I The floorplan after V-packing may have large whitespace
along the horizontal direction

I Intuition: a dissected floorplan has small whitespace if
H-packing won’t change it

I Therefore, after V-packing, the floorplan has little whitespace

I H-packed dissected floorplan
I Will not change after H-packing
I Similarly there are V-packed dissected floorplans.
I How to obtain?

17 / 28



Packed Dissected Floorplan

I The floorplan after V-packing may have large whitespace
along the horizontal direction

I Intuition: a dissected floorplan has small whitespace if
H-packing won’t change it

I Therefore, after V-packing, the floorplan has little whitespace

I H-packed dissected floorplan
I Will not change after H-packing
I Similarly there are V-packed dissected floorplans.
I How to obtain?

17 / 28



The Tree-Weaving Algorithm

I H-packing will result in a longest path tree that determines
horizontal positions of the modules

I H-Tree-Weaving algorithm
I Given the tree, construct a CAG
I In the corresponding dissected floorplan, rooms have the same

horizontal positions as modules in the H-packing
I Similarly there is the V-Tree-Weaving algorithm.

I Maintain neighbor and corner conditions
I See paper for details

18 / 28



The Tree-Weaving Algorithm

I H-packing will result in a longest path tree that determines
horizontal positions of the modules

I H-Tree-Weaving algorithm
I Given the tree, construct a CAG
I In the corresponding dissected floorplan, rooms have the same

horizontal positions as modules in the H-packing
I Similarly there is the V-Tree-Weaving algorithm.

I Maintain neighbor and corner conditions
I See paper for details

18 / 28



The Tree-Weaving Algorithm

I H-packing will result in a longest path tree that determines
horizontal positions of the modules

I H-Tree-Weaving algorithm
I Given the tree, construct a CAG
I In the corresponding dissected floorplan, rooms have the same

horizontal positions as modules in the H-packing
I Similarly there is the V-Tree-Weaving algorithm.

I Maintain neighbor and corner conditions
I See paper for details

18 / 28



Iterative Packing

I Apply H-Tree-Weaving and V-Tree-Weaving alternatively

I Reduce whitespace without changing adjacent relations
dramatically

19 / 28



Outline

Overview of Floorplanning

Constrained Adjacency Graph

Whitespace Reduction

Experiments

Conclusions

20 / 28



CAG Floorplanning for Interconnects

I Greedy iterative floorplanning
I Initial floorplan

I Order modules horizontally by solving one quadratic
programming problem similar to analytical placement

I Place modules column by column from left to right
I Ignore vertical order

I Each iteration
I Randomly pick up two modules for swapping
I Perform iterative packing
I Accept the swapping if cost function is improved

I Stop after a predefined number of iterations or rejections

21 / 28



Experimental Setup

I GSRC benchmarks: n100, n200, n300
I Compare to Parquet [Adya et al. 2003]

I Sequence-pair based SA floorplan optimization
I Free-outline mode
I Start with a quadratic programming solution
I No module rotations

I Cost function: HPWL+area

22 / 28



Experimental Results

name method area HPWL time(s) #moves
n100 CAG 195.9K/204.5K 302.1K/312.8K 15.30 31.3K

Parquet A 196.8K/206.0K 320.2K/342.9K 14.90 96.5K
Parquet B 195.0K/203.5K 313.6K/338.5K 29.80 175.8K

n200 CAG 197.0K/205.4K 540.9K/553.3K 30.86 26.0K
Parquet A 207.4K/218.2K 613.8K/647.9K 29.40 54.0K
Parquet B 197.4K/202.5K 578.9K/624.5K 149.2 256.6K

n300 CAG 304.4K/315.6K 649.0K/665.8K 61.61 33.8K
Parquet A 335.2K/351.0K 750.6K/800.0K 58.89 62.5K
Parquet B 306.9K/314.6K 709.2K/757.3K 290.6 325.7K

I Minimum/Maximum among 10 runs

I Parquet A: similar running time as CAG

I Parquet B: similar solution quality as recent Parquet results
[Chan et al. 2005]

23 / 28



Floorplan Result for n100

24 / 28



Outline

Overview of Floorplanning

Constrained Adjacency Graph

Whitespace Reduction

Experiments

Conclusions

25 / 28



Conclusions

I Constrained Adjacency Graphs (CAG) are proposed to extend
previous adjacency graph approaches.

I By introducing explicit adjacency constraints
I Sufficient and necessary conditions are derived.
I Linear complexity algorithm to construct floorplans from CAG

is presented

I Handle general floorplans through packing.
I Improve area without changing the adjacency relations

dramatically through iterative packing

I Possible to combine with Linear Constraint Graph [Wang et
al. 2008] to obtain a versatile floorplan representation that
would provide both adjacent and constraint relations.

26 / 28



Q & A

27 / 28



Thank you!

28 / 28


	Overview of Floorplanning
	Constrained Adjacency Graph
	Whitespace Reduction
	Experiments
	Conclusions

