
A Hierarchical Matrix Inversion Algorithm
for Vectorless Power Grid Verification

Xuanxing Xiong and Jia Wang
Electrical and Computer Engineering Department

Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract—Vectorless power grid verification is a powerful
technique to validate the robustness of the on-chip power distri-
bution network for all possible current waveforms. Formulated
and solved as linear programming problems, vectorless power
grid verification demands intensive computational power due to
the large number of nodes in modern power grids. Previous
work showed that the performance bottleneck of this powerful
technique is within the sub-problem of power grid analysis, which
essentially computes the inverse of the sparse but large power
grid matrix. In this paper, we propose a hierarchical matrix
inversion algorithm to compute the rows of the inverse efficiently
by exploiting the structure of the power grid. The proposed
algorithm is integrated with a previous dual algorithm addressing
an orthogonal sub-problem for vectorless power grid verification.
Results show that the proposed hierarchical algorithm accelerates
the matrix inversion significantly, and thus makes the overall
vectorless power grid verification efficient.

I. INTRODUCTION

The increasing complexity of modern integrated circuits
(ICs) has made the power grid verification a challenging task.
A robust power grid is essential to guarantee the correct
functionality at desired performance of the circuit. When
designing ICs, it is indispensable to verify that the power grid
design is “safe”, which means that the power supply noise
at each node is acceptable for all possible runtime situations.
There are mainly two sources of power supply noises: IR
drops and Ldi/dt noise. In modern designs, the increasing
number of transistors and the shrinking interconnect sizes
lead to large IR drops, and the high clock frequency results
in substantial amount of Ldi/dt noise. Moreover, as supply
voltages are lowered to reduce power consumption while
subthreshold voltages are decreased for better performance,
the circuit become more vulnerable to power supply noises
than ever before. Hence, full-chip power grid verification with
high accuracy has become critical.

Today, the power grid is typically verified by simulation.
Using the current waveforms of the circuit blocks attached
to each node, one can simulate the power grid to evaluate
the power supply noises. However, this simulation-based tech-
nique has two major drawbacks. First, it is either intractable
or computationally prohibitive to enumerate all the possible
waveform combinations. Second, one cannot perform power
grid verification until the current waveforms of the circuit
blocks are available, which makes accurate early verification
impossible. Therefore, a verification approach, which is not
dependent on simulation, is highly desirable. To satisfy this
need, vectorless power grid verification under linear current
constraints has been proposed in [1], and studied in [2], [3],
[4]. All possible current waveforms of the circuit blocks are
captured by a group of linear current constraints defining a

feasible excitation set of currents. Then, the worst-case power
supply noise at each node of an RC power grid is evaluated
by solving a linear programming (LP) problem because the
noises, in terms of voltage drops, are affine functions of the
currents. However, due to large number of nodes in modern
power grid, solving these LP problems directly is very time-
consuming.

Recent works [3], [4] have achieved significant speed-ups
by decomposing each LP problem into two steps. In the first
step, the affine function that relates the voltage drop and the
currents is obtained by solving a power grid analysis problem.
In the second step, the maximum voltage drop is computed
by maximizing the affine function subject to the current
constraints, which is also an LP problem but with reduced
number of decision variables and constraints. In [4], after an
efficient dual algorithm was proposed that greatly reduces the
running time for the second step, it was observed that the first
step consumes more than 80% of the total running time for
large power grids, and thus is the performance bottleneck of
the overall approach.

For each node, the power grid analysis in the first step
computes the corresponding row in the inverse of the power
grid matrix. Therefore, for all the nodes, essentially the whole
inverse of the power grid matrix is computed in a row-by-row
manner. In comparison to [4] where the rows are computed
independently by the preconditioned conjugate-gradient (PCG)
method [5], [6], we propose a hierarchical algorithm to speed
up the matrix inversion by exploiting the fact that there are
dependencies among the rows in the inverse of the matrix.

Different from the conventional hierarchical matrix ap-
proaches [7], where the inverse matrix is computed by us-
ing the inversions of sub-matrices, our hierarchical matrix
inversion algorithm partitions the power grid into several
clusters and a set of external neighbor nodes, performs partial
inversions on each cluster directly, computes the rows cor-
responding to these external neighbor nodes with the PCG
method at first, then combines partial inversions and computed
rows to generate the rows corresponding to the nodes within
each cluster. Our algorithm also differs from the hierarchical
power grid analysis [8], which uses macro-modeling to reduce
the problem size for solving a single voltage noise vector
(e.g. a row in the inverse) and does not exploit the row
dependencies. The proposed hierarchical algorithm can be
viewed as a combination of the direct method for solving
linear system, e.g. LU factorization, and the iterative method,
e.g. the PCG method. The advantages of both are seen in our
algorithm – while small clusters are solved efficiently by direct
methods, extremely large power grids that cannot be usually
handled by direct methods and require iterative solvers can be

verified with our algorithm.
We integrate the proposed hierarchical matrix inversion

algorithm with the dual algorithm in [4] to solve the vectorless
power grid verification problem for RC power grids. Exper-
imental results show that our hierarchical matrix inversion
algorithm is more efficient than the approach in [4] that applies
the PCG method to each node independently.

The rest of the paper is organized as follows. The problem
formulation and previous approaches are summarized in Sec-
tion II. The motivation of our algorithm is shown in Section III.
The technical details of the proposed algorithm is presented in
Section IV. After experimental results are shown in Section V,
we conclude the paper in Section VI.

II. PRELIMINARIES

A. Problem Formulation
We follow recent works [3], [4] to formulate the vectorless

RC power grid verification problem. Consider an RC power
grid of VDD pads, non-VDD nodes, and wire branches. Each
branch is represented by a resistor, and each non-VDD node is
connected to ground through a capacitor and a current source.
Let v(t) be the time-varying voltage drops of those non-VDD
nodes, i(t) be the time-varying current sources connected to
them, G be the conductance matrix, and C be the capacitance
matrix. The following system equation must be satisfied,

Gv(t) + Cv̇(t) = i(t). (1)

For n non-VDD nodes in the power grid, both v(t) and i(t)
are n× 1 vectors, G is an n× n symmetric M-matrix, and C
is an n× n diagonal matrix.

Given a current waveform, one can compute the voltage
drops at each node by solving Eq.(1) through transient analy-
sis. However, to validate the robustness of the power grid, such
analysis either assumes peak currents for all current sources,
which is intrinsically pessimistic, or requires to enumerate
all possible current waveforms, which is computationally pro-
hibitive. Current constraints [1] are introduced to address those
issues since then the power grid verification can be performed
on an optimization framework.

There are two kinds of current constraints: local constraints
and global constraints. The local constraints are the upper-
bounds on current sources,

0 ≤ i(t) ≤ IL,∀t,

where IL ≥ 0 is an n × 1 vector. The global constraints are
the upper-bounds for groups of current sources. Assume that
there are m current source groups (usually m � n). The
global constraints are that,

U i(t) ≤ IG,∀t,

where U is an m× n 0/1 matrix that assigns current sources
to groups, and IG ≥ 0 is an m× 1 vector.

Vectorless power grid verification can be performed for
either DC analysis model or transient analysis model (with a
time-step h). The following maxVD-LCC (maximum voltage
drop under linear current constraints) problem is identified in
[4] as the key problem that should be solved for vectorless
power grid verification.

Problem 1 (maxVD-LCC): Consider a power grid of n non-
VDD nodes with a conductance matrix G and capacitance

matrix C. Let A = G for DC analysis model or A = G+ C
h

for transient analysis model with time-step h. Given local and
global current constraints with parameters IL, IG, and U , solve
for every 1 ≤ l ≤ n,

Maximize vl s.t. (2)
Av = i, 0 ≤ i ≤ IL, U i ≤ IG.

Here v and i are the decision variables of voltage drops and
current sources, respectively, and vl is the l’th component of
v.

Note that Eq.(2) is a linear programming (LP) problem,
and the problem size is proportional to the power grid size
n. As n is usually large for practical power grids, solving all
these LP problems directly requires a large amount of runtime
and thus is prohibitively expensive. It is proposed in [3], [4]
that Eq.(2) should be decomposed by taking advantage of the
property of A. As A is an n×n M-matrix and thus invertible,
we have v = A−1i. Let cl be the l’th row of A−1. Then
vl = cli. Therefore, instead of letting an LP solver to handle
the constraints Av = i, one can simplify the LP problem in
Eq.(2) by computing cl first. Let el be the n × 1 vector of
0’s except for its l’th component being 1. Since both A and
A−1 are symmetric, we have cl = A−1el. Therefore, cl can
be computed by solving Ax = el, which can be done by a
power grid analyzer. In summary, Eq.(2) is decomposed into
the following two sub-problems.

I: Compute cl by solving Ax = el, (3)
II: Maximize vl = cli s.t. (4)

0 ≤ i ≤ IL, U i ≤ IG.

B. Previous Approaches

The aforementioned problem decomposition has been ex-
plored in both [3] and [4]. As there are still a substantial num-
ber of decision variables and constraints in Eq.(4), these two
works take different approaches to solve both sub-problems
efficiently. In [3], it is proposed to compute an approximated cl
with a small number of non-zero components in the first sub-
problem, so that most decision variables and constraints can
be dropped from Eq.(4), which can then be solved efficiently
by any LP solver. However, as the number of non-zero
components depends on the accuracy of the approximation,
when a higher level of accuracy is desired, the reduction
of the decision variables and constraints diminishes and so
does the efficiency to solve Eq.(4). Moreover, to generate the
approximated cl introduces significant running time overhead
in comparison to efficient power grid analysis techniques as
demonstrated by [4].

Different from [3], [4] adopts an approach whose running
time is not strongly dependent on the accuracy of the solution.
The accuracy of the overall solution is established from those
of the two sub-problems. Let δinv and δlp be two user-specified
error-tolerances for the two sub-problems respectively. For the
first sub-problem, let the residual vector r ∆

= el−Acl. Let rj be
the j’th component of r and ∆ be the maximum component of
the solutions of the linear equations Ax = IL. The computed

cl should satisfy that,

||r||1
∆
=

n∑
j=1

|rj | ≤
δinv

∆
. (5)

For the second sub-problem, let v̂l be the optimal value of
Eq.(4) with the computed cl, any algorithm that solves Eq.(4)
can be terminated with a solution v+l when

v+l − δlp ≤ v̂l ≤ v+l . (6)

Let v∗l be the optimal value of Eq.(4) for the exact cl. It is
stated in [4] that,

Lemma 1: Suppose both Eq.(5) and (6) hold. Let vl
∆
= v+l +

∆
∑n

j=1 max(rj , 0) be the conservative bound of the worst-
case voltage drop. Then,

vl − δinv − δlp ≤ v∗l ≤ vl.

A dual approach is proposed in [4], to solve Eq.(4) effi-
ciently. It is shown that Eq.(4) is equivalent to the following
simplified dual problem,

Minimize D(γ) s.t. γ ≥ 0, (7)

where D(γ)
∆
= ITGγ +

∑n
j=1 IL,j max(0, cl,j − uT

j γ).

Here γ are the m decision variables corresponding to the
Lagrangian multipliers of the global constraints, IL,j is the j’th
component of IL, cl,j is the j’th component of cl, and uj is
the j’th column of U . It is further shown that D(γ) is a convex
function of γ and thus Eq.(7) is a convex programming prob-
lem that is then solved by Kelley’s cutting-plane method [9].
Since Eq.(7) only has m decision variables and the constraints
are extremely simple, solving Eq.(7) is much more efficient
than solving Eq.(4) directly. In addition, it is proposed in [4]
that the preconditioned conjugate gradient (PCG) method [5],
[6] can be employed to compute cl with a proper choice
of preconditioner. The stochastic preconditioning technique
proposed in [10] is applied in [4] to generate the preconditioner
using random walks [11].

The PCG method, combined with the dual approach to
solve Eq.(4), allows [4] to achieve significant speed-ups over
previous works including [3] without sacrificing the solution
accuracy. As observed in [4], the PCG method consumes more
than 80% of the total running time for all large power grids.
Therefore, any further reduction in running time must address
the problem of computing cl’s more efficiently than the PCG
method, which is clearly non-trivial given the large number of
nodes in power grids.

III. MOTIVATION

As solving cl is now the performance bottleneck of power
grid verification when the dual approach is applied, it is of
great interest to speed up computing cl, so that large power
girds can be verified in a timely manner. Clearly, to achieve
such a goal, one must be able to explore the structure of the
power grid, as the voltage drops of a node and its neighboring
nodes are closely related.

Let’s fist look at a single node l in the power grid for DC
analysis model, as illustrated in Fig. 1. Applying Kirchhoff’s

Fig. 1. A representative node l in the power grid.

Current Law (KCL), we have∑
∀k∈N (l)

gl,k(vl − vk) = il, (8)

where N (l) is the set of node l’s neighboring nodes, gl,k is the
conductance between node l and k, vl and vk are the voltage
drop at node l and k respectively, and il is the current source
attached to node l. Define gl

∆
=
∑
∀k∈N (l) gl,k, then Eq.(8)

can be rearranged into

vl =
1

gl

(
il +

∑
∀k∈N (l)

gl,kvk
)
. (9)

Recall that vl = cTl i, vk = cTk i and il = eTl i. Eq.(9) is
equivalent to

cTl i =
1

gl

(
eTl i +

∑
∀k∈N (l)

gl,kc
T
k i
)

=
(1

gl

(
el +

∑
∀k∈N (l)

gl,kck
))T

i. (10)

Eq.(10) holds for any current vector i, therefore,

cl =
1

gl

(
el +

∑
∀k∈N (l)

gl,kck
)
. (11)

According to Eq.(11), one can directly compute the cl of
a node by using the cl of its neighboring nodes. Due to the
structure of the power grid, a node only has a few number of
neighboring nodes, so computing cl using Eq.(11) consumes
much less runtime than solving cl with the PCG method. In
order to apply Eq.(11) to speed up computing cl, one shall first
use the PCG method to solve the cl of the nodes, which can
cover all the edges in the power grid, then employ Eq.(11) to
compute the cl of the other nodes. Note that finding the nodes
that need to be solved by the PCG method is a vertex cover
problem. Our preliminary experimental results show that only
about 35%-38% of the nodes’ cl can be computed by using
Eq.(11). Intuitively, replacing node l by a subset of nodes in
Fig. 1, if one can formulate the cl of these nodes similarly, then
the cl of more nodes can be computed using this approach.
Motivated by the desire to speed up computing cl to the most
limit, we explore this method to compute the cl of a subset
of nodes.

Our major contribution in this paper is an efficient hierarchi-

Fig. 2. A subset of nodes in the power grid.

cal approach to compute all the cl. We exploit the structure of
the power grid to formulate the cl of a subset of nodes in terms
of their external neighbor nodes. We propose to partition the
power grid into a set of external neighbor nodes and a number
of partitions using the hypergraph partitioning technique, and
compute the cl of the nodes within each partition using the
cl of these external neighbor nodes computed by the PCG
method [4]. We design the HierarchicalVD algorithm to solve
the maxVD-LCC problem efficiently using our hierarchical
approach to compute cl, and the dual approach of [4] to solve
Eq.(4). The details are presented in the next section.

IV. HIERARCHICAL POWER GRID VERIFICATION

A. Computing cl for a Subset of Nodes

Consider a subset of nodes in the power grid as illustrated
in Fig. 2, let’s call the nodes within this subset internal nodes,
and these internal nodes’ neighbors which are not included in
this subset external neighbors. In other words, for any internal
node of a subset, any of its neighbors is either an internal node
or an external neighbor of this subset.

Let’s first consider the DC analysis model, where A = G
is the conductance matrix. Let n′ and m′ be the number of
internal nodes and external neighbors of a subset respectively.
Applying KCL for all the internal nodes of the subset, we have

[Gin Gex]

[
vin

vex

]
= iin, (12)

where Gin ∈ Rn′×n′
is the conductance matrix of the

internal nodes, Gex ∈ Rn′×m′
is the conductance links

between internal nodes and external neighbors, vin and vex

are the voltage drop vector of the internal nodes and external
neighbors respectively, and iin is the current source vector of
the internal nodes. Rearrange Eq.(12), we get

vin = G−1in (iin −Gexvex). (13)

Introduce Cin ∈ Rn′×n, Cex ∈ Rm′×n and Ein ∈ Rn′×n.
Let each row of Cin be the corresponding row of each internal
node in A−1, each row of Cex be the corresponding row of
each external neighbor node in A−1, and each row of Ein be

the transposed el of the corresponding internal node. We have
vin = Cini,vex = Cexi, and iin = Eini, then Eq.(13) can
be rewritten as

Cini = G−1in (Eini−GexCexi)

=
(
G−1in (Ein −GexCex)

)
i. (14)

Eq.(14) holds for any current vector i, so

Cin = G−1in (Ein −GexCex). (15)

For the transient analysis model, A = G + C
h . One can

create an adjusted power grid by attaching a VDD pad to
each non-VDD node and setting the conductances of these
newly added edges according to the diagonal components of
C
h . Then A is exactly the conductance matrix of the adjusted
power grid. If one constructs Gin and Gex for this adjusted
power grid, then Eq.(15) still holds. In summary, for either DC
or transient analysis, one can always treat A as a conductance
matrix, create the corresponding Gin and Gex according to A,
and derive Eq.(15). Let Ain and Aex denote the Gin and Gex

constructed according to the power grid conductance matrix
A, then we have the following lemma.

Lemma 2: Cin = A−1in (Ein −AexCex).
Obviously, the cl of a subset of nodes (Cin) can be

computed by using the cl of their external neighbors (Cex).
Consider the nodes within a sub-block of the power grid as
such a subset. If all the cl of its external neighbors have been
solved, one can directly compute the cl of its internal nodes.
As we will show in the next subsection, the power grid can
be divided into a set of external neighbors and a number of
partitions. Each partition is a subset of nodes, and it is almost
always a sub-block of the power grid. Using such a power
grid partitioning technique, only a small amount of nodes are
external neighbors, and most of the nodes are internal nodes
of partitions. Then, one only need to compute a small amount
of cl’s corresponding to the external neighbors independently
with the PCG method, and compute most cl’s corresponding
to the internal nodes using Lemma 2.

The computation in Lemma 2 can be made more efficient by
exploiting the properties of these matrices. Let’s first consider
their density, A−1in ∈ Rn′×n′

and Cex ∈ Rm′×n are dense,
Ein ∈ Rn′×n is a sparse 0/1 matrix with only n′ 1s, and
Aex ∈ Rn′×m′

is also sparse since only a few internal nodes
are connected with external neighbors. Because of the special
characteristic of Ein, the computation associated with Ein is
negligible. Most time complexity is attributable to computing
A−1in AexCex. Recall that the power grid is partitioned into a
number of partitions. We observe that the number of internal
nodes in a partition is usually larger than the number of its
external neighbors in our preliminary experiments. In other
words, we usually have n � n′ > m′. Hence, comput-
ing A−1in Aex first consumes less runtime and memory than
computing AexCex first in order to solve A−1in AexCex, then
Lemma 2 can be rearranged into

Cin =
(
A−1in (−Aex)

)
Cex +A−1in Ein. (16)

By keeping the number of internal nodes in the subset within
some bound, A−1in can be solved by LU factorization together
with a forward solve and a backward solve.

The time complexity of the PCG method to compute a single

Fig. 3. Part of a partitioned power grid.

cl is O(KM) where K is the number of iterations toward
convergence and M is the number of non-zero elements in
the preconditioner. To apply Eq.(16) to a single partition, if n′
is reasonably small, the most time-consuming computation is
the dense matrix-matrix multiplication of A−1in Aex and Cex,
which takes O(m′n′n) time. Let ρ ∈ [0, 1] be the ratio of
internal nodes to n. Assume that each partition has roughly
the same size, the overall time complexity will be,

O(m′n′n)× ρn

n′
+O(KM)(1− ρ)n

= ρO(m′n2) + (1− ρ)O(KMn).

In other words, for each internal node, we replace the PCG
solution that takes O(KM) time by a vector-matrix mul-
tiplication that takes O(m′n) time, which will result in a
significant reduction of running time if the parameters are
chosen properly. Clearly, if n′ is too small, then ρ is small. In
Section III, we show when n′ = 1, ρ ≈ 0.35 to 0.38. As n′
increases, ρ increases and the overall complexity may decrease
depending on the changes in m′. In addition, n′ should be
kept small enough such that the computation of A−1in will
not dominate that of Eq.(16). Basically, there is a trade-off
between the increasing partition size and the increasing time
complexity for each internal node, and we will demonstrate it
in Section V.

B. Power Grid Partitioning

In order to apply Lemma 2 to compute cl, one has to find
a subset of nodes as external neighbors, which split the power
grid into a number of non-connected partitions. Moreover,
it is also desired that the size of each partition is in some
user-controllable bound, so that the cl of the nodes in these
partitions can be computed efficiently according to Eq.(16).
Fig. 3 shows an example of such a desired partitioned power
grid. For simplicity, there are only a total of 36 external
neighbors and four partitions, each of which has 9 or 10
internal nodes. Note that the desired partitioning is different
from the partitioning in hierarchical power grid analysis [8],
where all the nodes are included in partitions. Our power
grid partitioning problem can be formulated mathematically

as follows.

Problem 2 (PG-Partition): Let V be the set of all the non-
VDD nodes in the power grid, E be the set of all the edges
connecting these nodes, rps be a user-specified rough partition
size, npart (npart� 1) be the desired number of partitions
corresponding to rps. Let Pk and N (Pk) be the set of internal
nodes and external neighbors of the k’th partition respectively,
ε be a user-specified imbalance bound of the partition sizes.
Find a minimum set S of external neighbor nodes, which
partition the power grid (V, E) into npart mutually disjoint
partitions Pk (1 ≤ k ≤ npart), such that

V = S
⋃(npart⋃

k=1

Pk

)
,S =

npart⋃
k=1

N (Pk),

S
⋂
Pk = ∅,∀1 ≤ k ≤ npart,

Pj

⋂
Pk = ∅,∀1 ≤ j 6= k ≤ npart,

|Pk| ≤ P ,∀1 ≤ k ≤ npart,

where P is a partition size upper bound determined by rps
and ε.

We propose to solve this problem by introducing a hyper-
graph model of the power grid, and performing hypergraph
partitioning on it. Let Vh and Eh be the set of vertices and
hyperedges in the hypergraph model respectively. Define

Vh
∆
= E , Eh

∆
= V. (17)

Then (Vh, Eh) is the hypergraph model. The vertices in Vh
represent the edges in the power gird, and the hyperedges
in Eh represent the nodes. In conventional hypergraphs, each
vertex has a specific area, and each hyperedge has a specific
weight. Hypergraph partitioning algorithms typically partition
the hypergraph by removing some hyperedges (also called
hyperedge-cuts) to get isolated partitions of the hypergraph.
The objective is to minimize the total weight of hyperedge-cuts
while keeping the area of different partitions being balanced.
For this hypergraph model, the hyperedge-cuts represent the
external neighbors of the power grid, the hyperedges in each
partition represent the internal nodes, and the hyperedge-cuts
associated with each partition represent the external neighbors
of that partition.

In order to apply the hypergraph partitioning algorithms to
solve Problem 2, we define the area of each vertex and the
weight of each hyperedge in the hypergraph model as follows.
Let a(j) be the area of the j’th vertex in Vh, Hj,1 and Hj,2

be the two hyperedges that include vertex j, w(k) be weight
of the k’th hyperedge in Eh. Define

a(j)
∆
=

1

|Hj,1|
+

1

|Hj,2|
,∀1 ≤ j ≤ |Vh|, (18)

w(k)
∆
= 1,∀1 ≤ k ≤ |Eh|. (19)

Then it can be proved that there exists some partition size
upper bound P , which is determined by rps and ε.

Let Ph
k (1 ≤ k ≤ npart) be the set of vertices in the k’th

partition of the hypergraph model, a(Ph
k) be the total area of

the k’th partition. Define

a(Ph
k)

∆
=

∑
∀ vertex j∈Ph

k

a(j).

With this kind of area definition, the area of each partition is
larger than the number of hyperedges within it, because the
associated hyperedge-cuts of a partition also contribute to its
area. For example, let’s look at any partition with 9 internal
nodes as shown in Fig. 3. It has 24 edges, 9 nodes, and 12
external neighbors. In its corresponding hypergraph model, it
has 24 vertices, 9 hyperedges and 12 associated hyperedge-
cuts. The area of each vertex in this partition is 1

4 + 1
4 = 1

2 .
Then the total area of this partition is 24 × 1

2 = 12 > 9.
As each hyperedge in a partition represents an internal node
within that partition, the number of hyperedges in the k’th
partition is equal to |Pk|, so we have the following lemma.

Lemma 3: For every 1 ≤ k ≤ npart, |Pk| < a(Ph
k).

Define the average area of all the partitions

aP
∆
=

∑npart
k=1 a(Ph

k)

npart
=

∑
∀ vertex j∈Vh a(j)

npart

=
|Eh|
npart

=
|V|
npart

=
n

npart
.

In order to balance the area of different partitions, hypergraph
partitioning algorithms typically keep the imbalance of a(Ph

k)
among all partitions within the user-specified imbalance bound
ε. We have

|a(Ph
k)− aP |
aP

≤ ε, ∀1 ≤ k ≤ npart.

Therefore,

a(Ph
k) ≤ (1 + ε) · aP = (1 + ε) · n

npart
. (20)

Combine Lemma 3 with Eq.(20), we get

|Pk| < (1 + ε) · n

npart
.

Define
npart

∆
= d n

rps
e, (21)

then
|Pk| < (1 + ε) · n

npart
≤ (1 + ε) · rps,

and we have the following lemma.
Lemma 4: Define P ∆

= (1+ε) ·rps, then for every 1 ≤ k ≤
npart, |Pk| < P .

Clearly, the vertex area definition guarantees that the num-
ber of internal nodes in each partition (|Pk|) is bounded by P .
One can adjust the size of partitions by using different rps.
As the weight of each hyperedge in the hypergraph model is
set to 1, the hypergraph partitioning algorithms will minimize
the number of hyperedge-cuts, thus deriving a minimum set of
external neighbors. After the hypergraph model is partitioned,
the partitioning result can be mapped back to the original
power grid to derive S,Pk, and N (Pk), since S is the set
of nodes corresponding to the hyperedge-cuts, Pk is the set
of nodes corresponding to the hyperedges with in the k’th
partition, and N (Pk) is the set of nodes corresponding to the

associated hyperedge-cuts of the k’th partition.

C. The HierarchicalVD Algorithm

Algorithm HierarchicalVD
Inputs
A, IL, IG, U : as specified in Problem 1.
rps, ε: as specified in Problem 2.
δinv, δlp: user-specified error-tolerances.

Outputs
Maximum voltage drops at each node.
1 Create the hypergraph model according to Eq.(17),

(18) and (19)
2 Compute npart according to Eq.(21)
3 Partition the hypergraph model into npart partitions

to derive S,Pk,N (Pk) (1 ≤ k ≤ npart) as defined
in Problem 2

4 For k = 1 to npart
5 For all un-solved external neighbors in N (Pk)
6 Apply the PCG method in [4] to compute cl
7 Apply the dual approach in [4] to solve Eq.(4)
8 Report the maximum voltage drop vl
9 For all internal nodes in Pk

10 Apply Eq.(16) to compute an approximated cl
11 Check whether the approximated cl satisfies

Eq.(5), if not, use the PCG Method to refine
the approximated cl until it satisfies Eq.(5)

12 Apply the dual approach in [4] to solve Eq.(4)
13 Report the maximum voltage drop vl

Fig. 4. The HierarchicalVD Algorithm.

Combining our hierarchical approach to compute cl, the
PCG method and the dual approach in [4], we design the
HierarchicalVD algorithm to solve the maxVD-LCC problem
as illustrated in Fig. 4. Two user-specified error-tolerances δinv
and δlp are employed to control the accuracy of the solution of
Eq.(3) and (4) respectively. In this algorithm, the power grid is
partitioned at first, then the partitions are verified sequentially.
The verification of a partition has two steps. First, verify its un-
solved external neighbors and store the computed cl of these
external neighbors in memory. Second, solve its internal nodes,
where the cl of these internal nodes are computed by Eq.(16).
As all the cl of external neighbors are computed by the PCG
method with error-tolerance δinv, thus not being exact, one
can only get an approximated cl of each internal node using
Eq.(16). In order to guarantee the accuracy of the solution,
we check whether the computed cl is acceptable, and use the
PCG method to refine it if necessary.

D. Practical Memory Management
In order to apply the HierarchicalVD algorithm, there must

be at least enough memory to store the external neighbors’
rows Cex and the partial inversion A−1in of any partition. With
limited amount of memory available in the computer, one must
keep the number of external neighbors and internal nodes for
any partition within some bound, so that Cex and A−1in can be
stored. Recall that n′ and m′ denote the number of internal
nodes and the number of external neighbors for a partition
respectively. In our experiments, we observe that rps ≥ n′ >
m′ almost always. Hence, we adopt rough partition size rps

from a few dozens to one thousand, such that Cex and A−1in
can easily be buffered. Since we verify the internal nodes one
by one, there is no need to store the internal nodes’ rows Cin.

As illustrated in Fig. 3, a node can be the external neighbor
of two or more partitions, then all these associated partitions
will use its cl to compute the approximate cl of internal nodes.
For such an external neighbor node, once the cl is computed,
one need to keep it in memory until all of its associated
partitions have been verified. However, this approach can
be problematic. Consider the worst-case scenario, if the first
partition and the last partition share a lot of external neighbors,
then the cl of their common external neighbors need to be
stored in memory for the whole duration of the power grid
verification. Although such scenario seldom happens, one
usually need to keep a number of useful cl for the un-verified
partitions, but the available memory in the computer may not
be sufficient to store all of the useful cl. Thus it is desired that
the partitions of the power grid have good locality, such that
the neighboring partitions, which often share some external
neighbors, can be verified by the HierarchicalVD algorithm in
a small time frame, thus minimizing the number of useful cl
that one need to buffer at runtime.

In our implementation, we use a fixed-size buffer to store
the computed cl of external neighbors, and assign a weight for
each buffered cl to be the number of un-verified partitions that
will use it for computation. If we have to store a new cl when
the buffer is full, then the cl with the minimum weight is freed.
After finishing the verification of a partition, we decrease the
weight of the buffered cl for its external neighbors by 1. A zero
weight cl implies that no partition will use it for computation,
so any buffered cl is freed as soon as its weight is decreased
to 0. Using this scheme, if any useful cl is freed when the
buffer is full, we need to re-compute it when we need it for
computation.

In our experiments, we set the buffer size to be 1000 cl,
and employ the hypergraph partitioning tool hMETIS [12] to
partition the hypergraph model. Results with a rough partition
size rps = 100 for different power grids show that the
maximum number of buffered useful cl is usually less than
800, and no cl is re-computed, except for the largest power
grid of 562K non-VDD nodes. When verifying the largest grid,
although the buffer is fully utilized, only about 5% of the
external neighbors’ cl are re-computed. Therefore, it is shown
that the power grid partitions generated by hMETIS have the
desired locality, and there is no need to find a order to verify
these partitions with small memory requirement.

V. EXPERIMENTAL RESULTS

We implement our HierarchicalVD algorithm and the Du-
alVD algorithm [4] for comparison in C++. Both algorithms
share the same routine to compute the stochastic precondi-
tioner, to perform PCG iterations to compute cl when neces-
sary, and to solve Eq.(4) (using MOSEK [13] as the LP solver
for the cutting-plane method). In addition, our HierarchicalVD
algorithm employs the proposed hierarchical matrix inversion
algorithm to compute cl. The hypergraph model of the power
grid is partitioned by hMETIS [12], a hypergraph partitioning
tool. The LU factorization tool SuperLU [14] is used to
compute A−1in in Eq.(16). Both algorithms are compiled with
the same GCC compiler and executed on one core of the same

64-bit Linux workstation with 2.4GHz Intel Q6600 processor
and 8GB memory.

We adopt the 7 power grids used in [4] and follow [4] to
generate 4 global constraints and to set both error tolerances
δinv and δlp to 0.1mV. Additional settings of global constraints
are not experimented since they introduce marginal running
time overhead as shown in [4] for the second sub-problem
and do not affect the computation of cl.

Since hMETIS allows to choose between the recursive
bisection partitioning and the k-way partitioning, we exper-
iment with both options. The “unbalance factor” for these two
options are set to 2 and 10 respectively. We observe that the
k-way partitioning consumes much more memory than the
recursive bisection partitioning, and it fails to partition the
largest power grid of 562K non-VDD nodes into more than
1000 partitions due to lack of enough memory. For all the test
cases that we have evaluated, recursive bisection partitioning
consumes less runtime and generates slightly smaller number
of hyperedge-cuts. Therefore, we only report the results using
recursive bisection partitioning. For both of these two options,
the runtime spent on partitioning the hypergraph model of the
power grid ranges from a few seconds to about 10 minutes,
and it is negligible in comparison with the overall runtime of
the power grid verification.

The performance of the proposed hierarchical matrix inver-
sion algorithm depends on the choice of the rough partition
size rps. For all rps settings from a few dozens to one thou-
sand, A−1in is computed by SuperLU which usually consumes
less than 1 seconds and thus is negligible. On the other hand,
as we increase rps, the number of partitions decreases and
the number of internal nodes increases. Therefore, more cl’s
can be obtained using Eq.(16) instead of the PCG method.
However, because the number of external neighbors for a
single partition also increases as rps increases, it takes more
runtime to compute the cl of each internal node. So, there is
a trade-off between the increasing number of internal nodes
and the increasing time required to compute the cl’s for them.
To evaluate this trade-off, we perform a set of experiments
using the largest power grid of 562K non-VDD nodes. We
verify about 10K nodes of this power grid with rough partition
size rps ∈ {20, 40, 60, 100, 250, 500, 750, 1000}, and estimate
the average runtime per internal node and the overall average
runtime per node. The results are illustrated in Fig. 5 where
the x-axis is the percentage of the internal nodes. When rps
increases from 20 to 1000, the percentage of the internal nodes
increases from 72% to 95%, and it takes more runtime to
verify an internal node. The overall average first decreases as
the number of internal nodes increases but then increases as it
takes more runtime to compute cl. We observe the minimum
is reached at rps = 100 while the other choices would result
in a maximum performance degradation close to 30%. We
perform additional experiments with the aforementioned rps
setting for the other power grids, and notice that the minimum
runtime per node is achieved at different rps for different
power grids, but in general a non-optimal but reasonable
choice of rps would not result in significant performance
degradations. Therefore, we always choose rps = 100 for the
HierarchicalVD algorithm hereafter.

The runtime comparison of the HierarchicalVD and Du-
alVD is presented in Table V. The runtime can be decomposed

TABLE I
RUNTIME COMPARISON OF HIERARCHICALVD AND DUALVD

Benchmarks DualVD [4] HierarchicalVD Speedup
Nodes Inverse Total Partitions External Neighbors Inverse Total Inverse Total
5875 28.40 s 38.45 s 59 766 10.31 s 20.22 s 2.75 1.90

22939 8.11 m 9.95 m 230 3227 2.06 m 3.83 m 3.93 2.60
35668 21.83 m 25.91 m 357 5052 5.07 m 8.96 m 4.31 2.90
51195 45.95 m 54.55 m 512 7440 10.61 m 18.86 m 4.33 2.89
90643 2.57 h 3.01 h 907 13036 34.38 m 1.01 h 4.48 2.99

141283 6.37 h 7.47 h 1413 20455 1.44 h 2.50 h 4.43 2.99
562363 4.58 d 5.37 d 5624 82535 1.20 d 2.00 d 3.83 2.69

Fig. 5. Average Runtime v.s. Percentage of Internal Nodes for the Largest
Power Grid.

into two parts: the runtime to compute cl and the runtime to
solve the LP problem Eq.(4). For the HierarchicalVD algo-
rithm, the former consists of power grid partitioning runtime,
PCG runtime, and the runtime to compute the cl of the internal
nodes using Eq.(16). For the DualVD algorithm, the runtime
to compute cl is just the PCG runtime. Both algorithms have
approximately the same runtime for solving LP problems as
they share the same code.

Since we focus on the efficiency of the hierarchical matrix
inversion algorithm, we report the runtime for computing
cl under columns “Inverse”. Moreover, we also report the
total runtime under the columns “Total”. The time units are
abbreviated such that “s”, “m”, “h” and “d” denote “seconds”,
“minutes”,“hours”, and “days” respectively. As the DualVD
algorithm takes too much time to verify the power grid of
562K non-VDD nodes, the reported runtime of the DualVD
algorithm for that power grid is an estimation from the runtime
of 1000 nodes chosen randomly. It can be seen that the
HierarchicalVD algorithm achieves close to 3× speed-ups for
all large power grids in comparison to the DualVD algorithm,
which is highly non-trivial since DualVD is already very
efficient.

Moreover, for the HierarchicalVD algorithm, we report the
number of partitions under the column “Partitions” and the
number of external neighbor nodes under the column “External
Neighbors”. It confirms the effectiveness of the proposed
power grid partitioning approach since only about 15% of all
the nodes are identified as external neighbors with a small rps
setting of 100.

VI. CONCLUSION

In this paper, we proposed a hierarchical matrix inversion
algorithm for vectorless power grid verification under linear
current constraints. This hierarchical approach partitioned the
nodes in the power grid into a set of external neighbors and
a number of partitions. For each partition, the rows in the
inverse of the power grid matrix corresponding to its external
neighbors were solved by the PCG method at first. Then the
rows corresponding to its internal nodes were computed di-
rectly using the solved rows. Our overall vectorless power grid
verification algorithm HierarchicalVD combined the proposed
hierarchical matrix inversion algorithm and the dual approach
in [4]. It was shown that the proposed hierarchical matrix
inversion algorithm achieved substantial speed-ups to compute
the inverse of the power grid matrix, and our HierarchicalVD
algorithm was highly efficient in comparison to the previous
DualVD algorithm [4]. Essentially, our hierarchical algorithm
can be applied to compute the inverse of general symmetric
M-matrix, and we also expect to achieve further speed-ups by
extending our algorithm to multi-level hierarchies.

REFERENCES
[1] D. Kouroussis and F. N. Najm, “A static pattern-independent technique

for power grid voltage integrity verification,” in Proc. Design Automation
Conf. (DAC), 2003, pp. 99–104.

[2] I. A. Ferzli, F. N. Najm, and L. Kruse, “A geometric approach for early
power grid verification using current constraints,” in Proc. Int. Conf.
Computer-Aided Design (ICCAD), 2007, pp. 40–47.

[3] N. H. Abdul Ghani and F. N. Najm, “Fast vectorless power grid
verification using an approximate inverse technique,” in Proc. Design
Automation Conf. (DAC), 2009, pp. 184–189.

[4] X. Xiong and J. Wang, “An efficient dual algorithm for vectorless
power grid verification under linear current constraints,” in Proc. Design
Automation Conf. (DAC), 2010, pp. 837–842.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The
Johns Hopkins University Press, 1996.

[6] T.-H. Chen and C. C.-P. Chen, “Efficient large-scale power grid analysis
based on preconditioned Krylov-subspace iterative methods,” in Proc.
Design Automation Conf. (DAC), 2001, pp. 559–562.

[7] L. Grasedyck and W. Hackbusch, “Construction and arithmetics of H-
matrices,” Computing, vol. 70, no. 4, pp. 295–334, Aug. 2003.

[8] M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw, “Hierarchical
analysis of power distribution networks,” IEEE Trans. Computer-Aided
Design, vol. 21, no. 2, pp. 159–168, Feb. 2002.

[9] J. E. Kelley, “The cutting-plane method for solving convex programs,”
J. Soc. Indust. and Appl. Math., vol. 8, no. 4, pp. 703–712, Dec. 1960.

[10] H. Qian and S. S. Sapatnekar, “Stochastic preconditioning for diagonally
dominant matrices,” SIAM Journal on Scientific Computing, vol. 30,
no. 3, pp. 1178–1204, Mar. 2008.

[11] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Power grid analysis using
random walks,” IEEE Trans. Computer-Aided Design, vol. 24, no. 8,
pp. 1204–1224, Aug. 2005.

[12] The hMETIS Tool, http://glaros.dtc.umn.edu/gkhome/metis/hmetis/
overview.

[13] The MOSEK Optimization Software, http://www.mosek.com.
[14] The SuperLU Tool, http://crd.lbl.gov/∼xiaoye/SuperLU.

