An Efficient Incremental Algorithm for Min-Area Retiming

Jia Wang and Hai Zhou Electrical Engineering and Computer Science Northwestern University Evanston, Illinois, United States

June, 2008

Outline

Motivation and Formulation

Algorithmic Ideas

Algorithm Details

Experimental Results

Conclusions

- Relocate flip-flops (FFs) w/o changing circuit functionality. [Leiserson and Saxe 83]
- Powerful sequential transformation that re-schedules both computation and communication.
 - Wire pipelining via retiming for System-on-a-Chip. [Lin and Zhou 03]
- Become even more powerful when combined with combinational (logic) synthesis. [Malik et al. 91]
 - Essential for any sequential synthesis tool.

Sequential System Optimization by Retiming

Min-period retiming:

- Relocate FFs to minimize clock period.
- Ignore cost may significantly increase FF area.
- Min-area retiming:
 - ▶ Relocate FFs to minimize FF area under given clock period.
 - Can be used to minimize FF area under minimum clock period.
 - Of higher complexity!

Sequential System Optimization by Retiming

- Min-period retiming:
 - ▶ Relocate FFs to minimize clock period.
 - Ignore cost may significantly increase FF area.
- Min-area retiming:
 - Relocate FFs to minimize FF area under given clock period.
 - > Can be used to minimize FF area under minimum clock period.
 - Of higher complexity!

• Circuit graph G = (V, E) of *n* vertices and *m* edges

- G is usually sparse. $m \ll \Theta(n^2)$
- Gate delay: d(v), $v \in V$
- # FFs on interconnects: w(u, v), $(u, v) \in E$

• Circuit graph G = (V, E) of *n* vertices and *m* edges

- G is usually sparse. $m \ll \Theta(n^2)$
- Gate delay: d(v), $v \in V$
- # FFs on interconnects: w(u, v), $(u, v) \in E$
- Retiming is represented by an integer-valued vertex label.

$$r: V \to \mathbb{Z}$$

For gate v, r(v) is the # FFs moved from all its fanouts to all its fanins.

Validity constraints:

$$\forall (u,v) \in E : w(u,v) - r(u) + r(v) \geq 0$$

Validity constraints:

$$\forall (u,v) \in E : w(u,v) - r(u) + r(v) \geq 0$$

► Timing constraints with clock period *T*:

$$orall (u,v) \in E: w(u,v) = r(u) - r(v) \Rightarrow t(u) + d(v) \le t(v)$$

 $orall v \in V: d(v) \le t(v) \le T$

Validity constraints:

$$\forall (u,v) \in E : w(u,v) - r(u) + r(v) \geq 0$$

▶ Timing constraints with clock period *T*:

$$orall (u,v) \in E: w(u,v) = r(u) - r(v) \Rightarrow t(u) + d(v) \le t(v)$$

 $orall v \in V: d(v) \le t(v) \le T$

Min-area objective:

Minimize
$$\sum_{v \in V} r(v) * (in(v) - out(v))$$

- Timing constraints via arrival times t cannot be fitted into mathematical programming.
- Static longest path computation [Leiserson and Saxe 83]:
 - W(u, v) is the min # of FFs on the paths from u to v.
 - ► D(u, v) is the longest delay along the paths from u to v with W(u, v) FFs.

 $\forall u, v \in V, D(u, v) > T : W(u, v) - r(u) + r(v) \geq 1$

Mathematical Programming Formulation of Min-Area Retiming

[Leiserson and Saxe 83]

Minimize

$$orall (u,v) \in E:$$

 $orall u,v \in V, D(u,v) > T:$

$$\sum_{v \in V} r(v) * (in(v) - out(v))$$
$$w(u, v) - r(u) + r(v) \ge 0$$
$$W(u, v) - r(u) + r(v) \ge 1$$

Mathematical Programming Formulation of Min-Area Retiming

[Leiserson and Saxe 83]

A

$$\begin{split} \text{Minimize} & \sum_{v \in V} r(v) * (\text{in}(v) - \text{out}(v)) \\ \forall (u,v) \in E : & w(u,v) - r(u) + r(v) \geq 0 \\ u,v \in V, D(u,v) > T : & W(u,v) - r(u) + r(v) \geq 1 \end{split}$$

- It is a dual problem of the min-cost network flow.
- All previous optimal algorithms were based on this conventional formulation.

• The flow network is quite dense, especially when T is small.

- The flow network is quite dense, especially when T is small. No implementation was reported until [Shenoy and Rudell 94].
- Practical implementations focused on reducing # arcs in the flow network by heuristics. [Shenoy and Rudell 94], Minaret [Maheshwari and Sapatnekar 98]

- The flow network is quite dense, especially when T is small. No implementation was reported until [Shenoy and Rudell 94].
- Practical implementations focused on reducing # arcs in the flow network by heuristics. [Shenoy and Rudell 94], Minaret [Maheshwari and Sapatnekar 98]
- ► The flow network remains dense for large circuit.
 - Minaret generated more than 122,000,000 arcs for a circuit with more than 180,000 gates.
 - Require $\Theta(n^2)$ storage. Not efficient and not scalable.

- The flow network is quite dense, especially when T is small. No implementation was reported until [Shenoy and Rudell 94].
- Practical implementations focused on reducing # arcs in the flow network by heuristics. [Shenoy and Rudell 94], Minaret [Maheshwari and Sapatnekar 98]
- The flow network remains dense for large circuit.
 - Minaret generated more than 122,000,000 arcs for a circuit with more than 180,000 gates.
 - Require $\Theta(n^2)$ storage. Not efficient and not scalable.
- Incremental algorithm [Singh et al. 05] is heuristic and suboptimal.

Our Min-Area Retiming Formulation

Problem (Min-Area Retiming)

$$\begin{array}{ll} Maximize & \sum_{v \in V} b(v)r(v) \\ \forall (u,v) \in E : & w(u,v) - r(u) + r(v) \ge 0 \\ \forall (u,v) \in E : & w(u,v) = r(u) - r(v) \Rightarrow t(u) + d(v) \le t(v) \\ \forall v \in V : & d(v) \le t(v) \le T \end{array}$$

• Area improvement: b(v) = out(v) - in(v)

 Reduction in FF area by moving 1 FF from its fanouts to fanins.

Not even a mathematical programming formulation.

Outline

Motivation and Formulation

Algorithmic Ideas

Algorithm Details

Experimental Results

Conclusions

- Intuition: retime the circuit gradually.
- Start from an initial feasible retiming.
 - Feasible means validity and timing constraints are satisfied.
- Move 1 FF from the fanouts to the fanins of a cluster of gates in order to reduce FF area w/o violating validity and timing constraints.
 - Choose a cluster of gates that reduces FF area most.
 - Satisfy validity and timing constraints gradually.
- Stop when no such cluster exists.

- Intuition: retime the circuit gradually.
- Start from an initial feasible retiming.
 - > Feasible means validity and timing constraints are satisfied.
- Move 1 FF from the fanouts to the fanins of a cluster of gates in order to reduce FF area w/o violating validity and timing constraints.
 - Choose a cluster of gates that reduces FF area most.
 - Satisfy validity and timing constraints gradually.
- Stop when no such cluster exists.

Incremental moves may violate validity and timing constraints

- Suppose retiming r_l is obtained by moving 1 FF from fanouts to fanins of a cluster l of gates in retiming r.
- ▶ r_I may violate the validity constraints. There is a fanout edge (u, v) of I with −1 FF.

v should be included in *I* to satisfy the validity constraints if *u* ∈ *I*.

Incremental moves may violate validity and timing constraints

- Suppose retiming r_l is obtained by moving 1 FF from fanouts to fanins of a cluster l of gates in retiming r.
- r₁ may violate the timing constraints.
 There is a combinational path from u to v longer than T.

v should be included in *I* to satisfy the timing constraints if *u* ∈ *I*.

Define a cluster I to be closed under active constraints A when no edge in A point to outside of the cluster I.

Define a cluster I to be closed under active constraints A when no edge in A point to outside of the cluster I.

Define a cluster I to be closed under active constraints A when no edge in A point to outside of the cluster I.

Define a cluster I to be closed under active constraints A when no edge in A point to outside of the cluster I.

▶ r_I is feasible \Leftrightarrow *I* is closed under all active constraints of *r*.

As more active constraints are introduced in A, either r_I is feasible with reduced FF area or no such I exists. How many active constraints are there in A?

- Keeping every active constraint in A may increase |A| to $\Theta(n^2)$.
- Therefore, it should be able to remove active constraints from A sometime during the algorithm.
- Removing them should not affect termination.

How many active constraints are there in A?

- Keeping every active constraint in A may increase |A| to $\Theta(n^2)$.
- Therefore, it should be able to remove active constraints from A sometime during the algorithm.
- Removing them should not affect termination.
- Our solution: maintain A as a regular forest.
 - A directed forest satisfying special property.
 - Gates are clustered into trees.
 - Require Θ(n) storage.

- Clock period T = 6.
- Inside each gate are the gate delays.
- On the right to each gate name are the area improvements.

- ► Active constraints A: {}.
- Trees: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{host\}.$
- Move 1 FF across $I = \{f\} \cup \{g\}$.
- FFs on (f, e) is negative. Add (f, e) to A.

- Active constraints A: $\{(f, e)\}$.
- Trees: $\{a\}, \{b\}, \{c\}, \{d\}, \{e, f\}, \{g\}, \{host\}.$
- Move 1 FF across $I = \{e, f\} \cup \{g\}$.
- Combinational path from g to c has delay 7. Add (g, c) to A.

- Active constraints A: $\{(f, e), (g, c)\}$.
- Trees: $\{a\}, \{b\}, \{c, g\}, \{d\}, \{e, f\}, \{host\}.$
- Move 1 FF across $I = \{e, f\}$.
- Got a feasible retiming with improved area.

- Active constraints A: $\{(f, e), (g, c)\}$.
- Trees: $\{a\}, \{b\}, \{c, g\}, \{d\}, \{e, f\}, \{host\}.$
- Move 1 FF across $I = \{e, f\}$.
- FFs on (f, c) is negative. Add (f, c) to A.

- Active constraints A: $\{(f, e), (g, c), (f, c)\}$.
- ► Trees: {*a*},{*b*},{*c*, *e*, *f*, *g*},{*d*},{host}.
- Move 1 FF across $I = \{c, e, f, g\}$.
- FFs on (e, d) is negative. Add (e, d) to A.

- Active constraints A: $\{(f, e), (g, c), (f, c), (e, d)\}$.
- ► Trees: {*a*},{*b*},{*c*,*d*,*e*,*f*,*g*},{host}.
- Move 1 FF across $I = \{c, d, e, f, g\}$.
- Combinational path from f to b has delay 7. Add (f, b) to A.

- Active constraints A: $\{(f, b), (g, c)\}$, (others are removed).
- Trees: {a}, {b, f}, {c, g}, {d}, {e}, {host}.
- Area improvements for all trees are 0.
- The current retiming is the optimal one.

Outline

Motivation and Formulation

Algorithmic Ideas

Algorithm Details

Experimental Results

Conclusions

Regular Forest

- Organize active constraints as rooted directed trees.
- Area improvements for each tree and subtree: B(v).
- Move 1 FF across the positive trees.
- Definition of regular forest:
 - Positive trees with $> 0 \uparrow$ and $\leq 0 \downarrow$ subtrees.
 - Zero trees with $> 0 \uparrow$ and $< 0 \downarrow$ subtrees.
 - Negative trees with $\geq 0 \uparrow$ and $< 0 \downarrow$ subtrees.

Regular Forest

- Organize active constraints as rooted directed trees.
- Area improvements for each tree and subtree: B(v).
- Move 1 FF across the positive trees.
- Definition of regular forest:
 - Positive trees with $> 0 \uparrow$ and $\leq 0 \downarrow$ subtrees.
 - Zero trees with $> 0 \uparrow$ and $< 0 \downarrow$ subtrees.
 - Negative trees with $\geq 0 \uparrow$ and $< 0 \downarrow$ subtrees.

Regular Forest

- Organize active constraints as rooted directed trees.
- Area improvements for each tree and subtree: B(v).
- Move 1 FF across the positive trees.
- Definition of regular forest:
 - Positive trees with $> 0 \uparrow$ and $\leq 0 \downarrow$ subtrees.
 - Zero trees with $> 0 \uparrow$ and $< 0 \downarrow$ subtrees.
 - Negative trees with $\geq 0 \uparrow$ and $< 0 \downarrow$ subtrees.

Theorem

If every tree is a zero tree, then the current retiming is the optimal.

- As there are many active constraints for a retiming, there are many regular forests.
- The retiming is optimal if a regular forest of all zero trees can be constructed.

Operation Toward Optimality

- Optimality condition cannot be achieved by a single operation.
- Potential tuple in lexicographic ordering to capture the progress:

$$\Phi \triangleq$$
 (area improvement of all the positive trees,
vertices in non-positive trees)

- Optimality $\Leftrightarrow \Phi = (0, n)$.
- Finite number of forests \Rightarrow Finite number of Φ .
- Design the UpdateForest operation to decrease Φ strictly after identifying new active constraint.

Inside each gate are the area improvements of subtrees (B).

- A new active constraint (u, v) should be added (later).
- u' and v' are the roots of the two trees in the regular forest.
- Potential tuple $\Phi = (7, 6)$.

- Change the roots of the trees to u and v.
- ► B(u'), B(u), B(v'), B(u) should be updated.
- The forest is no longer regular. The subtree rooted at v' is < 0 but ↑.</p>

- Removing (v', v) creates a tree with the root v'.
- B(v) should be updated.
- The forest becomes regular.
- Potential tuple $\Phi = (7, 6)$.

- Connecting (u, v) makes v a child of u.
- B(u) should be updated.
- The forest is no longer regular. The subtrees rooted at a and b are = 0.

- Removing (u, a) and (b, v) creates two trees with the root a and b.
- The forest becomes regular.
- Potential tuple $\Phi = (2, 12)$.
- Other cases are handled similarly.

- 1. Compute an initial feasible retiming r using any fixed period retiming algorithm.
- 2. Initialize F to be a forest with no edge.
- 3. $I \leftarrow$ all the nodes of the positive trees in F.
- 4. Claim r is optimal if $I = \emptyset$.
- 5. If (u, v) violates the validity or timing constraints in r_l , then update F with (u, v) using the UpdateForest operation. Continue to Step 3.
- 6. Update r to r_I . Continue to Step 3.

Complexity Analysis

- Need O(n) extra space for the regular forest and other auxiliary data structures on top of the circuit graph G.
- Each iteration consumes O(m) time.
- For practical VLSI circuits, assume area improvements b are integer-valued, summation of positive b is bounded by O(n), and FF area in the initial feasible retiming is bounded by O(m). The time complexity is O(n²m).

- Need O(n) extra space for the regular forest and other auxiliary data structures on top of the circuit graph G.
- Each iteration consumes O(m) time.
- For practical VLSI circuits, assume area improvements b are integer-valued, summation of positive b is bounded by O(n), and FF area in the initial feasible retiming is bounded by O(m). The time complexity is O(n²m).
- For general graphs, the algorithm terminates in finite time for bounded problems.
 - ▶ Note that termination is guaranteed for real valued *b*.

Outline

Motivation and Formulation

Algorithmic Ideas

Algorithm Details

Experimental Results

Conclusions

Experimental Setup

Benchmarks.

- ► ISCAS89 sequential circuits.
- Large circuits (myex1 through myex5) created in Minaret.
- ITC'99 sequential circuits.
- ► The largest circuit has > 180K gates and > 320K edges.
- For comparison to Minaret, assume unit FF area, unit gate delay, and sharing of FFs at the fanouts of gates.
- Use Zhou's algorithm [Zhou 05] to determine the minimum clock period.
- Perform min-area retiming under the minimum clock period.

- ► FF area (# FFs) obtained by Minaret and that obtained by iMinArea are the same.
- Compared to Minaret, 60× faster on average.
- ► For the circuit with more than 180K gates, iMinArea uses less than 1 minute and 65MB memory.
 - \blacktriangleright Compared to Minaret, \geq 30× less memory consumption and \geq 100× faster.

Experimental Results

Speedups for circuits with > 4000 gates compared to Minaret:

Running times:

Outline

Motivation and Formulation

Algorithmic Ideas

Algorithm Details

Experimental Results

Conclusions

 Efficient incremental min-area retiming algorithm with provable optimality.

Conclusions

- Efficient incremental min-area retiming algorithm with provable optimality.
- Combine incremental retiming with a special forest data structure.
 - ▶ Will not formulate the dual problem of min-cost network flow.
 - Generate critical constraints dynamically only when they are needed.
 - Require only linear storage (O(n)) on top of circuit graph.

Conclusions

- Efficient incremental min-area retiming algorithm with provable optimality.
- Combine incremental retiming with a special forest data structure.
 - ▶ Will not formulate the dual problem of min-cost network flow.
 - Generate critical constraints dynamically only when they are needed.
 - Require only linear storage (O(n)) on top of circuit graph.
- Extensions
 - Perform forward retiming to enforce initial state.
 - Min-area retiming under hold conditions.

Q & A

Thank you!

Optimality Condition

Lemma

If (u, v) is an active constraint of r, then for any feasible r',

$$r'(v)-r'(u)\geq r(v)-r(u).$$

Lemma

If every tree is a zero tree, then $\exists \gamma(u, v) \geq 0$ such that,

$$b(\mathbf{v}) = \sum_{(\mathbf{v},j)\in A} \gamma(\mathbf{v},j) - \sum_{(i,v)\in A} \gamma(i,v), \forall v \in V.$$

Optimality Condition

Theorem

If every tree is a zero tree, then the current retiming is the optimal.

Proof sketch

For any feasible r',

ve

$$\sum_{u,v} b(v)r(v) = \sum_{(u,v)\in A} \gamma(u,v) * (r(u) - r(v))$$

$$\geq \sum_{(u,v)\in A} \gamma(u,v) * (r'(u) - r'(v))$$

$$= \sum_{v\in V} b(v)r'(v)$$