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Retiming

I Relocate flip-flops (FFs) w/o changing circuit functionality.
[Leiserson and Saxe 83]

I Powerful sequential transformation that re-schedules both
computation and communication.

I Wire pipelining via retiming for System-on-a-Chip. [Lin and
Zhou 03]

I Become even more powerful when combined with
combinational (logic) synthesis. [Malik et al. 91]

I Essential for any sequential synthesis tool.
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Sequential System Optimization by Retiming

I Min-period retiming:
I Relocate FFs to minimize clock period.
I Ignore cost – may significantly increase FF area.

I Min-area retiming:
I Relocate FFs to minimize FF area under given clock period.
I Can be used to minimize FF area under minimum clock period.
I Of higher complexity!
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Problem Formulation

I Circuit graph G = (V ,E ) of n vertices and m edges
I G is usually sparse. m << Θ(n2)
I Gate delay: d(v), v ∈ V
I # FFs on interconnects: w(u, v), (u, v) ∈ E

I Retiming is represented by an integer-valued vertex label.

r : V → Z

For gate v , r(v) is the # FFs moved from all its fanouts to all
its fanins.

5 / 34



Problem Formulation

I Circuit graph G = (V ,E ) of n vertices and m edges
I G is usually sparse. m << Θ(n2)
I Gate delay: d(v), v ∈ V
I # FFs on interconnects: w(u, v), (u, v) ∈ E

I Retiming is represented by an integer-valued vertex label.

r : V → Z

For gate v , r(v) is the # FFs moved from all its fanouts to all
its fanins.

5 / 34



Problem Formulation

I Validity constraints:

∀(u, v) ∈ E : w(u, v)− r(u) + r(v) ≥ 0

I Timing constraints with clock period T :

∀(u, v) ∈ E : w(u, v) = r(u)− r(v)⇒ t(u) + d(v) ≤ t(v)

∀v ∈ V : d(v) ≤ t(v) ≤ T

I Min-area objective:

Minimize
∑
v∈V

r(v) ∗ (in(v)− out(v))
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More about Timing Constraints

I Timing constraints via arrival times t cannot be fitted into
mathematical programming.

I Static longest path computation [Leiserson and Saxe 83]:
I W (u, v) is the min # of FFs on the paths from u to v .
I D(u, v) is the longest delay along the paths from u to v with

W (u, v) FFs.

∀u, v ∈ V ,D(u, v) > T : W (u, v)− r(u) + r(v) ≥ 1
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Mathematical Programming Formulation of Min-Area
Retiming

[Leiserson and Saxe 83]

Minimize
∑
v∈V

r(v) ∗ (in(v)− out(v))

∀(u, v) ∈ E : w(u, v)− r(u) + r(v) ≥ 0

∀u, v ∈ V ,D(u, v) > T : W (u, v)− r(u) + r(v) ≥ 1
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Mathematical Programming Formulation of Min-Area
Retiming

[Leiserson and Saxe 83]

Minimize
∑
v∈V

r(v) ∗ (in(v)− out(v))

∀(u, v) ∈ E : w(u, v)− r(u) + r(v) ≥ 0

∀u, v ∈ V ,D(u, v) > T : W (u, v)− r(u) + r(v) ≥ 1

I It is a dual problem of the min-cost network flow.

I All previous optimal algorithms were based on this
conventional formulation.
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Previous Min-Area Retiming Algorithms

I The flow network is quite dense, especially when T is small.

No implementation was reported until [Shenoy and Rudell 94].

I Practical implementations focused on reducing # arcs in the
flow network by heuristics. [Shenoy and Rudell 94], Minaret
[Maheshwari and Sapatnekar 98]

I The flow network remains dense for large circuit.
I Minaret generated more than 122,000,000 arcs for a circuit

with more than 180,000 gates.
I Require Θ(n2) storage. Not efficient and not scalable.

I Incremental algorithm [Singh et al. 05] is heuristic and
suboptimal.
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Our Min-Area Retiming Formulation

Problem (Min-Area Retiming)

Maximize
∑
v∈V

b(v)r(v)

∀(u, v) ∈ E : w(u, v)− r(u) + r(v) ≥ 0

∀(u, v) ∈ E : w(u, v) = r(u)− r(v)⇒ t(u) + d(v) ≤ t(v)

∀v ∈ V : d(v) ≤ t(v) ≤ T

I Area improvement: b(v) = out(v)− in(v)
I Reduction in FF area by moving 1 FF from its fanouts to

fanins.

I Not even a mathematical programming formulation.
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Incremental Min-Area Retiming

I Intuition: retime the circuit gradually.
I Start from an initial feasible retiming.

I Feasible means validity and timing constraints are satisfied.

I Move 1 FF from the fanouts to the fanins of a cluster of gates
in order to reduce FF area w/o violating validity and timing
constraints.

I Choose a cluster of gates that reduces FF area most.
I Satisfy validity and timing constraints gradually.

I Stop when no such cluster exists.
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Incremental moves may violate validity and timing
constraints

I Suppose retiming rI is obtained by moving 1 FF from fanouts
to fanins of a cluster I of gates in retiming r .

I rI may violate the validity constraints.
There is a fanout edge (u, v) of I with −1 FF.

I v should be included in I to satisfy the validity constraints if
u ∈ I .
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Incremental moves may violate validity and timing
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I Suppose retiming rI is obtained by moving 1 FF from fanouts
to fanins of a cluster I of gates in retiming r .

I rI may violate the timing constraints.
There is a combinational path from u to v longer than T .

I v should be included in I to satisfy the timing constraints if
u ∈ I .
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Active Constraints

Define (u, v) to be an active constraint for the retiming r if
including u but not v in the cluster would violate validity or timing
constraints.

I Define a cluster I to be closed under active constraints A
when no edge in A point to outside of the cluster I .

I rI is feasible ⇔ I is closed under all active constraints of r .
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Algorithm Sketch

I As more active constraints are introduced in A, either rI is
feasible with reduced FF area or no such I exists.
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Difficulty for Incremental Algorithm

I How many active constraints are there in A?
I Keeping every active constraint in A may increase |A| to Θ(n2).
I Therefore, it should be able to remove active constraints from

A sometime during the algorithm.
I Removing them should not affect termination.

I Our solution: maintain A as a regular forest.
I A directed forest satisfying special property.
I Gates are clustered into trees.
I Require Θ(n) storage.
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Example

I Clock period T = 6.

I Inside each gate are the gate delays.

I On the right to each gate name are the area improvements.
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Example

I Active constraints A: {}.
I Trees: {a},{b},{c},{d},{e},{f },{g},{host}.
I Move 1 FF across I = {f } ∪ {g}.
I # FFs on (f , e) is negative. Add (f , e) to A.
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Example

I Active constraints A: {(f , e), (g , c)}.
I Trees: {a},{b},{c , g},{d},{e, f },{host}.
I Move 1 FF across I = {e, f }.
I Got a feasible retiming with improved area.
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Example

I Active constraints A: {(f , b), (g , c)}, (others are removed).

I Trees: {a},{b, f },{c , g},{d},{e},{host}.
I Area improvements for all trees are 0.

I The current retiming is the optimal one.
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Regular Forest

I Organize active constraints as rooted directed trees.

I Area improvements for each tree and subtree: B(v).

I Move 1 FF across the positive trees.
I Definition of regular forest:

I Positive trees with > 0 ↑ and ≤ 0 ↓ subtrees.
I Zero trees with > 0 ↑ and < 0 ↓ subtrees.
I Negative trees with ≥ 0 ↑ and < 0 ↓ subtrees.
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Optimality Condition

Theorem

If every tree is a zero tree, then the current retiming is the optimal.

I As there are many active constraints for a retiming, there are
many regular forests.

I The retiming is optimal if a regular forest of all zero trees can
be constructed.
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Operation Toward Optimality

I Optimality condition cannot be achieved by a single operation.

I Potential tuple in lexicographic ordering to capture the
progress:

Φ
∆
= (area improvement of all the positive trees,

# vertices in non-positive trees)

I Optimality ⇔ Φ = (0, n).

I Finite number of forests ⇒ Finite number of Φ.

I Design the UpdateForest operation to decrease Φ strictly after
identifying new active constraint.
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The UpdateForest Operation

I Inside each gate are the area improvements of subtrees (B).

I A new active constraint (u, v) should be added (later).

I u′ and v ′ are the roots of the two trees in the regular forest.

I Potential tuple Φ = (7, 6).
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The UpdateForest Operation

I Change the roots of the trees to u and v .

I B(u′),B(u),B(v ′),B(u) should be updated.

I The forest is no longer regular. The subtree rooted at v ′ is
< 0 but ↑.
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The UpdateForest Operation

I Removing (v ′, v) creates a tree with the root v ′.

I B(v) should be updated.

I The forest becomes regular.

I Potential tuple Φ = (7, 6).
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The UpdateForest Operation

I Connecting (u, v) makes v a child of u.

I B(u) should be updated.

I The forest is no longer regular. The subtrees rooted at a and
b are = 0.
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The UpdateForest Operation

I Removing (u, a) and (b, v) creates two trees with the root a
and b.

I The forest becomes regular.

I Potential tuple Φ = (2, 12).

I Other cases are handled similarly.
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The iMinArea Algorithm

1. Compute an initial feasible retiming r using any fixed period
retiming algorithm.

2. Initialize F to be a forest with no edge.

3. I ← all the nodes of the positive trees in F .

4. Claim r is optimal if I = ∅.
5. If (u, v) violates the validity or timing constraints in rI , then

update F with (u, v) using the UpdateForest operation.
Continue to Step 3.

6. Update r to rI . Continue to Step 3.
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Complexity Analysis

I Need O(n) extra space for the regular forest and other
auxiliary data structures on top of the circuit graph G .

I Each iteration consumes O(m) time.

I For practical VLSI circuits, assume area improvements b are
integer-valued, summation of positive b is bounded by O(n),
and FF area in the initial feasible retiming is bounded by
O(m). The time complexity is O(n2m).

I For general graphs, the algorithm terminates in finite time for
bounded problems.

I Note that termination is guaranteed for real valued b.
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Experimental Setup

I Benchmarks.
I ISCAS89 sequential circuits.
I Large circuits (myex1 through myex5) created in Minaret.
I ITC’99 sequential circuits.

I The largest circuit has > 180K gates and > 320K edges.

I For comparison to Minaret, assume unit FF area, unit gate
delay, and sharing of FFs at the fanouts of gates.

I Use Zhou’s algorithm [Zhou 05] to determine the minimum
clock period.

I Perform min-area retiming under the minimum clock period.

26 / 34



Experimental Results

I FF area (# FFs) obtained by Minaret and that obtained by
iMinArea are the same.

I Compared to Minaret, 60× faster on average.
I For the circuit with more than 180K gates, iMinArea uses less

than 1 minute and 65MB memory.
I Compared to Minaret, ≥ 30× less memory consumption and
≥ 100× faster.
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Experimental Results

Speedups for circuits with > 4000 gates compared to Minaret:

Running times:
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Conclusions

I Efficient incremental min-area retiming algorithm with
provable optimality.

I Combine incremental retiming with a special forest data
structure.

I Will not formulate the dual problem of min-cost network flow.
I Generate critical constraints dynamically only when they are

needed.
I Require only linear storage (O(n)) on top of circuit graph.

I Extensions
I Perform forward retiming to enforce initial state.
I Min-area retiming under hold conditions.
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Q & A
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Thank you!
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Optimality Condition

Lemma

If (u, v) is an active constraint of r , then for any feasible r ′,

r ′(v)− r ′(u) ≥ r(v)− r(u).

Lemma

If every tree is a zero tree, then ∃γ(u, v) ≥ 0 such that,

b(v) =
∑

(v ,j)∈A

γ(v , j)−
∑

(i ,v)∈A

γ(i , v),∀v ∈ V .
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Optimality Condition

Theorem

If every tree is a zero tree, then the current retiming is the optimal.

Proof sketch

For any feasible r ′,∑
v∈V

b(v)r(v) =
∑

(u,v)∈A

γ(u, v) ∗
(
r(u)− r(v)

)
≥

∑
(u,v)∈A

γ(u, v) ∗
(
r ′(u)− r ′(v)

)
=

∑
v∈V

b(v)r ′(v)
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