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Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]
» Powerful sequential transformation that re-schedules both
computation and communication.
» Wire pipelining via retiming for System-on-a-Chip. [Lin and
Zhou 03]
» Become even more powerful when combined with
combinational (logic) synthesis. [Malik et al. 91]
» Essential for any sequential synthesis tool.



Sequential System Optimization by Retiming

» Min-period retiming:
» Relocate FFs to minimize clock period.
» Ignore cost — may significantly increase FF area.
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Sequential System Optimization by Retiming

» Min-area retiming:
> Relocate FFs to minimize FF area under given clock period.
» Can be used to minimize FF area under minimum clock period.

» Of higher complexity!
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Problem Formulation

» Circuit graph G = (V, E) of n vertices and m edges

» G is usually sparse. m << ©(n?)
» Gate delay: d(v), ve V
» # FFs on interconnects: w(u,v), (u,v) € E
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Problem Formulation

» Circuit graph G = (V, E) of n vertices and m edges

» G is usually sparse. m << ©(n?)
» Gate delay: d(v), ve V
» # FFs on interconnects: w(u,v), (u,v) € E

» Retiming is represented by an integer-valued vertex label.

r:V—127
For gate v, r(v) is the # FFs moved from all its fanouts to all
its fanins.
gate flip-flop
— —s g,

= =
r(v)=0 r(v)=1 r(v)=2
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Problem Formulation

» Validity constraints:

Y(u,v) € E:w(u,v)—r(u)+r(v) >0
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Problem Formulation

» Validity constraints:
V(u,v) € E:w(u,v)—r(u)+r(v) >0
» Timing constraints with clock period T:
V(u,v) € E:w(u,v)=r(u) —r(v) = t(u)+d(v) < t(v)

VwveV:idv)<t(v)<T
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Problem Formulation

» Validity constraints:
V(u,v) € E:w(u,v)—r(u)+r(v) >0
» Timing constraints with clock period T:
V(u,v) € E:w(u,v)=r(u) —r(v) = t(u)+d(v) < t(v)
VwveV:idv)<t(v)<T

» Min-area objective:

Minimize Z r(v) * (in(v) — out(v))

veV

6
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More about Timing Constraints

» Timing constraints via arrival times t cannot be fitted into
mathematical programming.
» Static longest path computation [Leiserson and Saxe 83|:

» W(u,v) is the min # of FFs on the paths from u to v.
» D(u,v) is the longest delay along the paths from u to v with
W(u,v) FFs.

Vu,ve V,D(u,v) > T : W(u,v)—r(u)+r(v) >1
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Mathematical Programming Formulation of Min-Area

Retiming

[Leiserson and Saxe 83]

Minimize

Y(u,v) € E:
Vu,ve V,D(u,v) > T:

> r(v) * (in(v) — out(v))
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Mathematical Programming Formulation of Min-Area
Retiming

[Leiserson and Saxe 83]
Minimize Z r(v) * (in(v) — out(v))
Y(u,v) € E: w(u, v) — r(u)

Vu,v e V,D(u,v) > T: W(u,v) — r(u)

» It is a dual problem of the min-cost network flow.

» All previous optimal algorithms were based on this
conventional formulation.
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Previous Min-Area Retiming Algorithms

» The flow network is quite dense, especially when T is small.
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» The flow network is quite dense, especially when T is small.

No implementation was reported until [Shenoy and Rudell 94].

» Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
[Maheshwari and Sapatnekar 98]
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» Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
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» The flow network remains dense for large circuit.

» Minaret generated more than 122,000,000 arcs for a circuit
with more than 180,000 gates.
» Require ©(n?) storage. Not efficient and not scalable.
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Previous Min-Area Retiming Algorithms

» The flow network is quite dense, especially when T is small.

No implementation was reported until [Shenoy and Rudell 94].

» Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
[Maheshwari and Sapatnekar 98]

» The flow network remains dense for large circuit.

» Minaret generated more than 122,000,000 arcs for a circuit
with more than 180,000 gates.
» Require ©(n?) storage. Not efficient and not scalable.

» Incremental algorithm [Singh et al. 05] is heuristic and
suboptimal.
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Our Min-Area Retiming Formulation

Problem (Min-Area Retiming)

Maximize

V(u,v) € E:
V(u,v) € E:
VveV:

> b(v)r(v)

w(u,v)—r(u)+r(v) >0
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» Area improvement: b(v) = out(v) — in(v)
» Reduction in FF area by moving 1 FF from its fanouts to

fanins.

» Not even a mathematical programming formulation.
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Incremental Min-Area Retiming

» Intuition: retime the circuit gradually.
» Start from an initial feasible retiming.
» Feasible means validity and timing constraints are satisfied.

» Move 1 FF from the fanouts to the fanins of a cluster of gates
in order to reduce FF area w/o violating validity and timing
constraints.

» Stop when no such cluster exists.
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Incremental Min-Area Retiming

» Intuition: retime the circuit gradually.
» Start from an initial feasible retiming.
» Feasible means validity and timing constraints are satisfied.
» Move 1 FF from the fanouts to the fanins of a cluster of gates

in order to reduce FF area w/o violating validity and timing
constraints.

» Choose a cluster of gates that reduces FF area most.
» Satisfy validity and timing constraints gradually.

» Stop when no such cluster exists.
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Incremental moves may violate validity and timing
constraints

» Suppose retiming r; is obtained by moving 1 FF from fanouts
to fanins of a cluster / of gates in retiming r.

» r; may violate the validity constraints.
There is a fanout edge (u, v) of | with —1 FF.

» v should be included in | to satisfy the validity constraints if
uel.
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Incremental moves may violate validity and timing
constraints

» Suppose retiming r; is obtained by moving 1 FF from fanouts
to fanins of a cluster / of gates in retiming r.

» r; may violate the timing constraints.
There is a combinational path from u to v longer than T.

» v should be included in / to satisfy the timing constraints if
uel.
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Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.
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Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.
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Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.

L
AN -

cluster I is closed

» r; is feasible & [ is closed under all active constraints of r.
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Algorithm Sketch

» As more active constraints are introduced in A, either r; is
feasible with reduced FF area or no such [ exists.
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Difficulty for Incremental Algorithm

» How many active constraints are there in A?
» Keeping every active constraint in A may increase |A| to ©(n?).
» Therefore, it should be able to remove active constraints from

A sometime during the algorithm.
» Removing them should not affect termination.
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Difficulty for Incremental Algorithm

» How many active constraints are there in A?

» Keeping every active constraint in A may increase |A| to ©(n?).

» Therefore, it should be able to remove active constraints from
A sometime during the algorithm.
» Removing them should not affect termination.

» Our solution: maintain A as a regular forest.

> A directed forest satisfying special property.
> Gates are clustered into trees.
» Require ©(n) storage.

16
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Example

» Clock period T = 6.

» Inside each gate are the gate delays.

» On the right to each gate name are the area improvements.
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Example

> Active constraints A: {}.

> Trees: {a},{b},{c} {d}.{e}.{f}.{g} {host}.
» Move 1 FF across | = {f} U{g}.
» # FFson (f,e) is negative. Add (f,e) to A.
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Example

» Active constraints A: {(f,e)}.

» Trees: {a},{b},{c}.{d}.{e, f} {g} {host}.
» Move 1 FF across | = {e, f} U {g}.

» Combinational path from g to ¢ has delay 7. Add (g, ¢) to A.
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Example

» Active constraints A: {(f,e),(g,c)}.

» Trees: {a},{b},{c,g}.{d} {e, f} {host}.
» Move 1 FF across | = {e, f}.

» Got a feasible retiming with improved area.
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Example

host g f e

» Active constraints A: {(f,e),(g,c)}.

» Trees: {a},{b},{c,g}.{d} {e, f} {host}.

» Move 1 FF across | = {e, f}.

» # FFson (f,c) is negative. Add (f,c) to A.
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Example

host g f e

» Active constraints A: {(f,e),(g,c),(f,c)}.

» Trees: {a},{b},{c,e f,g},{d} {host}.
» Move 1 FF across | = {c,e, f,g}.

» # FFs on (e, d) is negative. Add (e, d) to A.
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Example

host

» Active constraints A: {(f,e),(g,c),(f,c),(e, d)}.

> Trees: {a},{b},{c,d, e, f, g} {host}.

» Move 1 FF across | = {c,d,e, f,g}.

» Combinational path from f to b has delay 7. Add (f, b) to A.

17 /34



Example

» Active constraints A: {(f, b), (g, c)}, (others are removed).

» Trees: {a},{b,f},{c,g}.{d},{e} {host}.
» Area improvements for all trees are 0.

» The current retiming is the optimal one.
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Regular Forest

» Organize active constraints as rooted directed trees.
» Area improvements for each tree and subtree: B(v).
» Move 1 FF across the positive trees.

» Definition of regular forest:
> Positive trees with > 0 T and < 0 | subtrees.
» Zero trees with > 0 T and < 0 | subtrees.
> Negative trees with > 0 T and < 0 | subtrees.

su B0 Ju B0 su B<o
‘A positive tree /R, zero tree ‘N negative tree

B(v)>0 B(v)<0  B(V)>0 B(")<0  B()=0 B(v")<0
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Regular Forest

» Organize active constraints as rooted directed trees.
» Area improvements for each tree and subtree: B(v).
» Move 1 FF across the positive trees.

» Definition of regular forest:
» Positive trees with > 0 T and < 0 | subtrees.
» Zero trees with > 0 T and < 0 | subtrees.
> Negative trees with > 0 T and < 0 | subtrees.

su B0 Ju B0 su B<o
‘A positive tree /R, zero tree ‘N negative tree
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Optimality Condition

If every tree is a zero tree, then the current retiming is the optimal.

» As there are many active constraints for a retiming, there are
many regular forests.

» The retiming is optimal if a regular forest of all zero trees can
be constructed.
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Operation Toward Optimality

» Optimality condition cannot be achieved by a single operation.

» Potential tuple in lexicographic ordering to capture the
progress:

¢ = (area improvement of all the positive trees,

# vertices in non-positive trees)

» Optimality < ® = (0, n).
» Finite number of forests = Finite number of ®.

» Design the UpdateForest operation to decrease ¢ strictly after
identifying new active constraint.
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The UpdateForest Operation

> Inside each gate are the area improvements of subtrees (B).

» A new active constraint (u, v) should be added (later).

» u' and v/ are the roots of the two trees in the regular forest.

» Potential tuple ¢ = (7,6).



The UpdateForest Operation

» Change the roots of the trees to u and v.
» B(u'),B(u),B(v'),B(u) should be updated.

» The forest is no longer regular. The subtree rooted at v/ is
< 0 but T.



The UpdateForest Operation

» Removing (v/, v) creates a tree with the root v'.
» B(v) should be updated.

» The forest becomes regular.

» Potential tuple ¢ = (7,6).



The UpdateForest Operation

» Connecting (u, v) makes v a child of u.
» B(u) should be updated.

» The forest is no longer regular. The subtrees rooted at a and
b are = 0.



The UpdateForest Operation

.
@ @ @ ©v OX®

» Removing (u, a) and (b, v) creates two trees with the root a
and b.

> The forest becomes regular.
> Potential tuple ¢ = (2,12).

» Other cases are handled similarly.



The iMinArea Algorithm

AR

Compute an initial feasible retiming r using any fixed period
retiming algorithm.

Initialize F to be a forest with no edge.
| « all the nodes of the positive trees in F.
Claim r is optimal if | = {).

If (u, v) violates the validity or timing constraints in r;, then
update F with (u, v) using the UpdateForest operation.
Continue to Step 3.

Update r to r;. Continue to Step 3.

23 /34



Complexity Analysis

» Need O(n) extra space for the regular forest and other
auxiliary data structures on top of the circuit graph G.

» Each iteration consumes O(m) time.

» For practical VLSI circuits, assume area improvements b are
integer-valued, summation of positive b is bounded by O(n),
and FF area in the initial feasible retiming is bounded by
O(m). The time complexity is O(n?m).
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Complexity Analysis

» Need O(n) extra space for the regular forest and other
auxiliary data structures on top of the circuit graph G.

» Each iteration consumes O(m) time.

» For practical VLSI circuits, assume area improvements b are
integer-valued, summation of positive b is bounded by O(n),
and FF area in the initial feasible retiming is bounded by
O(m). The time complexity is O(n?m).

» For general graphs, the algorithm terminates in finite time for
bounded problems.

» Note that termination is guaranteed for real valued b.
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Experimental Setup

» Benchmarks.

» |ISCAS89 sequential circuits.
» Large circuits (myex1 through myex5) created in Minaret.
» ITC'99 sequential circuits.

» The largest circuit has > 180K gates and > 320K edges.

» For comparison to Minaret, assume unit FF area, unit gate
delay, and sharing of FFs at the fanouts of gates.

» Use Zhou's algorithm [Zhou 05] to determine the minimum
clock period.

» Perform min-area retiming under the minimum clock period.
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Experimental Results

» FF area (# FFs) obtained by Minaret and that obtained by
iMinArea are the same.
» Compared to Minaret, 60x faster on average.
» For the circuit with more than 180K gates, iMinArea uses less
than 1 minute and 65MB memory.
» Compared to Minaret, > 30x less memory consumption and
> 100x faster.



Experimental Results

Speedups for circuits with > 4000 gates compared to Minaret:

1000
2 100 4 L
3 o o
2 °
& ol e 8% o %o
e © o O we o
° °
1 T T
1000 10000 100000 1000000
# vertices

Running times:

time = O(n"*")

Running Time(s)

1000 10000 100000 1000000
# vertices

28 /34



Motivation and Formulation
Algorithmic Ideas
Algorithm Details
Experimental Results

Conclusions

29/34



Conclusions

» Efficient incremental min-area retiming algorithm with
provable optimality.
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Conclusions

» Efficient incremental min-area retiming algorithm with
provable optimality.

» Combine incremental retiming with a special forest data
structure.

» Will not formulate the dual problem of min-cost network flow.
» Generate critical constraints dynamically only when they are
needed.
» Require only linear storage (O(n)) on top of circuit graph.
» Extensions
» Perform forward retiming to enforce initial state.
» Min-area retiming under hold conditions.
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Q& A



Thank you!



Optimality Condition

Lemma

If (u, v) is an active constraint of r, then for any feasible r’,

r'(v) —r'(u) > r(v) — r(u).

Lemma

If every tree is a zero tree, then 3y(u, v) > 0 such that,

b(v)= D y(v.j)— > i), vveV.

(vJj)eEA (i,v)EA

33/34



Optimality Condition

If every tree is a zero tree, then the current retiming is the optimal.

Proof sketch

For any feasible r/,

DobWr(v) = Y y(uv) # (r(u) = r(v))

veV (u,v)eA

Z v(u, v) * (r'(u) - r’(v))

(u,v)EA

= ) b(v)r'(v)

veV

Vv
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