An Efficient Incremental Algorithm for Min-Area
Retiming

Jia Wang and Hai Zhou
Electrical Engineering and Computer Science
Northwestern University
Evanston, lllinois, United States

June, 2008

34

Motivation and Formulation
Algorithmic Ideas
Algorithm Details
Experimental Results

Conclusions

2/34

Retiming

» Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]
» Powerful sequential transformation that re-schedules both
computation and communication.
» Wire pipelining via retiming for System-on-a-Chip. [Lin and
Zhou 03]
» Become even more powerful when combined with
combinational (logic) synthesis. [Malik et al. 91]
» Essential for any sequential synthesis tool.

Sequential System Optimization by Retiming

» Min-period retiming:
» Relocate FFs to minimize clock period.
» Ignore cost — may significantly increase FF area.

34

Sequential System Optimization by Retiming

» Min-area retiming:
> Relocate FFs to minimize FF area under given clock period.
» Can be used to minimize FF area under minimum clock period.

» Of higher complexity!

34

Problem Formulation

» Circuit graph G = (V, E) of n vertices and m edges

» G is usually sparse. m << ©(n?)
» Gate delay: d(v), ve V
» # FFs on interconnects: w(u,v), (u,v) € E

5/34

Problem Formulation

» Circuit graph G = (V, E) of n vertices and m edges

» G is usually sparse. m << ©(n?)
» Gate delay: d(v), ve V
» # FFs on interconnects: w(u,v), (u,v) € E

» Retiming is represented by an integer-valued vertex label.

r:V—127
For gate v, r(v) is the # FFs moved from all its fanouts to all
its fanins.
gate flip-flop
— —s g,

= =
r(v)=0 r(v)=1 r(v)=2

34

Problem Formulation

» Validity constraints:

Y(u,v) € E:w(u,v)—r(u)+r(v) >0

6 /34

Problem Formulation

» Validity constraints:
V(u,v) € E:w(u,v)—r(u)+r(v) >0
» Timing constraints with clock period T:
V(u,v) € E:w(u,v)=r(u) —r(v) = t(u)+d(v) < t(v)

VwveV:idv)<t(v)<T

6

34

Problem Formulation

» Validity constraints:
V(u,v) € E:w(u,v)—r(u)+r(v) >0
» Timing constraints with clock period T:
V(u,v) € E:w(u,v)=r(u) —r(v) = t(u)+d(v) < t(v)
VwveV:idv)<t(v)<T

» Min-area objective:

Minimize Z r(v) * (in(v) — out(v))

veV

6

34

More about Timing Constraints

» Timing constraints via arrival times t cannot be fitted into
mathematical programming.
» Static longest path computation [Leiserson and Saxe 83|:

» W(u,v) is the min # of FFs on the paths from u to v.
» D(u,v) is the longest delay along the paths from u to v with
W(u,v) FFs.

Vu,ve V,D(u,v) > T : W(u,v)—r(u)+r(v) >1

34

~

Mathematical Programming Formulation of Min-Area

Retiming

[Leiserson and Saxe 83]

Minimize

Y(u,v) € E:
Vu,ve V,D(u,v) > T:

> r(v) * (in(v) — out(v))

34

Mathematical Programming Formulation of Min-Area
Retiming

[Leiserson and Saxe 83]
Minimize Z r(v) * (in(v) — out(v))
Y(u,v) € E: w(u, v) — r(u)

Vu,v e V,D(u,v) > T: W(u,v) — r(u)

» It is a dual problem of the min-cost network flow.

» All previous optimal algorithms were based on this
conventional formulation.

34

Previous Min-Area Retiming Algorithms

» The flow network is quite dense, especially when T is small.

34

Previous Min-Area Retiming Algorithms

» The flow network is quite dense, especially when T is small.

No implementation was reported until [Shenoy and Rudell 94].

» Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
[Maheshwari and Sapatnekar 98]

34

Previous Min-Area Retiming Algorithms

» The flow network is quite dense, especially when T is small.

No implementation was reported until [Shenoy and Rudell 94].

» Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
[Maheshwari and Sapatnekar 98]

» The flow network remains dense for large circuit.

» Minaret generated more than 122,000,000 arcs for a circuit
with more than 180,000 gates.
» Require ©(n?) storage. Not efficient and not scalable.

34

Previous Min-Area Retiming Algorithms

» The flow network is quite dense, especially when T is small.

No implementation was reported until [Shenoy and Rudell 94].

» Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
[Maheshwari and Sapatnekar 98]

» The flow network remains dense for large circuit.

» Minaret generated more than 122,000,000 arcs for a circuit
with more than 180,000 gates.
» Require ©(n?) storage. Not efficient and not scalable.

» Incremental algorithm [Singh et al. 05] is heuristic and
suboptimal.

34

Our Min-Area Retiming Formulation

Problem (Min-Area Retiming)

Maximize

V(u,v) € E:
V(u,v) € E:
VveV:

> b(v)r(v)

w(u,v)—r(u)+r(v) >0

2
—~
=

<
~

I

-
—~

<
~

|
=
—~
<
~
~

—~

<
~

l

Q
—~

<
~

IA

~

—~

<
~

» Area improvement: b(v) = out(v) — in(v)
» Reduction in FF area by moving 1 FF from its fanouts to

fanins.

» Not even a mathematical programming formulation.

10/34

Motivation and Formulation
Algorithmic ldeas
Algorithm Details
Experimental Results

Conclusions

11/34

Incremental Min-Area Retiming

» Intuition: retime the circuit gradually.
» Start from an initial feasible retiming.
» Feasible means validity and timing constraints are satisfied.

» Move 1 FF from the fanouts to the fanins of a cluster of gates
in order to reduce FF area w/o violating validity and timing
constraints.

» Stop when no such cluster exists.

12 /34

Incremental Min-Area Retiming

» Intuition: retime the circuit gradually.
» Start from an initial feasible retiming.
» Feasible means validity and timing constraints are satisfied.
» Move 1 FF from the fanouts to the fanins of a cluster of gates

in order to reduce FF area w/o violating validity and timing
constraints.

» Choose a cluster of gates that reduces FF area most.
» Satisfy validity and timing constraints gradually.

» Stop when no such cluster exists.

12 /34

Incremental moves may violate validity and timing
constraints

» Suppose retiming r; is obtained by moving 1 FF from fanouts
to fanins of a cluster / of gates in retiming r.

» r; may violate the validity constraints.
There is a fanout edge (u, v) of | with —1 FF.

» v should be included in | to satisfy the validity constraints if
uel.

13 /34

Incremental moves may violate validity and timing
constraints

» Suppose retiming r; is obtained by moving 1 FF from fanouts
to fanins of a cluster / of gates in retiming r.

» r; may violate the timing constraints.
There is a combinational path from u to v longer than T.

» v should be included in / to satisfy the timing constraints if
uel.

13 /34

Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.

14 /34

Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.

L
AN -

A cluster I is not closed

14 /34

Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.

L
AN -

cluster I is closed

14 /34

Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

» Define a cluster | to be closed under active constraints A
when no edge in A point to outside of the cluster /.

L
AN -

cluster I is closed

» r; is feasible & [is closed under all active constraints of r.

14 /34

Algorithm Sketch

» As more active constraints are introduced in A, either r; is
feasible with reduced FF area or no such [exists.

15 /34

Difficulty for Incremental Algorithm

» How many active constraints are there in A?
» Keeping every active constraint in A may increase |A| to ©(n?).
» Therefore, it should be able to remove active constraints from

A sometime during the algorithm.
» Removing them should not affect termination.

16 /34

Difficulty for Incremental Algorithm

» How many active constraints are there in A?

» Keeping every active constraint in A may increase |A| to ©(n?).

» Therefore, it should be able to remove active constraints from
A sometime during the algorithm.
» Removing them should not affect termination.

» Our solution: maintain A as a regular forest.

> A directed forest satisfying special property.
> Gates are clustered into trees.
» Require ©(n) storage.

16

34

Example

» Clock period T = 6.

» Inside each gate are the gate delays.

» On the right to each gate name are the area improvements.

17 /34

Example

> Active constraints A: {}.

> Trees: {a},{b},{c} {d}.{e}.{f}.{g} {host}.
» Move 1 FF across | = {f} U{g}.
» # FFson (f,e) is negative. Add (f,e) to A.

17 /34

Example

» Active constraints A: {(f,e)}.

» Trees: {a},{b},{c}.{d}.{e, f} {g} {host}.
» Move 1 FF across | = {e, f} U {g}.

» Combinational path from g to ¢ has delay 7. Add (g, ¢) to A.

17 /34

Example

» Active constraints A: {(f,e),(g,c)}.

» Trees: {a},{b},{c,g}.{d} {e, f} {host}.
» Move 1 FF across | = {e, f}.

» Got a feasible retiming with improved area.

17 /34

Example

host g f e

» Active constraints A: {(f,e),(g,c)}.

» Trees: {a},{b},{c,g}.{d} {e, f} {host}.

» Move 1 FF across | = {e, f}.

» # FFson (f,c) is negative. Add (f,c) to A.

17 /34

Example

host g f e

» Active constraints A: {(f,e),(g,c),(f,c)}.

» Trees: {a},{b},{c,e f,g},{d} {host}.
» Move 1 FF across | = {c,e, f,g}.

» # FFs on (e, d) is negative. Add (e, d) to A.

17 /34

Example

host

» Active constraints A: {(f,e),(g,c),(f,c),(e, d)}.

> Trees: {a},{b},{c,d, e, f, g} {host}.

» Move 1 FF across | = {c,d,e, f,g}.

» Combinational path from f to b has delay 7. Add (f, b) to A.

17 /34

Example

» Active constraints A: {(f, b), (g, c)}, (others are removed).

» Trees: {a},{b,f},{c,g}.{d},{e} {host}.
» Area improvements for all trees are 0.

» The current retiming is the optimal one.

17 /34

Motivation and Formulation
Algorithmic Ideas
Algorithm Details
Experimental Results

Conclusions

18 /34

Regular Forest

» Organize active constraints as rooted directed trees.
» Area improvements for each tree and subtree: B(v).
» Move 1 FF across the positive trees.

» Definition of regular forest:
> Positive trees with > 0 T and < 0 | subtrees.
» Zero trees with > 0 T and < 0 | subtrees.
> Negative trees with > 0 T and < 0 | subtrees.

su B0 Ju B0 su B<o
‘A positive tree /R, zero tree ‘N negative tree

B(v)>0 B(v)<0 B(V)>0 B(")<0 B()=0 B(v")<0

19/34

Regular Forest

» Organize active constraints as rooted directed trees.
» Area improvements for each tree and subtree: B(v).
» Move 1 FF across the positive trees.

» Definition of regular forest:
> Positive trees with > 0 T and < 0 | subtrees.
» Zero trees with > 0 T and < 0 | subtrees.
> Negative trees with > 0 T and < 0 | subtrees.

su B0 Ju B0 su B<o
‘A positive tree /R, zero tree ‘N negative tree

A — [A s ;L

B()>0 BW)<0 B(+)>0 B(\")<0 B()Z0 B(v")<0

19/34

Regular Forest

» Organize active constraints as rooted directed trees.
» Area improvements for each tree and subtree: B(v).
» Move 1 FF across the positive trees.

» Definition of regular forest:
» Positive trees with > 0 T and < 0 | subtrees.
» Zero trees with > 0 T and < 0 | subtrees.
> Negative trees with > 0 T and < 0 | subtrees.

su B0 Ju B0 su B<o
‘A positive tree /R, zero tree ‘N negative tree

19/34

Optimality Condition

If every tree is a zero tree, then the current retiming is the optimal.

» As there are many active constraints for a retiming, there are
many regular forests.

» The retiming is optimal if a regular forest of all zero trees can
be constructed.

20 /34

Operation Toward Optimality

» Optimality condition cannot be achieved by a single operation.

» Potential tuple in lexicographic ordering to capture the
progress:

¢ = (area improvement of all the positive trees,

vertices in non-positive trees)

» Optimality < ® = (0, n).
» Finite number of forests = Finite number of ®.

» Design the UpdateForest operation to decrease ¢ strictly after
identifying new active constraint.

21/34

The UpdateForest Operation

> Inside each gate are the area improvements of subtrees (B).

» A new active constraint (u, v) should be added (later).

» u' and v/ are the roots of the two trees in the regular forest.

» Potential tuple ¢ = (7,6).

The UpdateForest Operation

» Change the roots of the trees to u and v.
» B(u'),B(u),B(v'),B(u) should be updated.

» The forest is no longer regular. The subtree rooted at v/ is
< 0 but T.

The UpdateForest Operation

» Removing (v/, v) creates a tree with the root v'.
» B(v) should be updated.

» The forest becomes regular.

» Potential tuple ¢ = (7,6).

The UpdateForest Operation

» Connecting (u, v) makes v a child of u.
» B(u) should be updated.

» The forest is no longer regular. The subtrees rooted at a and
b are = 0.

The UpdateForest Operation

.
@ @ @ ©v OX®

» Removing (u, a) and (b, v) creates two trees with the root a
and b.

> The forest becomes regular.
> Potential tuple ¢ = (2,12).

» Other cases are handled similarly.

The iMinArea Algorithm

AR

Compute an initial feasible retiming r using any fixed period
retiming algorithm.

Initialize F to be a forest with no edge.
| « all the nodes of the positive trees in F.
Claim r is optimal if | = {).

If (u, v) violates the validity or timing constraints in r;, then
update F with (u, v) using the UpdateForest operation.
Continue to Step 3.

Update r to r;. Continue to Step 3.

23 /34

Complexity Analysis

» Need O(n) extra space for the regular forest and other
auxiliary data structures on top of the circuit graph G.

» Each iteration consumes O(m) time.

» For practical VLSI circuits, assume area improvements b are
integer-valued, summation of positive b is bounded by O(n),
and FF area in the initial feasible retiming is bounded by
O(m). The time complexity is O(n?m).

24 /34

Complexity Analysis

» Need O(n) extra space for the regular forest and other
auxiliary data structures on top of the circuit graph G.

» Each iteration consumes O(m) time.

» For practical VLSI circuits, assume area improvements b are
integer-valued, summation of positive b is bounded by O(n),
and FF area in the initial feasible retiming is bounded by
O(m). The time complexity is O(n?m).

» For general graphs, the algorithm terminates in finite time for
bounded problems.

» Note that termination is guaranteed for real valued b.

24 /34

Motivation and Formulation
Algorithmic Ideas
Algorithm Details
Experimental Results

Conclusions

25/34

Experimental Setup

» Benchmarks.

» |ISCAS89 sequential circuits.
» Large circuits (myex1 through myex5) created in Minaret.
» ITC'99 sequential circuits.

» The largest circuit has > 180K gates and > 320K edges.

» For comparison to Minaret, assume unit FF area, unit gate
delay, and sharing of FFs at the fanouts of gates.

» Use Zhou's algorithm [Zhou 05] to determine the minimum
clock period.

» Perform min-area retiming under the minimum clock period.

26 /34

Experimental Results

» FF area (# FFs) obtained by Minaret and that obtained by
iMinArea are the same.
» Compared to Minaret, 60x faster on average.
» For the circuit with more than 180K gates, iMinArea uses less
than 1 minute and 65MB memory.
» Compared to Minaret, > 30x less memory consumption and
> 100x faster.

Experimental Results

Speedups for circuits with > 4000 gates compared to Minaret:

1000
2 100 4 L
3 o o
2 °
& ol e 8% o %o
e © o O we o
° °
1 T T
1000 10000 100000 1000000
vertices

Running times:

time = O(n"*")

Running Time(s)

1000 10000 100000 1000000
vertices

28 /34

Motivation and Formulation
Algorithmic Ideas
Algorithm Details
Experimental Results

Conclusions

29/34

Conclusions

» Efficient incremental min-area retiming algorithm with
provable optimality.

30/34

Conclusions

» Efficient incremental min-area retiming algorithm with
provable optimality.

» Combine incremental retiming with a special forest data
structure.

» Will not formulate the dual problem of min-cost network flow.

» Generate critical constraints dynamically only when they are
needed.

» Require only linear storage (O(n)) on top of circuit graph.

30/34

Conclusions

» Efficient incremental min-area retiming algorithm with
provable optimality.

» Combine incremental retiming with a special forest data
structure.

» Will not formulate the dual problem of min-cost network flow.
» Generate critical constraints dynamically only when they are
needed.
» Require only linear storage (O(n)) on top of circuit graph.
» Extensions
» Perform forward retiming to enforce initial state.
» Min-area retiming under hold conditions.

30/34

Q& A

Thank you!

Optimality Condition

Lemma

If (u, v) is an active constraint of r, then for any feasible r’,

r'(v) —r'(u) > r(v) — r(u).

Lemma

If every tree is a zero tree, then 3y(u, v) > 0 such that,

b(v)= D y(v.j)— > i), vveV.

(vJj)eEA (i,v)EA

33/34

Optimality Condition

If every tree is a zero tree, then the current retiming is the optimal.

Proof sketch

For any feasible r/,

DobWr(v) = Y y(uv) # (r(u) = r(v))

veV (u,v)eA

Z v(u, v) * (r'(u) - r’(v))

(u,v)EA

=) b(v)r'(v)

veV

Vv

34 /34

	Motivation and Formulation
	Algorithmic Ideas
	Algorithm Details
	Experimental Results
	Conclusions

